Displaying publications 21 - 40 of 100 in total

Abstract:
Sort:
  1. Silakhori M, Naghavi MS, Metselaar HSC, Mahlia TMI, Fauzi H, Mehrali M
    Materials (Basel), 2013 Apr 29;6(5):1608-1620.
    PMID: 28809232 DOI: 10.3390/ma6051608
    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.
    Matched MeSH terms: Polymerization
  2. Siddiqa AJ, Shrivastava NK, Ali Mohsin ME, Abidi MH, Shaikh TA, El-Meligy MA
    Colloids Surf B Biointerfaces, 2019 Jul 01;179:445-452.
    PMID: 31005739 DOI: 10.1016/j.colsurfb.2019.04.014
    This paper focuses on the development of a drug delivery system for systemically controlled release of a poorly soluble drug, letrozole. The work meticulously describes the preparation and characterizations of 2-hydroxyethyl methacrylate (HEMA) polymerization onto hydrophilic acrylamide grafted low-density polyethylene (AAm-g-LDPE) surface for targeted drug release system. The surface morphology and thickness measurement of coated pHEMA layer were measured using scanning electron microscopy (SEM). The swelling study was done in deionized (DI) water and simulated uterine fluid (SUF, pH = 7.6). In vitro release of letrozole from the system was performed in SUF. Further, the release kinetics of letrozole from the system was studied using different mathematical models. The results, suggest that the rate of drug release can be altered by varying the concentrations of cross-linker in pHEMA. The optimized sample released 72% drug at the end of 72 h of measurement.
    Matched MeSH terms: Polymerization
  3. Shi L, Fu X, Tan CP, Huang Q, Zhang B
    J Agric Food Chem, 2017 Mar 15;65(10):2189-2197.
    PMID: 28215072 DOI: 10.1021/acs.jafc.6b05749
    Ethylene gas was introduced into granular cold-water-soluble (GCWS) starches using a solid encapsulation method. The morphological and structural properties of the novel inclusion complexes (ICs) were characterized using scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The V-type single helix of GCWS starches was formed through controlled gelatinization and ethanol precipitation and was approved to host ethylene gas. The controlled release characteristics of ICs were also investigated at various temperature and relative humidity conditions. Avrami's equation was fitted to understand the release kinetics and showed that the release of ethylene from the ICs was accelerated by increasing temperature or RH and was decelerated by increased degree of amylose polymerization. The IC of Hylon-7 had the highest ethylene concentration (31.8%, w/w) among the five starches, and the IC of normal potato starch showed the best controlled release characteristics. As a renewable and inexpensive material, GCWS starch is a desirable solid encapsulation matrix with potential in agricultural and food applications.
    Matched MeSH terms: Polymerization
  4. Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, et al.
    Materials (Basel), 2014 Jul 09;7(7):5069-5108.
    PMID: 28788120 DOI: 10.3390/ma7075069
    50 years ago, Karl Ziegler and Giulio Natta were awarded the Nobel Prize for their discovery of the catalytic polymerization of ethylene and propylene using titanium compounds and aluminum-alkyls as co-catalysts. Polyolefins have grown to become one of the biggest of all produced polymers. New metallocene/methylaluminoxane (MAO) catalysts open the possibility to synthesize polymers with highly defined microstructure, tacticity, and steroregularity, as well as long-chain branched, or blocky copolymers with excellent properties. This improvement in polymerization is possible due to the single active sites available on the metallocene catalysts in contrast to their traditional counterparts. Moreover, these catalysts, half titanocenes/MAO, zirconocenes, and other single site catalysts can control various important parameters, such as co-monomer distribution, molecular weight, molecular weight distribution, molecular architecture, stereo-specificity, degree of linearity, and branching of the polymer. However, in most cases research in this area has reduced academia as olefin polymerization has seen significant advancements in the industries. Therefore, this paper aims to further motivate interest in polyolefin research in academia by highlighting promising and open areas for the future.
    Matched MeSH terms: Polymerization
  5. Shahabudin N, Yahya R, Gan SN
    Polymers (Basel), 2016 Apr 06;8(4).
    PMID: 30979216 DOI: 10.3390/polym8040125
    One of the approaches to prolong the service lifespan of polymeric material is the development of self-healing ability by means of embedded microcapsules containing a healing agent. In this work, poly(melamine-urea-formaldehyde) (PMUF) microcapsules containing a palm oil-based alkyd were produced by polymerization of melamine resin, urea and formaldehyde that encapsulated droplets of the suspended alkyd particles. A series of spherical and free-flowing microcapsules were obtained. The chemical properties of core and shell materials were characterized by Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and proton nuclear magnetic resonance spectroscopy (¹H-NMR). Differential scanning calorimetry (DSC) analysis showed a glass transition around -15 °C due to the alkyd, and a melting temperature at around 200 °C due to the shell. Thermogravimetric analysis (TGA) results showed that the core and shell thermally degraded within the temperature range of 200⁻600 °C. Field emission scanning electron microscope (FESEM) examination of the ruptured microcapsule showed smooth inner and rough outer surfaces of the shell. Flexural strength and microhardness (Vickers) of the cured epoxy compound were not affected with the incorporation of 1%⁻3% of the microcapsules. The viability of the healing reactions was demonstrated by blending small amounts of alkyd with epoxy and hardener at different ratios. The blends could readily cure to non-sticky hard solids at room temperature and the reactions could be verified by ATR-FTIR.
    Matched MeSH terms: Polymerization
  6. Shah SA, Sohail M, Minhas MU, Nisar-Ur-Rehman, Khan S, Hussain Z, et al.
    Drug Deliv Transl Res, 2019 Apr;9(2):555-577.
    PMID: 29450805 DOI: 10.1007/s13346-018-0486-8
    Cellulose acetate phthalate-based pH-responsive hydrogel was synthesized for fabrication of polymeric matrix tablets for gastro-protective delivery of loxoprofen sodium. Cellulose acetate phthalate (CAP) was cross-linked with methacrylic acid (MAA) using free radical polymerization technique. Fourier transform infrared (FTIR) spectra confirmed the formation of cross-linked structure of CAP-co-poly(methacrylic acid). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the thermal stability of polymeric networks, and scanning electron microscopy (SEM) and energy-dispersive X-ray spectrum (EDS) images unveiled that the prepared formulations were porous in nature and thus the developed formulations had shown better diffusibility. Swelling and in vitro drug release was performed at various pHs and maximum swelling and release was obtained at pH 7.4, while swelling and release rate was very low at pH 1.2 which confirmed the pH-responsive behavior of CAP-co-poly(MAA). CAP-co-poly(MAA) copolymer prevents the release of loxoprofen sodium into the stomach due to reduced swelling at gastric pH while showing significant swelling and drug release in the colon. Cytotoxicity studies revealed higher biocompatibility of fabricated hydrogel. Acute oral toxicity studies were performed for the evaluation and preliminary screening of safety profile of the developed hydrogels. Matrix tablets were evaluated for release behavior at simulated body pH. The investigations performed for analysis of hydrogels and fabricated matrix tablets indicated the controlled drug release and gastro-protective drug delivery of CAP-co-poly(MAA) hydrogels and pH-sensitive matrix tablets for targeted delivery of gastro-sensitive/irritative agents. Graphical abstract.
    Matched MeSH terms: Polymerization
  7. Shafqat SR, Bhawani SA, Bakhtiar S, Ibrahim MNM
    BMC Chem, 2020 Dec;14(1):27.
    PMID: 32266334 DOI: 10.1186/s13065-020-00680-8
    Congo red (CR) is an anionic azo dye widely used in many industries including pharmaceutical, textile, food and paint industries. The disposal of huge amount of CR into the various streams of water has posed a great threat to both human and aquatic life. Therefore, it has become an important aspect of industries to remove CR from different water sources. Molecular imprinting technology is a very slective method to remove various target pollutant from environment. In this study a precipitation polymerization was employed for the effective and selective removal of CR from contaminated aqueous media. A series of congo red molecularly imprinted polymers (CR-MIPs) of uniform size and shape was developed by changing the mole ratio of the components. The optimum ratio (0.1:4: 20, template, functional monomer and cross-linking monomer respectively) for CR1-MIP from synthesized polymers was able to rebind about 99.63% of CR at the optimum conditions of adsorption parameters (contact time 210 min, polymer dosage 0.5 g, concentration 20 ppm and pH 7). The synthesized polymers were characterized by various techniques such as Fourier Infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and Brumauer-Emmett-Teller (BET). The polymer particles have successfully removed CR from different aqueous media with an efficiency of about ~ 90%.
    Matched MeSH terms: Polymerization
  8. Seow, L.L., Chong, S.Y., Lau, M.N., Tiong, S.G., Yew, C.C.
    Malaysian Dental Journal, 2008;29(1):34-39.
    MyJurnal
    Certain beverages e.g. coffee, tea, soft drinks, fruit juices, alcoholic beverages, may affect the physical properties of composite resins. Objectives: The objectives of this study were to: (1) evaluate the effect of different beverages and chilli sauce on the wear resistance of composite resins, (2) evaluate effect of the duration of immersion in the beverages and chilli sauce on the wear resistance of composite resins.

    Materials and methods: Disc specimens were fabricated using two different types of composite resins: (i) Filtek Z350 (3M ESPE, USA, nano-filled composite, 40 specimens) and (ii) Solare P (GC Dental Products Corp, Japan, microhybrid composite, 40 specimens). After polymerization, all the specimens were polished using Enhance Polishing System (Dentsply International Inc.,USA). The specimens were air-dried before weighing using Sartorius BP 221S weighing balance (Sartorius AG, Goettingen, Germany). Ten specimens from each type of composite were immersed in distilled water (control group), Coca cola®, orange juice (Peel Fresh®) and chilli sauce (Maggi®) respectively. The duration of immersion was 6 hours and 1 week. A reciprocal compression-sliding system was used to evaluate the wear resistance of the specimens. The specimens were moved back and forth with a loaded counter-body (235g) against sand paper (P1000, 3M ESPE, USA) in running water. The weight of the specimens were measured after 6 hours of immersion and 20,000 wear cycles and also at 1 week of immersion with further 20,000 wear cycles. The wear resistances were tabulated as percentage of weight loss from the specimens. Results were statistically analyzed using one way ANOVA and post-hoc Tukey’s test (p= 0.05).
    Results: The results showed that Solare P has significantly lower wear resistance compared to Filtek Z350. There was no significant difference in wear resistance for Filtek Z350 when immersed in chili sauce, Coca-cola® and orange juice in comparison with control group for 6 hours and 1 week. Similar findings were observed for Solare P.

    Conclusion: Within the limitations of this study, it was concluded that Solare P has poorer wear resistance than Filtek Z350. The soaking medium investigated and duration of immersion have no influence on the wear resistance of Solare P and Filtek Z350.
    Matched MeSH terms: Polymerization
  9. Seah MQ, Lau WJ, Goh PS, Tseng HH, Wahab RA, Ismail AF
    Polymers (Basel), 2020 Nov 27;12(12).
    PMID: 33261079 DOI: 10.3390/polym12122817
    In this paper, we review various novel/modified interfacial polymerization (IP) techniques for the fabrication of polyamide (PA) thin film composite (TFC)/thin film nanocomposite (TFN) membranes in both pressure-driven and osmotically driven separation processes. Although conventional IP technique is the dominant technology for the fabrication of commercial nanofiltration (NF) and reverse osmosis (RO) membranes, it is plagued with issues of low membrane permeability, relatively thick PA layer and susceptibility to fouling, which limit the performance. Over the past decade, we have seen a significant growth in scientific publications related to the novel/modified IP techniques used in fabricating advanced PA-TFC/TFN membranes for various water applications. Novel/modified IP lab-scale studies have consistently, so far, yielded promising results compared to membranes made by conventional IP technique, in terms of better filtration efficiency (increased permeability without compensating solute rejection), improved chemical properties (crosslinking degree), reduced surface roughness and the perfect embedment of nanomaterials within selective layers. Furthermore, several new IP techniques can precisely control the thickness of the PA layer at sub-10 nm and significantly reduce the usage of chemicals. Despite the substantial improvements, these novel IP approaches have downsides that hinder their extensive implementation both at the lab-scale and in manufacturing environments. Herein, this review offers valuable insights into the development of effective IP techniques in the fabrication of TFC/TFN membrane for enhanced water separation.
    Matched MeSH terms: Polymerization
  10. Sand Chee S, Jawaid M
    Polymers (Basel), 2019 Dec 04;11(12).
    PMID: 31817284 DOI: 10.3390/polym11122012
    In this work, the optimum filler loading to prepare epoxy/organoclay nanocomposites by the in-situ polymerization method was studied. Bi-functionalized montmorillonite at different filler loading (0.5, 1.0, 2.0, 4.0 wt %) was dispersed in epoxy resin by using a high shear speed homogenizer. The effect on morphology, thermal, dynamic mechanical, and tensile properties of the epoxy/organoclay nanocomposites were studied in this work. Wide-angle X-ray scattering (WAXS) and field emission scanning electron microscope (FESEM) studies revealed that possible intercalated structures were obtained in epoxy/organoclay nanocomposites. Thermogravimetric analysis (TGA) shows that epoxy/organoclay nanocomposites exhibit higher thermal stability at the maximum and final decomposition temperature, as well as higher char content, compared to pristine epoxy. The dynamic mechanical analysis (DMA) indicate that storage modulus (E'), loss modulus (E″), cross-link density and glass transition temperature (Tg) of the nanocomposites were improved with organoclay loading up to 1 wt %. Beyond this loading limit, the deterioration of properties was observed. A similar trend was also observed on tensile strength and modulus. We concluded from this study that organoclay loading up to 1 wt % is suitable for further study to fabricate hybrid nanocomposites for various applications.
    Matched MeSH terms: Polymerization
  11. Samah NA, Sánchez-Martín MJ, Sebastián RM, Valiente M, López-Mesas M
    Sci Total Environ, 2018 Aug 01;631-632:1534-1543.
    PMID: 29727977 DOI: 10.1016/j.scitotenv.2018.03.087
    Contaminants of Emerging Concerns (CECs) have been introduced as one type of recalcitrant pollutant sources in water. In this study, the non-steroidal anti-inflammatory drug diclofenac (DCF) has been removed from water solutions using Molecularly Imprinted Polymer (MIP), synthetized via bulk polymerization with allylthiourea (AT) as the functional monomer and using DCF as template (MIP-DCF). DCF detection has been performed by UV spectrophotometer. From the kinetic study in batch mode, approximately 100% of removal is observed by using 10mg of MIP-DCF, with an initial concentration of 5mg/L of DCF at pH7, within 3min and agitated at 25°C. In continuous flow mode study, using a cartridge pre-packed with 10mg of MIP-DCF, a high adsorption capacity of 160mgDCF/g MIP was obtained. To study the porosity of MIPs, scanning electron microscopy (SEM) has been used. In order to characterize the chemical interaction between monomer and template, the pre-polymerization mixture for MIP and DCF has also been studied by 1H NMR. One of the chemical shift observed has been related to the formation of a complex between amine protons of thiourea group of AT with carboxylic acid on DCF. In conclusion, the developed MIP works as a good adsorbent for DCF removal, and is selective to DCF in the presence of indomethacin and ibuprofen.
    Matched MeSH terms: Polymerization
  12. Rosli NA, Ahmad I, Abdullah I, Anuar FH, Mohamed F
    Carbohydr Polym, 2015 Jul 10;125:69-75.
    PMID: 25857961 DOI: 10.1016/j.carbpol.2015.03.002
    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component.
    Matched MeSH terms: Polymerization*
  13. Rosli NA, Ahmad I, Anuar FH, Abdullah I
    Carbohydr Polym, 2019 Jun 01;213:50-58.
    PMID: 30879689 DOI: 10.1016/j.carbpol.2019.02.074
    In this study, modified agave cellulose fibre combined by graft copolymerisation with methylmethacrylate was tested as a potential reinforcement for polylactic acid (PLA)-natural rubber/liquid natural rubber blends. Mechanical, morphological, thermal, wetting, and biodegradation characterisations were performed to assess the influence of cellulose-graft-polymethylmethacrylate (cell-g-PMMA) content on the properties of biocomposites. The addition of cell-g-PMMA improved the mechanical properties of the composites because of the chemical interaction between PLA and PMMA. Thermal stability decreased slightly upon cell-g-PMMA addition because of the low thermal stability of PMMA. A soil burial test revealed that the degradation of composites decreased with an increase in the cell-g-PMMA content. However, the weight loss after burial, which directly affected the water absorption capacity, was still higher for the cell-g-PMMA composites than for the polymer alone.
    Matched MeSH terms: Polymerization
  14. Riyadi FA, Tahir AA, Yusof N, Sabri NSA, Noor MJMM, Akhir FNMD, et al.
    Sci Rep, 2020 05 08;10(1):7813.
    PMID: 32385385 DOI: 10.1038/s41598-020-64817-4
    The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.
    Matched MeSH terms: Polymerization
  15. Rehman U, Sarfraz RM, Mahmood A, Hussain Z, Thu HE, Zafar N, et al.
    Curr Drug Deliv, 2021 Feb 11.
    PMID: 33583374 DOI: 10.2174/1567201818666210212085912
    BACKGROUND: Despite exhibiting promising anticancer potential, the clinical significance of capecitabine (a potent prodrug of 5-fluorouracil used for treatment of colorectal cancer) is limited owing to its acidic and enzymatic hydrolysis, lower absorption following the oral administration, poor bioavailability, short plasma half-life and poor patient compliance.

    OBJECTIVES: The present study was aimed to fabricate the capecitabine as smart pH-responsive hydrogel network to efficiently facilitate its oral delivery while shielding its stability in the gastric media.

    METHODS: The smart pH sensitive HP-β-CD/agarose-g-poly(MAA) hydrogel network was developed using an aqueous free radical polymerization technique. The developed hydrogels were characterized for drug-loading efficiency, structural and compositional features, thermal stability, swelling behaviour, morphology, physical form, and release kinetics. The pH-responsive behaviour of developed hydrogels was established by conducting the swelling and release behaviour at different pH values (1.2 and 7.4), demonstrating significantly higher swelling and release at pH 7.4 as compared with pH 1.2. The capecitabine-loaded hydrogels were also screened for acute oral toxicity in animals by analysing the body weight, water and food intake, dermal toxicity, ocular toxicity, biochemical analysis, and histological examination.

    RESULTS: The characteristic evaluations revealed that capecitabine (anticancer agent) was successfully loaded into the hydrogel network. Capecitabine loading was ranged from 71.22% to 90.12%. An interesting feature of hydrogel was its pH-responsive behaviour which triggers release at basic pH (94.25%). Optimum swelling (95%) was seen at pH 7.4. Based upon regression coefficient R2 (0.96 - 0.99) best fit model was zero order. The extensive toxicity evaluations evidenced good safety profile with no signs of oral, dermal or ocular toxicities, as well as no variations in blood parameters and histology of vital organs.

    CONCLUSION: Our findings conclusively evinced that the developed hydrogel exhibited excellent pharmaceutical and therapeutic potential and thus can be employed as pH-responsive system for controlled delivery of anticancer agents.

    Matched MeSH terms: Polymerization
  16. Razak, A.A.A., Harrison, A., Alani, A.A.
    Ann Dent, 1996;3(1):-.
    MyJurnal
    The effect of filler content and storage conditions such as drying, storing in water and thermal cycling on linear dimensional changes were investigated and evaluated. The dimensional accuracy studies were performed using a specific designed mould and a coordinate measuring machine. The findings gave support to the view that tiller content is an important factor influencing the physical and mechanical properties of the composite inlay material. The higher tiller content gave less polymerization shrinkage. The greatest linear shrinkage recorded was 0.79 %. The average linear shrinkage (in air, water and thermal cycling) for 79 % filler Prisma AP.H was 0.33 %, for 65 % tiller Prisma AP.H was 0.35 % and for 50 % filler Prisma AP.H was 0.42 %. Generally, dimensional changes was greatest when stored dry. This was followed by materials which were thermal cycled. The least dimensional change recorded was when the materials were stored in water.
    Matched MeSH terms: Polymerization
  17. Ramli RA, Hashim S, Laftah WA
    J Colloid Interface Sci, 2013 Feb 1;391:86-94.
    PMID: 23123033 DOI: 10.1016/j.jcis.2012.09.047
    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm.
    Matched MeSH terms: Polymerization*
  18. Rahman MR, Hamdan S, Lai JCH, Jawaid M, Yusof FABM
    Heliyon, 2017 Jul;3(7):e00342.
    PMID: 28725868 DOI: 10.1016/j.heliyon.2017.e00342
    In this study, the physical, morphological, mechanical and thermal properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (FA-co-EHMA-HNC WPNCs) were investigated. FA-co-EHMA-HNC WPNCs were prepared via an impregnation method and the properties of the nanocomposites were characterized through the weight percent gain, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), three-point flexural test, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) analysis and moisture absorption test. The weight percent gain in the 50:50 FA-co-EHMA-HNC WPNC was the highest compared with the raw wood (RW) and other WPNCs. The FT-IR results confirmed that polymerization took place in the nanocomposites, especially 50:50 FA-co-EHMA-HNC WPNC, which had a reduced amount of hydroxyl groups. The SEM results revealed that the 50:50 FA-co-EHMA-HNC WPNC had the smoothest and most uniform surface among all of the nanocomposites. The 50:50 FA-co-EHMA-HNC WPNC showed the highest flexural strength and modulus of elasticity. The results revealed that the storage modulus and loss modulus of the FA-co-EHMA-HNC WPNCs were higher and the tan δ of FA-co-EHMA-HNC WNPCs was lower compared with the RW. The FA-co-EHMA-HNC WPNCs exhibited the higher thermal stability in the TGA and DSC analysis. The 50:50 FA-co-EHMA-HNC WPNC exhibited remarkably lower moisture absorption compared with the RW. Overall, this study proved that the ratio 50:50 FA-co-EHMA ratio was the most suitable for introduction in the in the RW.
    Matched MeSH terms: Polymerization
  19. Qin HL, Leng J, Zhang CP, Jantan I, Amjad MW, Sher M, et al.
    J Med Chem, 2016 Apr 14;59(7):3549-61.
    PMID: 27010345 DOI: 10.1021/acs.jmedchem.6b00276
    Sixty-nine novel α,β-unsaturated carbonyl based compounds, including cyclohexanone, tetralone, oxime, and oxime ether analogs, were synthesized. The antiproliferative activity determined by using seven different human cancer cell lines provided a structure-activity relationship. Compound 8ag exhibited high antiproliferative activity against Panc-1, PaCa-2, A-549, and PC-3 cell lines, with IC50 value of 0.02 μM, comparable to the positive control Erlotinib. The ten most active antiproliferative compounds were assessed for mechanistic effects on BRAF(V600E), EGFR TK kinases, and tubulin polymerization, and were investigated in vitro to reverse efflux-mediated resistance developed by cancer cells. Compound 8af exhibited the most potent BRAF(V600E) inhibitory activity with an IC50 value of 0.9 μM. Oxime analog 7o displayed the most potent EGFR TK inhibitory activity with an IC50 of 0.07 μM, which was analogous to the positive control. Some analogs including 7f, 8af, and 8ag showed a dual role as anticancer and MDR reversal agents.
    Matched MeSH terms: Polymerization
  20. Peter A.G. Cormack, Faizatul Shimal Mehamod
    Sains Malaysiana, 2013;42:529-535.
    In this paper, the synthesis and characterisation of caffeine-imprinted polymers are described. The polymers were prepared in monolithic form via both reversible addition-fragmentation chain-transfer (RAFT) polymerisation and conventional free radical polymerisation, using methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinking agent, respectively. The potential benefits in applying RAFT polymerisation techniques towards the synthesis of molecularly imprinted polymers (MIPs) are explored and elucidated. The pore structures of the polymers produced were characterised by nitrogen sorption porosimetry and the molecular recognition properties of representative products were evaluated in high-performance liquid chromatography (HPLC) mode. Molecular imprinting effects were confirmed by analysing the relative retentions of analytes on imprinted and non-imprinted HPLC
    stationary phases. It was found that a caffeine-imprinted polymer synthesised by RAFT polymerisation was superior to a polymer prepared using a conventional synthetic approach; the imprinting factor and column efficiency were found to be higher for the former material.
    Matched MeSH terms: Polymerization
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links