KEY FINDINGS: The major bioactive compounds implicated in the therapeutic effects of Polygonum genus include phenolic and flavonoid compounds, anthraquinones and stilbenes, such as quercetin, resveratrol, polydatin and others, and could serve as potential drug leads or as adjuvant agents. Data from in-silico network pharmacology and computational molecular docking studies are also highly helpful in identifying the possible drug target of pathogens or host cell machinery.
SUMMARY: We provide an up-to-date overview of the data from pharmacodynamic, pharmacokinetic profiles and preclinical (in-vitro and in-vivo) investigations and the available clinical data on some of the therapeutically important compounds of genus Polygonum L. and their medical interventions, including combating the outbreak of the COVID-19 pandemic.
METHODS: Uncaria gambir extracts at concentrations ranging from 1000 to 7.8 µg/ml and MTA eluates at 4- and 48 h setting times were prepared. 10% dimethyl sulfoxide (DMSO) and culture media were used as positive and negative controls respectively. Cell viability on days 1, 2, 3 and 7 was analysed using Alamar Blue and Live and Dead Cell assay. Any morphological cellular changes were evaluated using transmission electron microscopes (TEM). Data were analysed using a two-way mixed Analysis of Variance (ANOVA).
RESULTS: The interaction between the concentration and exposure time on the fluorescence intensity of Uncaria gambir extract and MTA 48 h was found to be statistically significant (p < 0.001). No cytotoxic effects on the cells were exerted by both MTA 48 h and Uncaria gambir extract at a concentration below 500 µg/mL. TEM analysis and Live and Dead Cell assay for both materials were comparable to the negative control. No significant differences in fluorescent intensity were observed between Uncaria gambir extract at 500 µg/mL and MTA 48 h (p > 0.05).
CONCLUSION: Uncaria gambir extracts at a maximum concentration of 500 μg/mL are non-cytotoxic over time and are comparable to the MTA.
METHODS: Data was retrieved from the Scopus database, and a bibliometric analysis was performed using VOSviewer software.
RESULTS: Following a screening process, a total of 121 articles were identified, with S. aromaticum yielding a higher number compared to C. canephora. A detailed exploration of each plant revealed active components such as eugenol, β-caryophyllene, α-humulene, caffeine, mangiferin, and chlorogenic acids, each exhibiting stimulatory effects alongside antioxidant and anti-inflammatory properties. The neuroprotective effects were attributed to the reduction of oxidative stress and inflammation, coupled with the stimulation of neurotransmitters and hormones like dopamine, serotonin, cortisol, and adrenaline.
CONCLUSIONS: The review showed that these plants positively affect mood and cognition by influencing the brain's pleasure system. This suggests the need for further research to combine these plant extracts for developing 'Tenang tea', a potential herbal blend for managing stress and anxiety.
RESULTS: A. burmanicus stem extract and M. modestum leaf extract were capable of inhibiting growth of P. falciparum when used at 200 µg/mL compared to chloroquine. The extracts at effective concentrations, did not affect the viability of PBMCs. These results support further need for characterization of active compounds from specific Annonaceae plants in order to exploit their components for potential malaria treatment.