Displaying publications 21 - 40 of 111 in total

Abstract:
Sort:
  1. Chew AL, Jessica JJ, Sasidharan S
    Asian Pac J Trop Biomed, 2012 Mar;2(3):176-80.
    PMID: 23569893 DOI: 10.1016/S2221-1691(12)60037-9
    To evaluate antioxidant, antimicrobial and cytotoxic activity of different parts (root, flower, leaf and stem) of Leucas aspera (L. aspera) (Labiatae).
    Matched MeSH terms: Plant Extracts/toxicity
  2. Chin JH, Abas HH, Sabariah I
    Trop Biomed, 2008 Apr;25(1):9-16.
    PMID: 18600199
    Orthosiphon stamineus Benth (Family: Lamiaceae) or locally known as Misai Kucing has been widely used in Malaysia for treating kidney problems, gout, and diabetes. This study aims to evaluate the possible toxic effect after following fourteen days oral administration of methanol extract of O. stamineus in female Sprague Dawley (SD) rats. Control groups were treated orally with distilled water (vehicle) while the four test groups were treated up to fourteen days with 0.5 g/kg, 1 g/kg, 3 g/kg and 5 g/kg body weight of methanol extract of O. stamineus respectively. Toxicity of the methanol extract of O. stamineus was evaluated by the incident of lethality, side-cage observation and blood serum biochemical parameters. No lethality or adverse toxic signs were seen during the experimental period. A significant decrease in several serum biochemical parameters i.e. AST and ALT and increase in liver weight was observed in young female SD rat after being fed fourteen days with methanol extract of O. stamineus. No delayed toxic effect and lethality was observed in all rats during fourteen days of recovery period. In conclusion, methanol extract of O. stamineus within these range and treatment duration would not cause any severe toxic effects and organ damages in rats.
    Matched MeSH terms: Plant Extracts/toxicity*
  3. Christapher PV, Parasuraman S, Asmawi MZ, Murugaiyah V
    Regul Toxicol Pharmacol, 2017 Jun;86:33-41.
    PMID: 28229903 DOI: 10.1016/j.yrtph.2017.02.005
    Medicinal plant preparations may contain high levels of toxic chemical constituents to potentially cause serious harm to animals and/or humans. Thus, toxicity studies are important to assess the toxic effects of plant derived products. Polygonum minus is used traditionally for different ailments in Southeast Asia. This study was conducted to establish the acute and subchronic toxicity profile of the methanol extract of P. minus leaves. The acute toxicity study showed that the methanol extract of P. minus is safe even at the highest dose tested of 2000 mg/kg in female Sprague Dawley rats. There were no behavioural or physiological changes and gross pathological abnormalities observed. The subchronic toxicity study of methanol extract of P. minus at 250, 500, 1000 and 2000 mg/kg were conducted in both sexes of Sprague Dawley rats. There were no changes observed in the extract treated animal's body weight, food and water intake, motor coordination, behaviour and mental alertness. The values of haematological and biochemical parameters were not different between the treated and control animals. The relative organ weights of extract-treated animals did not differ with that of control animals. Based on the present findings, the methanol extract of P. minus leaves could be considered safe up to the dose of 2000 mg/kg.
    Matched MeSH terms: Plant Extracts/toxicity*
  4. Dahham SS, Hassan LE, Ahamed MB, Majid AS, Majid AM, Zulkepli NN
    BMC Complement Altern Med, 2016 Jul 22;16:236.
    PMID: 27450078 DOI: 10.1186/s12906-016-1210-1
    Aquilaria crassna has been used in traditional Asian medicine to treat vomiting, rheumatism, asthma, and cough. Furthermore, earlier studies from our laboratory have revealed that the essential oil extract from agarwood inhibited colorectal carcinoma cells. Despite of the wide range of ethno-pharmacological uses of agarwood, its toxicity has not been previously evaluated through systematic toxicological studies. Therefore, the potential safety of essential oil extract and its in vivo anti-tumor activity had been investigated.
    Matched MeSH terms: Plant Extracts/toxicity*
  5. Devaraj S, Esfahani AS, Ismail S, Ramanathan S, Yam MF
    Molecules, 2010 Apr;15(4):2925-34.
    PMID: 20428088 DOI: 10.3390/molecules15042925
    Ethanolic extract of Curcuma xanthorrhiza was used to evaluate the analgesic and toxicity effects in vivo. The extract was standardized using GC-MS, which showed that 1 mg of Curcuma xanthorrhiza ethanolic extract contains 0.1238 mg of xanthorrhizol. The analgesic activity was studied in rats using three different models, namely the hot plate test, tail flick test and formalin-induced pain test. The acute oral toxicity was examined by the oral administration of standardized Curcuma xanthorrhiza ethanolic extract in mice at doses ranging from 300-5,000 mg/kg and observation for 14 days. Standardized Curcuma xanthorrhiza ethanolic extract did not show significant analgesic effect in the hot plate and tail flick tests. However, in the formalin-induced pain test, Curcuma xanthorrhiza ethanolic extract significantly (P < 0.05) suppressed the paw licking time of rats in both early and late phases at doses 200 and 400 mg/kg of the extract, respectively. In the acute oral toxicity study, Curcuma xanthorrhiza ethanolic extract did not show any toxic effects in mice at 5 g/kg. These experimental results suggest that the standardized Curcuma xanthorrhiza ethanolic extract showed peripheral and central antinociceptive activity associated with neurogenic pain as well as a relative absence of toxic effects which could compromise the medicinal use of this plant in folk medicine.
    Matched MeSH terms: Plant Extracts/toxicity
  6. Dey YN, Sharma G, Wanjari MM, Kumar D, Lomash V, Jadhav AD
    Pharm Biol, 2017 Dec;55(1):53-62.
    PMID: 27600166
    CONTEXT: The tuber of Amorphophallus paeoniifolius (Dennst.) Nicolson (Araceae), commonly called Suran or Jimmikand, has high medicinal value and is used ethnomedicinally for the treatment of different gastrointestinal and inflammatory disorders.

    OBJECTIVE: The present study evaluated the effects of extracts of Amorphophallus paeoniifolius tubers on acetic acid-induced ulcerative colitis (UC) in rats.

    MATERIALS AND METHODS: Wistar rats were orally administered methanol extract (APME) or aqueous extract (APAE) (250 and 500 mg/kg) or standard drug, prednisolone (PRDS) (4 mg/kg) for 7 days. On 6th day of treatment, UC was induced by transrectal instillation of 4% acetic acid (AA) and after 48 h colitis was assessed by measuring colitis parameters, biochemical estimations and histology of colon.

    RESULTS: APME or APAE pretreatment significantly (p 

    Matched MeSH terms: Plant Extracts/toxicity
  7. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

    Matched MeSH terms: Plant Extracts/toxicity
  8. Ee GC, Daud S, Taufiq-Yap YH, Ismail NH, Rahmani M
    Nat Prod Res, 2006 Oct;20(12):1067-73.
    PMID: 17127660
    Studies on the stem of Garcinia mangostana have led to the isolation of one new xanthone mangosharin (1) (2,6-dihydroxy-8-methoxy-5-(3-methylbut-2-enyl)-xanthone) and six other prenylated xanthones, alpha-mangostin (2), beta-mangostin (3), garcinone D (4), 1,6-dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)-xanthone (5), mangostanol (6) and 5,9-dihydroxy-8- methoxy-2,2-dimethyl-7-(3-methylbut-2-enyl)-2H,6H-pyrano-[3,2-b]-xanthene-6-one (7). The structures of these compounds were determined by spectroscopic methods such as 1H NMR, 13C NMR, mass spectrometry (MS) and by comparison with previous studies. All the crude extracts when screened for their larvicidal activities indicated very good toxicity against the larvae of Aedes aegypti. This article reports the isolation and identification of the above compounds as well as bioassay data for the crude extracts. These bioassay data have not been reported before.
    Matched MeSH terms: Plant Extracts/toxicity
  9. Ee GC, Lim CK, Rahmat A, Lee HL
    Trop Biomed, 2005 Dec;22(2):99-102.
    PMID: 16883274
    Detail chemical investigations on the stem bark of Mesua daphnifolia gave three triterpenoids and four xanthones. They are friedelin (1), friedelan-1,3-dione (2), lup-20(29)- en-3ss-ol (3), cudraxanthone G (4), ananixanthone (5), 1,3,5-trihydroxy-4-methoxyxanthone (6) and euxanthone (7). These chemical constituents were tested in vitro for their cytotoxic activities against four cell lines, MDA-MB-231 (human estrogen receptor negative breast cancer), HeLa (cervical carcinoma), CEM-SS (T-lymphoblastic leukemia) and CaOV3 (human ovarian cancer). Compound 4 showed a broad spectrum of activity against the MDA-MB-231, HeLa and CEM-SS cell lines with IC5 0 values of 1.3, 4.0 and 6.7 microg/ml respectively. Meanwhile, the other compounds 1, 2, 3, 5, 6 and 7 gave only selective activities against the cell lines.
    Matched MeSH terms: Plant Extracts/toxicity*
  10. Er HM, Cheng EH, Radhakrishnan AK
    J Ethnopharmacol, 2007 Sep 25;113(3):448-56.
    PMID: 17698306
    The anti-proliferative effects of the aqueous and methanol extracts of leaves of Pereskia bleo (Kunth) DC (Cactaceae) against a mouse mammary cancer cell line (4T1) and a normal mouse fibroblast cell line (NIH/3T3) were evaluated under an optimal (in culture medium containing 10% foetal bovine serum (FBS)) and a sub-optimal (in culture medium containing 0.5% FBS) conditions. Under the optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in 4T1 cells and 300 microg/mL in NIH/3T3 cells, whereas the methanol extract did not show any notable anti-proliferative effect in these cell lines, at any of the concentrations tested. Under the sub-optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in NIH/3T3 cells, whilst the methanol extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in both cell lines. An upward trend of apoptosis was observed in both 4T1 and NIH/3T3 cells treated with increasing concentrations of the aqueous extract. The level of apoptosis observed at all the concentrations of the aqueous extract tested was consistently higher than necrosis. There was a significant (p<0.05) increase in the level of necrosis observed in the 4T1 cells treated with 300 microg/mL of the methanol extract. Generally, the level of necrosis was noted to be higher than that of apoptosis in the methanol extract-treated cells. The mutagenicity assay performed showed that in the absence of S-9 liver metabolic activation, the extract was not mutagenic up to the concentration of 165 microg/mL . However, in the presence of S-9 liver metabolic activation, the aqueous extract was mutagenic at all the concentrations tested. This study shows that both the aqueous and methanol extracts of the leaves from Pereskia bleo (Kunth) DC (Cactaceae) do not have appreciable anti-proliferative effect on the 4T1 and NIH/3T3 cells as the EC(50) values obtained are greater than 50 microg/mL when tested under optimal culture condition. Moreover, the aqueous extract may form mutagenic compound(s) upon the metabolisation by liver enzymes.
    Matched MeSH terms: Plant Extracts/toxicity
  11. Farsi E, Esmailli K, Shafaei A, Moradi Khaniabadi P, Al Hindi B, Khadeer Ahamed MB, et al.
    Drug Chem Toxicol, 2016 Oct;39(4):461-73.
    PMID: 27033971 DOI: 10.3109/01480545.2016.1157810
    CONTEXT: Clinacanthus nutans (CN) is used traditionally for treating various illnesses. Robust safety data to support its use is lacking.

    OBJECTIVE: To evaluate the adverse effects of aqueous extract of CN leaves (AECNL).

    MATERIALS AND METHODS: The oral toxicity of the AECNL was tested following Organisation for Economic Co-operation and Development (OECD) guidelines. Mutagenicity (Ames test) of AECNL was evaluated using TA98 and TA100 Salmonella typhimurium strains.

    RESULTS: No mortality or morbidity was found in the animals upon single and repeated dose administration. However, significant body weight loss was observed at 2000 mg/kg during sub-chronic (90 d) exposure. In addition, increased eosinophil at 500 mg/kg and decreased serum alkaline phosphatase levels at 2000 mg/kg were observed in male rats. Variations in glucose and lipid profiles in treated groups were also observed compared to control. Ames test revealed no evidence of mutagenic or carcinogenic effects at 500 μg/well of AECNL.

    CONCLUSION: The median lethal dose (LD50) of the AECNL is >5000 mg/kg and the no-observed-adverse-effect level is identified to be greater than 2000 mg/kg/day in 90-d study.

    Matched MeSH terms: Plant Extracts/toxicity*
  12. Farsi E, Shafaei A, Hor SY, Ahamed MB, Yam MF, Asmawi MZ, et al.
    Clinics (Sao Paulo), 2013 Jun;68(6):865-75.
    PMID: 23778480 DOI: 10.6061/clinics/2013(06)23
    Ficus deltoidea leaves have been used in traditional medicine in Southeast Asia to treat diabetes, inflammation, diarrhea, and infections. The present study was conducted to assess the genotoxicity and acute and subchronic toxicity of a standardized methanol extract of F. deltoidea leaves.
    Matched MeSH terms: Plant Extracts/toxicity*
  13. Fateh AH, Mohamed Z, Chik Z, Alsalahi A, Md Zain SR, Alshawsh MA
    J Ethnopharmacol, 2019 May 10;235:88-99.
    PMID: 30738113 DOI: 10.1016/j.jep.2019.02.007
    ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, Verbena officinalis L. has been used for reproductive and gynaecological purposes. However, the mutagenicity and genotoxicity of V. officinalis have not been extensively investigated.

    AIM OF THE STUDY: To assess the in vitro mutagenicity and in vivo genotoxicity of aqueous extract of V. officinalis leaves using a modified Ames test and rat bone marrow micronucleus assay according to OECD guidelines.

    MATERIALS AND METHODS: In vitro Ames test was carried out using different strains of Salmonella (TA97a, TA98, TA100, and TA1535) and Escherichia coli WP2 uvrA (pKM101) in the presence or absence of metabolic activation (S9 mixture). For micronucleus experiment, male and female Sprague-Dawley rats (n = 6/group) were received a single oral daily dose of 500, 1000, and 2000 mg/kg of V. officinalis extract for three days. Negative and positive control rats were received distilled water or a single intraperitoneal injection of 50 mg/kg of cyclophosphamide, respectively. Following dissection, femurs were collected and bone marrow cells were stained with May-Grünwald-Giemsa solution for micronucleus assessment.

    RESULTS: Ames test results demonstrated that 5, 2.5, 1.25 and 0.625 mg/ml of V. officinalis extract induced a significant mutagenic effect against TA100 and TA98 strains (with and without metabolic activation). Findings of the animal study showed there were no significant increase in the micronucleated polychromatic erythrocytes (MNPE) and no significant alterations in the polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) ratio of treated rats as compared with their negative control. Meanwhile, significantly increased in the MNPEs was seen in the cyclophosphamide-treated group only.

    CONCLUSION: Aqueous extract of V. officinalis has mutagenic effect against TA98 and TA100 strains as demonstrated by Ames test, however, there is no in vivo clastogenic and myelotoxic effect on bone marrow micronucleus of rats indicating that the benefits of using V. officinalis in traditional practice should outweigh risks.

    Matched MeSH terms: Plant Extracts/toxicity*
  14. Fateh AH, Mohamed Z, Chik Z, Alsalahi A, Md Zin SR, Alshawsh MA
    Chem Biol Interact, 2019 May 01;304:28-42.
    PMID: 30807743 DOI: 10.1016/j.cbi.2019.02.016
    Verbena officinalis is widely used by women for maintaining general health and treating various gynaecological disorders during pregnancy. A case report has indicated that the consumption of V. officinalis induced an abortifacient effect. Hence, this study aimed to investigate the prenatal developmental toxicity of this plant according to OECD guideline (no. 414). A total of 50 pregnant female rats (dams) were distributed into five groups (n = 10); 500 mg/kg 1000 mg/2000 mg/kg and 3000 mg/kg of V. offcinalis extracts and the fifth group served as a normal control. All dams received their respective oral single daily treatment from the 6th to the 20th day of gestation. Maternal clinical toxicity signs, body weight and weight gain were recorded. Caesarean sections were performed on day 21 to evaluate embryo-foetal developmental toxicity. For dams, ovaries were harvested and weighed. The number of corpora lutea, implantation sites, and resorptions were recorded. No mortality was observed in dams, but their body weight gain was significantly reduced particularly in dams treated with 2000 and 3000 mg/kg V. officinalis. Asymmetrical distribution of implantation sites and embryos were observed. Embryo-fetotoxicity retardation was observed as evident by the decrease in foetal weight, head cranium, tail length, and higher incidence in the pre-and post-implantation loss. Some foetal skeleton abnormalities such as incomplete ossification of skull, sternebrae, and metatarsal bones were observed in foetuses of the 2000 and 3000 mg/kg V. officinalis-treated dams. LC/MS analysis identified the major constituents including geniposidic acid, tuberonic acid glucoside, luteolin 7, 3'-digalacturonide, iridotrial and apigenin. The glycosylated flavonoids such as apigenin and luteolin could be responsible for the reported prenatal developmental toxicity. In conclusion, the use of V. officinalis during pregnancy is not safe indicating evidence-based toxic effects on the reproductive performance of dams and dose-dependent risk potentials to the foetuses.
    Matched MeSH terms: Plant Extracts/toxicity*
  15. Fauzi A, Kifli N, Noor MHM, Hamzah H, Azlan A
    J Ethnopharmacol, 2024 May 10;325:117914.
    PMID: 38360381 DOI: 10.1016/j.jep.2024.117914
    ETHNOPHARMACOLOGICAL RELEVANCE: Traditional uses of Morus alba L. leaf extracts (MLE) have been reported for treating hyperglycaemia and diabetes. Phytochemical compounds in the leaves demonstrated the ability to enhance insulin sensitivity and β-cell secretory function, suggesting their potential value in reducing blood glucose and treating diabetes. However, the phytochemical constituents and safety of the herbal medicines need to be verified in each experimental field from different growing areas. Studies on the phytochemistry and toxicity of Morus alba leaves in Southeast Asia, especially in Brunei, have never been investigated.

    AIM OF THE STUDY: This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice.

    MATERIALS AND METHODS: The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study.

    RESULTS: Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 μg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p 

    Matched MeSH terms: Plant Extracts/toxicity
  16. Fong SY, Piva T, Dekiwadia C, Urban S, Huynh T
    BMC Complement Altern Med, 2016 Sep 20;16:368.
    PMID: 27646974 DOI: 10.1186/s12906-016-1348-x
    Clinacanthus nutans (Burm. f.) Lindau leaves are widely used by cancer patients and the leaf extracts possess cytotoxic and antiproliferative effects on several human cancer cell lines. However, the effect of C. nutans leaf extract on human melanoma, which is the least common but most fatal form of skin cancer and one of the most common cancers diagnosed in both sexes worldwide, is unknown. There is also limited information on whether the bioactivity of extracts differs between C. nutans leaves grown in different geographical locations with varying environmental conditions.
    Matched MeSH terms: Plant Extracts/toxicity*
  17. Gupta M, Gulati M, Kapoor B, Kumar B, Kumar R, Kumar R, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114115.
    PMID: 33852947 DOI: 10.1016/j.jep.2021.114115
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeagnus conferta Roxb. (Elaeagnaceae) is a subtropical shrub mainly native to India, Vietnam, Malaysia and South China, whose various parts are used for treatment of diabetes, gastric ulcers, pain, oxidative stress and pulmonary disorders. Though the other parts of the plant have been reported for their ethnic use i.e. fruits as astringent locally and for cancer systemically, leaves for body pain and flowers for pain in chest and the seeds are mentioned as edible, there is no report per se on the medicinal use of seeds. Based on the fact that seeds of closely resembling species i.e. Elaeagnus rhamnoides has demonstrated significant anti-gastroulcerative property, the probability of the seeds of E. conferta possessing similar activity seemed quite significant.

    AIM OF THE STUDY: Phytochemical investigation and assessment of pharmacological mechanism(s) involved in anti-ulcer effect of methanolic extract of the seeds of E. conferta.

    MATERIALS AND METHODS: Bioactive phytoconstituents were isolated by column chromatography. These were identified by spectroscopic techniques including infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and mass spectrometry. Methanolic extract (MEC) of the seeds was prepared by cold maceration and its anti-ulcerogenic potential was evaluated using indomethacin (50 mg/kg) and water immersion stress models in male rats. The animals were pre-treated with different doses of MEC (400 and 800 mg/kg) and the therapeutic effect was compared with standard drug i.e. ranitidine (RANT; 50 mg/kg). The ameliorative effects of MEC were investigated on gastric juice pH, total acidity, free acidity and ulcer index. The assays of malionaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and pro-inflammatory cytokines i.e. interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were carried out to find out the possible mechanism(s) of protection. Further, histopathological changes were also studied.

    RESULTS: Chromatography studies and further confirmation by spectroscopic techniques revealed the presence of four different compounds in MEC i.e oleic acid (1), stearic acid (2), ascorbic acid (3) and quercetin (4). MEC exhibited anti-ulcerogenic effect in dose dependent manner which may be attributed to suppression of pro-inflammatory cytokines (IL-6, TNF-α) and MDA (112.7%), and up-regulation of protective factors such as CAT (90.48%), SOD (92.77%) and GSH (90.01%). Ulcer inhibition, reduction in total and free acidity and increase in gastric juice pH were observed in MEC treated rats as compared to disease control animals. Histopathological findings confirmed decreased cell infiltration, less epithelial cell damage and regeneration of gastric mucosa in dose dependent manner.

    CONCLUSIONS: The anti-ulcer effect of MEC may be attributed to its ability to scavenge free radicals and anti-inflammatory property via suppression of TNF-α and IL-6, thus offers a complete and holistic approach for management of peptic ulcer.

    Matched MeSH terms: Plant Extracts/toxicity
  18. Harizal SN, Mansor SM, Hasnan J, Tharakan JK, Abdullah J
    J Ethnopharmacol, 2010 Sep 15;131(2):404-9.
    PMID: 20643198 DOI: 10.1016/j.jep.2010.07.013
    ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa Korth (ketum) is widely used in Malaysia as a medicinal agent for treating diarrhea, worm infestations and also acts as an analgesic and antipyretic.
    AIM: The aim of the study is to determine the acute toxicity of Mitragyna speciosa Korth standardized methanol extract in vivo in 4-weeks-old Sprague-Dawley rats.
    METHODOLOGY: Rats were orally administrated single dose of 100, 500 and 1000 mg/kg Mitragyna speciosa Korth standardized methanol extract and the control group received 430 mg/kg of morphine orally. There were 10 rats in each group. All animals were sacrificed after 14 days of treatment. Eight parameters were tested: cage side observation, body weight measurement, food and water consumption, blood pressure, absolute and relative organ weight, hematology, biochemical analysis and histopathology, to look for evidence of toxicity.
    RESULT: No mortality was noted after 14 days of treatment. In general, behavior, food and water consumption, hematological studies and organ weights showed no significant changes. The standardized methanol extraction of Mitragyna speciosa Korth increased rat blood pressure (systolic: 147.4+/-1.01, 131.64+/-4.94 and 137.8+/-4.46) after an hour of 100, 500 and 1000 mg/kg doses, respectively. Biochemical studies showed significant elevation of ALT, AST, albumin, triglycerides, cholesterol and albumin (p>0.05), at all levels of doses. But, nephrotoxicity evidenced by elevated creatinine was seen only at a dose of 1000 mg/kg. Histological examination showed congestion of sinusoids, hemorrhage hepatocytes, fatty change, centrilobular necrosis and increased number of Kuppfer cells in the liver of all Mitragyna speciosa Korth standardized methanol extract treated groups.
    CONCLUSION: Oral administration of standardized methanolic extraction of Mitragyna speciosa Korth resulted in increasing rat blood pressure after an hour of drug administration. The highest dose of extract also induced acute severe hepatotoxicity and mild nephrotoxicity. However, Mitragyna speciosa Korth shows no effects on body weight, food and water consumption, absolute and relative organ weight and also hematology parameters.
    Matched MeSH terms: Plant Extracts/toxicity*
  19. Hasanudin K, Hashim P, Mustafa S
    Molecules, 2012 Aug 13;17(8):9697-715.
    PMID: 22890173 DOI: 10.3390/molecules17089697
    Corn silk (Stigma maydis) is an important herb used traditionally by the Chinese, and Native Americans to treat many diseases. It is also used as traditional medicine in many parts of the world such as Turkey, United States and France. Its potential antioxidant and healthcare applications as diuretic agent, in hyperglycemia reduction, as anti-depressant and anti-fatigue use have been claimed in several reports. Other uses of corn silk include teas and supplements to treat urinary related problems. The potential use is very much related to its properties and mechanism of action of its plant's bioactive constituents such as flavonoids and terpenoids. As such, this review will cover the research findings on the potential applications of corn silk in healthcare which include its phytochemical and pharmacological activities. In addition, the botanical description and its toxicological studies are also included.
    Matched MeSH terms: Plant Extracts/toxicity
  20. Hassan Z, Singh D, Suhaimi FW, Chear NJ, Harun N, See CP, et al.
    Regul Toxicol Pharmacol, 2023 Sep;143:105466.
    PMID: 37536550 DOI: 10.1016/j.yrtph.2023.105466
    Mitragyna speciosa Korth also known as kratom, is an herbal drug preparation for its therapeutic properties and opioid-replacement therapy. Kratom is consumed in a brewed decoction form in Malaysia and to date, no studies have characterized its chemical and toxicity profile. Thus, this study aims to evaluate kratom decoction's safety and toxicity profile after 28 days of treatment. Mitragynine content was quantified in kratom decoction and used as a marker to determine the concentration. Male and female Sprague Dawley rats were orally treated with vehicle or kratom decoction (10, 50 or 150 mg/kg) and two satellite groups were treated with vehicle and kratom decoction (150 mg/kg). Blood and organs were collected for hematology, biochemical and histopathology analysis at the end of treatment. No mortality was found after 28 days of treatment and no significant changes in body weight and hematology profile, except for low platelet count. High amounts of uric acid, AST, ALT and alkaline phosphatase were found in the biochemical analysis. Histological investigation of the heart and lungs detected no alterations except for the kidney, liver and brain tissues. In conclusion, repeated administration of kratom decoction provided some evidence of toxicity in the kidney and liver with no occurrence of mortality.
    Matched MeSH terms: Plant Extracts/toxicity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links