Displaying publications 21 - 40 of 57 in total

Abstract:
Sort:
  1. Doreddula SK, Bonam SR, Gaddam DP, Desu BS, Ramarao N, Pandy V
    ScientificWorldJournal, 2014;2014:519848.
    PMID: 25401145 DOI: 10.1155/2014/519848
    Abelmoschus esculentus L. (ladies finger, okra) is a well-known tropical vegetable, widely planted from Africa to Asia and from South Europe to America. In the present study, we investigated the in vitro antioxidant capacity and in vivo protective effect of the aqueous and methanolic seed extracts of Abelmoschus esculentus against scopolamine-induced cognitive impairment using passive avoidance task and acute restraining stress-induced behavioural and biochemical changes using elevated plus maze (EPM) and forced swimming test (FST) in mice. Our results demonstrated that the pretreatment of mice with aqueous and methanolic seed extracts of Abelmoschus esculentus (200 mg/kg, p.o.) for seven days significantly (P < 0.01) attenuated scopolamine-induced cognitive impairment in the passive avoidance test. In addition, these extracts significantly reduced the blood glucose, corticosterone, cholesterol, and triglyceride levels elevated by acute restraint stress and also significantly increased the time spent in open arm in EPM and decreased the immobility time in FST. It has also been revealed that these extracts showed a significant antioxidant activity and no signs of toxicity or death up to a dose of 2000 mg/kg, p.o. These results suggest that the seed extracts of Abelmoschus esculentus L. possess antioxidant, antistress, and nootropic activities which promisingly support the medicinal values of ladies finger as a vegetable.
    Matched MeSH terms: Phytochemicals/analysis
  2. Eseyin OA, Daniel A, Paul TS, Attih E, Emmanuel E, Ekarika J, et al.
    Nat Prod Res, 2018 Feb;32(4):444-447.
    PMID: 28361553 DOI: 10.1080/14786419.2017.1308366
    The 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical, nitric oxide, reducing power, hydrogen peroxide scavenging, and total antioxidant activities of the methanol extract, n-hexane, dichloromethane, ethyl acetate, butanol and aqueous fractions of the seed of Telfairia occidentalis were evaluated. Total phenolic content was determined using the Folin-Ciocalteu method. The dichloromethane fraction exhibited the highest DPPH radical scavenging, reducing power and total antioxidant activities. Two pure compounds which were identified by FTIR, H-and 2D NMR and Mass spectroscopy as 9-octadecenoic acid (TOS B) and 10-hydroxyoctadecanoic acid (TOS C) and four oily isolates, TOS A, TOS D, TOS E and TOS F were obtained from the dichloromethane fraction. TOS E had the highest DPPH radical scavening activity comparable to that of ascorbic acid. GC-MS analysis revealed the major compounds in TOS E as 4-(2,2-Dimethyl-6-methylene cyclohexylidene)-2-butanol; 3-(3-hydroxybutyl)-2,4,4-trimethyl-2-cyclohexene-1-one and 1,2-Benzenedicarboxylic acid disooctyl ester. Thus, the seed of T. occidentalis can be consumed for its antioxidant property.
    Matched MeSH terms: Phytochemicals/analysis
  3. Li R, Ru Y, Wang Z, He X, Kong KW, Zheng T, et al.
    Molecules, 2021 Jul 24;26(15).
    PMID: 34361630 DOI: 10.3390/molecules26154472
    In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.
    Matched MeSH terms: Phytochemicals/analysis*
  4. Suroowan S, Llorent-Martínez EJ, Zengin G, Dall'Acqua S, Sut S, Buskaran K, et al.
    Molecules, 2022 Sep 10;27(18).
    PMID: 36144622 DOI: 10.3390/molecules27185886
    Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.
    Matched MeSH terms: Phytochemicals/analysis
  5. Lau HLN, Tee YS, Chan MK, Teh SS
    J Oleo Sci, 2022;71(2):177-185.
    PMID: 35110462 DOI: 10.5650/jos.ess21256
    Phosphoric acid is used in the refining of palm oil for the removal of phosphatides. The high concentration of phosphorus in solvent extracted palm-pressed mesocarp fiber oil hinders palm oil mills to recover this phytonutrients-rich residual oil in pressed fiber which typically contains 0.1 to 0.2% of total oil yield. This study aimed to refine the palm-pressed mesocarp fiber oil and determine the optimum dosage of phosphoric acid for acid-degumming of palm-pressed mesocarp fiber oil while retaining its phytonutrients. The refining process was carried out with combination of wet degumming, acid degumming, neutralisation, bleaching and deodorization. The optimum dose of phosphoric acid was identified as 0.05 wt.% by incorporating the wet degumming process. The refined palm-pressed mesocarp fiber oil showed a reduction in phosphorus content by 97% (from 901 ppm to 20 ppm) and 97% free fatty acid content removal (from 6.36% to 0.17%), while the Deterioration of Bleachability Index increased from 1.76 to 2.48, which showed an increment of 41%. The refined oil retained the key phytonutrients such as carotenoids (1,150 ppm) and vitamin E (1,540 ppm) that can be further developed into high-value products. The oil meets the quality specification of refined, bleached, and deodorized palm oil while preserving the heat-sensitive phytonutrients, which in turn provides a new resource of nutritious oil.
    Matched MeSH terms: Phytochemicals/analysis*
  6. Ramaiya SD, Lee HH, Xiao YJ, Shahbani NS, Zakaria MH, Bujang JS
    PLoS One, 2021;16(7):e0255059.
    PMID: 34310644 DOI: 10.1371/journal.pone.0255059
    Passiflora quadrangularis L. belongs to the family Passifloraceae which bears larger fruit with edible juicy mesocarp and pulp known as a good source of phytochemicals. Cultivation and plant management practices are known to influence the phytochemical compositions of agricultural produce. This study aimed to examine the influence of the cultivation practices on the antioxidant activities and secondary metabolites of the organically and conventionally grown P. quadrangularis. Findings revealed organically treated P. quadrangularis plants showed enhancement in their antioxidant properties and secondary metabolites profiles. Among the plant parts, leaves of P. quadrangularis grown organically possessed higher antioxidant activities compared to the conventional in all assays evaluated. The antioxidant activities in the edible parts of the P. quadrangularis fruit have also been enhanced through organic cultivation with significantly higher total phenolic content and DPPH in mesocarp, and the pulp showed higher total flavonoid content, DPPH and FRAP. This observation is supported by a higher level of vitamins and secondary metabolites in the samples. The secondary metabolites profile showed mesocarps were phenolic rich, the pulps were flavonoids rich while leaves showed good composition of phenolics, flavonoids and terpenoids with outstanding antioxidant activities. The common secondary metabolites for organically produced P. quadrangularis in different plant parts include 2-isopropyl-3-methoxycinnamic acid (mesocarp and pulp), myricetin isomers (pulp and leaves), and malvidin-3-O-arabinoside isomers (pulp and leaves). This study confirmed that organic cultivated P. quadrangularis possessed higher antioxidant activities contributed by its vitamins and secondary metabolites.
    Matched MeSH terms: Phytochemicals/analysis
  7. Md Yusof AH, Abd Gani SS, Zaidan UH, Halmi MIE, Zainudin BH
    Molecules, 2019 Feb 16;24(4).
    PMID: 30781448 DOI: 10.3390/molecules24040711
    This study investigates the ultrasound-assisted extraction of flavonoids from Malaysian cocoa shell extracts, and optimization using response surface methodology. There are three variables involved in this study, namely: ethanol concentration (70⁻90 v/v %), temperature (45⁻65 °C), and ultrasound irradiation time (30⁻60 min). All of the data were collected and analyzed for variance (ANOVA). The coefficient of determination (R²) and the model was significant in interaction between all variables (98% and p < 0.0001, respectively). In addition, the lack of fit test for the model was not of significance, with p > 0.0684. The ethanol concentration, temperature, and ultrasound irradiation time that yielded the maximum value of the total flavonoid content (TFC; 7.47 mg RE/g dried weight (DW)) was 80%, 55 °C, and 45 min, respectively. The optimum value from the validation of the experimental TFC was 7.23 ± 0.15 mg of rutin, equivalent per gram of extract with ethanol concentration, temperature, and ultrasound irradiation time values of 74.20%, 49.99 °C, and 42.82 min, respectively. While the modelled equation fits the data, the T-test is not significant, suggesting that the experimental values agree with those predicted by the response surface methodology models.
    Matched MeSH terms: Phytochemicals/analysis
  8. Bakhtiyari E, Ahmadian-Attari MM, Salehi P, Khallaghi B, Dargahi L, Mohamed Z, et al.
    Nutr Neurosci, 2017 Oct;20(8):469-477.
    PMID: 27219682 DOI: 10.1080/1028415X.2016.1183986
    OBJECTIVES: Although grape has been recently the topic of many investigations, Maviz (a kind of dried one) has remained neglected. The aim of this study was to assess anti-Alzheimer activity of Maviz.

    METHODS: To reach this goal, total phenolic content (TPC) of ethanolic (Eth) and aqueous (Aq) extracts were determined and radical scavenging activity was assayed by 2,2-diphenyl-1-picrylhydrazyl. Chemical compositions of each extract were also determined via GC-Mass. Behavioral changes were studied via passive avoidance and Morris water maze in Aβ-induced model of Alzheimer's disease. Catalase (CAT) and superoxide dismutase (SOD) determination were also done on rats' hippocampus.

    RESULTS: The results showed that seed Eth extract has a high level of TPC and radical scavenging activity. However, this extract had surprisingly no effect on memory and CAT and SOD activities. In contrast, fruit Aq and Eth extracts (containing furfurals as major compounds) inhibited memory impairment (P 

    Matched MeSH terms: Phytochemicals/analysis
  9. Saleem H, Zengin G, Khan KU, Ahmad I, Waqas M, Mahomoodally FM, et al.
    Nat Prod Res, 2021 Feb;35(4):664-668.
    PMID: 30919661 DOI: 10.1080/14786419.2019.1587427
    This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.
    Matched MeSH terms: Phytochemicals/analysis*
  10. Pervaiz I, Saleem H, Sarfraz M, Imran Tousif M, Khurshid U, Ahmad S, et al.
    Food Res Int, 2020 11;137:109606.
    PMID: 33233202 DOI: 10.1016/j.foodres.2020.109606
    Calligonum polygonoides L. also known as famine food plant, is normally consumed in times of food scarcity in India and Pakistan and also used traditionally in the management of common diseases. The present design aims to provide an insight into the medicinal potential of four solvent extracts of C. polygonoides via an assessment of its phytochemical profile, antioxidant and enzyme inhibitory potential. Phytochemical composition was estimated by deducing total bioactive constituents, UHPLC-MS secondary metabolites profile, and HPLC phenolic quantification. Antioxidant potential was determined via six methods (radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum total antioxidant capacity and metal chelation activity). Enzyme inhibitory potential was assessed against clinical enzymes (acetylcholinesterase -AChE, butyrylcholinesterase -BChE, tyrosinase, and α-amylase). The highest amounts of phenolic contents were found in chloroform extract (76.59 mg GAE/g extract) which may be attributed to its higher radical scavenging, reducing power and tyrosinase inhibition potential. The n-butanol extract containing the maximum amount of flavonoids (55.84 mg RE/g extract) exhibited highest metal chelating capacity. Similarly, the n-hexane extract was found to be most active against AChE (4.65 mg GALAE/g extract), BChE (6.59 mg GALAE/g extract), and α-amylase (0.70 mmol ACAE/g extract) enzymes. Secondary metabolite assessment of the crude methanol extract as determined by UHPLC-MS analysis revealed the presence of 24 (negative ionization mode) and 15 (positive ionization mode) secondary metabolites, with most of them belonging to phenolic, flavonoids, terpene, and alkaloid groups. Moreover, gallic acid and naringenin were the main phenolics quantified by HPLC-PDA analysis in all the tested extracts (except n-butanol extract). PCA statistical analysis was also conducted to establish any possible relationship amongst bioactive contents and biological activities. Overall, the C. polygonoides extracts could be further considered to isolate bioactive enzyme inhibitory and antioxidant natural phytocompounds.
    Matched MeSH terms: Phytochemicals/analysis
  11. Al Muqarrabun LM, Ahmat N, Ruzaina SA, Ismail NH, Sahidin I
    J Ethnopharmacol, 2013 Nov 25;150(2):395-420.
    PMID: 24016802 DOI: 10.1016/j.jep.2013.08.041
    Pongamia pinnata (L.) Pierre is one of the many plants with diverse medicinal properties where all its parts have been used as traditional medicine in the treatment and prevention of several kinds of ailments in many countries such as for treatment of piles, skin diseases, and wounds.
    Matched MeSH terms: Phytochemicals/analysis
  12. Zakaria ZA, Balan T, Suppaiah V, Ahmad S, Jamaludin F
    J Ethnopharmacol, 2014 Feb 12;151(3):1184-1193.
    PMID: 24380736 DOI: 10.1016/j.jep.2013.12.045
    ETHNOPHARMACOLOGICAL RELEVANCE: Muntingia calabura L. (Muntingiaceae) is locally known as kerukup siam. Its leaves, flowers, barks and roots have been used traditionally in East Asia and South America to treat various diseases including ulcer-related diseases. The present study aimed to investigate the mechanism(s) of gastroprotective effect of methanol extract of Muntingia calabura leaves (MEMC) using the pylorus ligation induced gastric ulceration in rats.

    MATERIALS AND METHODS: Five groups of rats (n=6) were administered orally once daily for 7 days with 8% Tween 80 (negative control), 100 mg/kg ranitidine (positive control), or MEMC (100, 250 or 500 mg/kg), followed by the ulcer induction via ligation of the pyloric part of the rat's stomach. This was followed by the macroscopic analysis of the stomach, evaluation of gastric content parameters, and quantification of mucus content. The antioxidant (measured using the superoxide anion and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging, oxygen radical absorbance capacity (ORAC) and total phenolic content (TPC) assays), anti-inflammatory (evaluated using the in vitro lipoxygenase and xanthine oxidase assays), phytoconstituents and HPLC analysis of MEMC were also carried out.

    RESULTS: The MEMC significantly (p<0.05) reduced gastric lesion in this model. Furthermore, the extract also significantly (p<0.01) reduced the volume of gastric content whereas the total acidity was significantly (p<0.05) reduced in the doses of 100 and 500 mg/kg MEMC. Moreover, the mucus content increased significantly (p<0.01) in MEMC-treated rats. The extract also showed high antioxidant and anti-inflammatory activities in all assays tested, and demonstrated the presence of high tannins and saponins followed by flavonoids.

    CONCLUSION: The MEMC exerted gastroprotective effect via several mechanisms including the anti-secretory, antioxidant and anti-inflammatory activities. These activities could be attributed to the presence of tannins, saponins and flavonoids (e.g. rutin, quercitrin, fisetin and dihydroquercetin).

    Matched MeSH terms: Phytochemicals/analysis
  13. Toh SC, Lihan S, Bunya SR, Leong SS
    BMC Complement Med Ther, 2023 Mar 18;23(1):85.
    PMID: 36934252 DOI: 10.1186/s12906-023-03914-z
    BACKGROUND: Cellulitis is a common skin disease encountered in medical emergencies in hospitals. It can be treated using a combination of antibiotics therapy; however, the causative agent Staphylococcus aureus has been reported to develop resistance towards the currently used antibiotics. Therefore, the search for more alternative herbal origin antimicrobial agents is critical.

    AIM: In this study, maceration and Soxhlet extraction of the whole plant of Cassia alata Linn. (leaves, roots, and stem) were performed using four solvents with different polarities, namely n-hexane, ethyl acetate, ethanol and distilled water. The crude extracts were screened using agar well diffusion, colorimetric broth microdilution, grid culture and bacterial growth curve analysis against Staphylococcus aureus. The phytochemicals in the crude extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS).

    RESULTS: Agar-well diffusion analysis revealed that extraction using ethyl acetate showed the largest inhibition zone with an average diameter of 15.30 mm (root Soxhlet extract) followed by 14.70 mm (leaf Soxhlet extract) and 13.70 mm (root maceration extract). The lowest minimum inhibitory and minimum bactericidal concentration in root Soxhlet extract using ethyl acetate was 0.313 and 0.625 µg µL-1, respectively. Our study proved that crude extract of the plant suppressed the growth of S. aureus as evidenced from a significant regression extension (p 

    Matched MeSH terms: Phytochemicals/analysis
  14. Bondhon TA, Fatima A, Jannat K, Hasan A, Jahan R, Nissapatorn V, et al.
    Trop Biomed, 2021 Jun 01;38(2):214-221.
    PMID: 34172713 DOI: 10.47665/tb.38.2.060
    Corona virus SARS-CoV-2-induced viral disease (COVID-19) is a zoonotic disease that was initially transmitted from animals to humans. The virus surfaced towards the end of December 2019 in Wuhan, China where earlier SARS (Severe Acute Respiratory Syndrome) had also surfaced in 2003. Unlike SARS, SARS-CoV-2 (a close relative of the SARS virus) created a pandemic, and as of February 24 2021, caused 112,778,672 infections and 2,499,252 deaths world-wide. Despite the best efforts of scientists, no drugs against COVID-19 are yet in sight; five vaccines have received emergency approval in various countries, but it would be a difficult task to vaccinate twice the world population of 8 billion. The objective of the present study was to evaluate through in silico screening a number of phytochemicals in Allium cepa (onion) regarding their ability to bind to the main protease of COVID-19 known as the 3C-like protease or 3CLpro, (PDB ID: 6LU7), 3CLpro of SARS (PDB ID: 3M3V), and human angiotensin converting enzyme-2 (ACE-2), [PDB ID: 1R42], which functions as a receptor for entry of the virus into humans. Molecular docking (blind docking, that is docking not only against any target pocket) were done with the help of AutoDockVina. It was observed that of the twenty-two phytochemicals screened, twelve showed good binding affinities to the main protease of SARS-CoV-2. Surprisingly, the compounds also demonstrated good binding affinities to ACE-2. It is therefore very likely that the binding affinities shown by these compounds against both 3CLpro and ACE-2 merit further study for their potential use as therapeutic agents.
    Matched MeSH terms: Phytochemicals/analysis
  15. Sahoo MR, Dhanabal SP, Jadhav AN, Reddy V, Muguli G, Babu UV, et al.
    J Ethnopharmacol, 2014 May 28;154(1):17-25.
    PMID: 24732111 DOI: 10.1016/j.jep.2014.03.029
    The genus Hydnocarpus (Flacourtiaceae) includes forty species that are spread across the globe. In the Indian System of Medicine, Hydnocarpus pentandrus (Buch.-Ham.) Oken. is primarily used for treating leprosy and other skin disorders. It is known as "Chaulmoogra" and is also used to treat other indications including constipation, inflammation, blood disorders, and worm infestations. Various species of Hydnocarpus are also used in traditional medicine in China, Thailand, Malaysia, and Myanmar for several skin disorders. To assess the therapeutic potential of species from the Hydnocarpus genus and to determine future avenues for research.
    Matched MeSH terms: Phytochemicals/analysis
  16. Sim YY, Nyam KL
    Food Chem, 2021 May 15;344:128582.
    PMID: 33199120 DOI: 10.1016/j.foodchem.2020.128582
    The electronic database was searched up to July 2020, using keywords, kenaf and roselle, chemical constituents of kenaf and roselle, therapeutic uses of kenaf and roselle. Journals, books and conference proceedings were also searched. Investigations of pharmacological activities of kenaf revealed that this edible plant exhibits a broad range of therapeutic potential including antioxidant, antimicrobial, antityrosinase, anticancer, antihyperlipidemia, antiulcer, anti-inflammatory, and hepatoprotective activities. Kenaf also showed versatile utility as a functional ingredient in food, folk medicine, and animal nutritions, as well as in nanotechnology processes. The exploitation of underexploited kenaf by-products can be a significant part of waste management from an economic and environmental point of view. In addition, kenaf showed comparable nutritional, phytochemical, and pharmacological properties with Hibiscus sabdariffa (Roselle). This review has important implications for further investigations and applications of kenaf in food and pharmaceuticals industry.
    Matched MeSH terms: Phytochemicals/analysis
  17. Loganathan R, Subramaniam KM, Radhakrishnan AK, Choo YM, Teng KT
    Nutr Rev, 2017 Feb 01;75(2):98-113.
    PMID: 28158744 DOI: 10.1093/nutrit/nuw054
    The fruit of the oil palm tree (Elaeis guineesis) is the source of antioxidant-rich red palm oil. Red palm oil is a rich source of phytonutrients such as tocotrienols, tocopherols, carotenoids, phytosterols, squalene, and coenzyme Q10, all of which exhibit nutritional properties and oxidative stability. Mutagenic, nutritional, and toxicological studies have shown that red palm oil contains highly bioavailable β-carotene and vitamin A and is reasonably stable to heat without any adverse effects. This review provides a comprehensive overview of the nutritional properties of red palm oil. The possible antiatherogenic, antihemorrhagic, antihypertensive, anticancer, and anti-infective properties of red palm oil are examined. Moreover, evidence supporting the potential effectiveness of red palm oil to overcome vitamin A deficiency in children and pregnant women, to improve ocular complications of vitamin A deficiency, to protect against ischemic heart disease, to promote normal reproduction in males and females, to aid in the management of diabetes, to ameliorate the adverse effects of chemotherapy, and to aid in managing hypobaric conditions is presented.
    Matched MeSH terms: Phytochemicals/analysis
  18. Afzal K, Uzair M, Chaudhary BA, Ahmad A, Afzal S, Saadullah M
    Acta Pol Pharm, 2015 Sep-Oct;72(5):821-7.
    PMID: 26665388
    Ruellia is a genus of flowering plants commonly known as Ruellias or Wild Petunias which belongs to the family Acanthaceae. It contains about 250 genera and 2500 species. Most of these are shrubs, or twining vines; some are epiphytes. Only a few species are distributed in temperate regions. They are distributed in Indonesia and Malaysia, Africa, Brazil, Central America and Pakistan. Some of these are used as medicinal plants. Many species of the genus has antinociceptive, antioxidant, analgesic, antispasmolytic, antiulcer, antidiabetic and anti-inflammatory properties. The phytochemicals constituents: glycosides, alkaloids, flavonoids and triterpenoids are present. The genus has been traditionally claimed to be used for the treatment of flu, asthma, fever, bronchitis, high blood pressure, eczema, and diabetes. The objective of this review article is to summarize all the pharmacological and phytochemical evaluations or investigations to find area of gap and endorse this genus a step towards commercial drug. Hence, further work required is to isolate and characterize the active compounds responsible for these activities in this plant and bring this genus plants to commercial health market to serve community with their potential benefits.
    Matched MeSH terms: Phytochemicals/analysis
  19. R R
    Appl Biochem Biotechnol, 2022 Jan;194(1):176-186.
    PMID: 34762268 DOI: 10.1007/s12010-021-03742-2
    Hellenia speciosa (J.Koenig) S.R. Dutta is a plant species belonging to the family Costaceae. It is widely distributed in China, India, Malaysia, Indonesia, tropical, and subtropical Asia. In Ayurveda, the rhizome of this plant has been extensively used to treat fever, rash, asthma, bronchitis, and intestinal worms. The objective of the present study was to investigate the phytochemical constituents of the leaf of Hellenia speciosa using gas chromatography and mass spectroscopy analysis (GC-MS). The GC-MS analysis revealed the presence of 17 phytochemical components in the ethanolic leaf extract of Hellenia speciosa. The prevailing bioactive compounds present in Hellenia speciosa were thymol (RT-10.019; 3.59%), caryophyllene (RT-11.854; 0.62%), caryophyllene oxide (RT-13.919; 1.34%), artumerone (RT-14.795; 1.35%), hexadecanoic acid methyl ester (RT-17.536; 2.77%), 9,12-octadecanoic acid methyl ester (RT-19.163; 1.35%), squalene (RT-24.980; 1.19%), piperine (RT-25.745; 3.11%), beta tocopherol (RT-26.681; 2.88%), vitamin E (RT-27.290; 2.64%), progesterone (RT-29.608; 3.18%), caparratriene (RT-29.861; 9.72%), and testosterone (RT-30.73; 5.81%). The compounds were identified by comparing their retention time and peak area with that of the literature and by interpretation of mass spectra. The results and findings of the present study suggest that the plant leaf can be used as a valuable source in the field of herbal drug discovery. The presence of bioactive compounds justifies the use of plant leaves for treating various diseases with fewer side effects and recommended the plant of pharmaceutical importance. However, further studies are needed to undertake its bioactivity and toxicity profile.
    Matched MeSH terms: Phytochemicals/analysis*
  20. Siang LH, Arulsamy A, Yoon YK, Shaikh MF
    Curr Neuropharmacol, 2022;20(10):1925-1940.
    PMID: 34517803 DOI: 10.2174/1570159X19666210913120637
    Epilepsy is a devastating neurological disorder. Current anti-convulsant drugs are only effective in about 70% of patients, while the rest remain drug-resistant. Thus, alternative methods have been explored to control seizures in these drug-resistant patients. One such method may be through the utilization of fruit phytochemicals. These phytochemicals have been reported to have beneficial properties such as anti-convulsant, anti-oxidant, and anti-inflammatory activities. However, some fruits may also elicit harmful effects. This review aims to summarize and elucidate the anti- or pro-convulsant effects of fruits used in relation to seizures in hopes of providing a good therapeutic reference to epileptic patients and their carers. Three databases, SCOPUS, ScienceDirect, and PubMed, were utilized for the literature search. Based on the PRISMA guidelines, a total of 40 articles were selected for critical appraisal in this review. Overall, the extracts and phytochemicals of fruits managed to effectively reduce seizure activities in various preclinical seizure models, acting mainly through the activation of the inhibitory neurotransmission and blocking the excitatory neurotransmission. Only star fruit has been identified as a pro-convulsant fruit due to its caramboxin and oxalate compounds. Future studies should focus more on utilizing these fruits as possible treatment strategies for epilepsy.
    Matched MeSH terms: Phytochemicals/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links