Displaying publications 21 - 40 of 371 in total

Abstract:
Sort:
  1. Ab Aziz NA, Salim N, Zarei M, Saari N, Yusoff FM
    Prep Biochem Biotechnol, 2021;51(1):44-53.
    PMID: 32701046 DOI: 10.1080/10826068.2020.1789991
    The study was conducted to determine anti-tyrosinase and antioxidant activities of the extracted collagen hydrolysate (CH) derived from Malaysian jellyfish, Rhopilema hispidum. Collagen was extracted using 1:1 (w:v) 0.1 M NaOH solution at temperature 25 °C for 48 hr followed by treatment of 1:2 (w:v) distilled water for another 24 hr and freeze-dried. The extracted collagen was hydrolyzed using papain at optimum temperature, pH and enzyme/substrate ratio [E/S] of 60 °C, 7.0 and 1:50, respectively. CH was found to exhibit tyrosinase inhibitory activity, DPPH radical scavenging and metal ion-chelating assays up to 64, 28, and 83%, respectively, after 8 hr of hydrolysis process. The molecular weight of CH was found <10 kDa consisting of mainly Gly (19.219%), Glu (10.428%), and Arg (8.848%). The UV-visible spectrum analysis showed a major and minor peak at 218 and 276 nm, accordingly. The FTIR spectroscopy confirmed the amide groups in CH. The SEM images demonstrated spongy and porous structure of CH. In the cytotoxicity study, CH has no cytotoxicity against mouse embryonic 3T3 fibroblast cell line with IC50 value >500 µg/ml. Results revealed that the CH generated from this study has a potential to be developed as active ingredient in cosmeceutical application.
    Matched MeSH terms: Porosity
  2. Basri SN, Zainuddin N, Hashim K, Yusof NA
    Carbohydr Polym, 2016 Mar 15;138:34-40.
    PMID: 26794735 DOI: 10.1016/j.carbpol.2015.11.028
    Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition.
    Matched MeSH terms: Porosity
  3. Arif MMA, Fauzi MB, Nordin A, Hiraoka Y, Tabata Y, Yunus MHM
    Polymers (Basel), 2020 Nov 13;12(11).
    PMID: 33202700 DOI: 10.3390/polym12112678
    Gelatin possesses biological properties that resemble native skin and can potentially be fabricated as a skin substitute for full-thickness wound treatment. The native property of gelatin, whereby it is easily melted and degraded at body temperature, could prevent its biofunctionality for various applications. This study aimed to fabricate and characterise buffalo gelatin (Infanca halal certified) crosslinked with chemical type crosslinker (genipin and genipin fortified with EDC) and physicaly crosslink using the dihydrothermal (DHT) method. A porous gelatin sponge (GS) was fabricated by a freeze-drying process followed by a complete crosslinking via chemical-natural and synthetic-or physical intervention using genipin (GNP), 1-ethyl-3-(3-dimethylaminopropyl) (EDC) and dihydrothermal (DHT) methods, respectively. The physicochemical, biomechanical, cellular biocompatibility and cell-biomaterial interaction of GS towards human epidermal keratinocytes (HEK) and dermal fibroblasts (HDF) were evaluated. Results showed that GS had a uniform porous structure with pore size ranging between 60 and 200 µm with high porosity (>78.6 ± 4.1%), high wettability (<72.2 ± 7.0°), high tensile strain (>13.65 ± 1.10%) and 14 h of degradation rate. An increase in the concentration and double-crosslinking approach demonstrated an increment in the crosslinking degree, enzymatic hydrolysis resistance, thermal stability, porosity, wettability and mechanical strength. The GS can be tuned differently from the control by approaching the GS via a different crosslinking strategy. However, a decreasing trend was observed in the pore size, water retention and water absorption ability. Crosslinking with DHT resulted in large pore sizes (85-300 µm) and low water retention (236.9 ± 18.7 g/m2·day) and a comparable swelling ratio with the control (89.6 ± 7.1%). Moreover no changes in the chemical content and amorphous phase identification were observed. The HEK and HDF revealed slight toxicity with double crosslinking. HEK and HDF attachment and proliferation remain similar to each crosslinking approach. Immunogenicity was observed to be higher in the double-crosslinking compared to the single-crosslinking intervention. The fabricated GS demonstrated a dynamic potential to be tailored according to wound types by manipulating the crosslinking intervention.
    Matched MeSH terms: Porosity
  4. Sam MS, Lintang HO, Sanagi MM, Lee SL, Yuliati L
    PMID: 24503155 DOI: 10.1016/j.saa.2013.12.113
    A metal-free mesoporous carbon nitride (MCN) was investigated for the first time as an adsorbent for N-nitrosopyrrolidine (NPYR), which is one of the nitrosamine pollutants. Under the same condition, the adsorption capability of the MCN was found to be higher than that of the MCM-41. Since the adsorption isotherm was consistent with Langmuir and Freundlich model equations, it was suggested that the adsorption of NPYR molecules on the MCN occurred in the form of mono-molecular layer on the heterogeneous surface sites. It was proposed that MCN with suitable adsorption sites was beneficial for the adsorption of NPYR. The evidence on the interaction between the NPYR molecules and the MCN was supported by fluorescence spectroscopy. Two excitation wavelengths owing to the terminal N-C and N=C groups were used to monitor the interactions between the emission sites of the MCN and the NPYR molecules. It was confirmed that the intensity of the emission sites was quenched almost linearly with the concentration of NPYR. This result obviously suggested that the MCN would be applicable as a fluorescence sensor for detection of the NPYR molecules. From the Stern-Volmer plot, the quenching rate constant of terminal N-C groups was determined to be ca. two times higher than that of the N=C groups on MCN, suggesting that the terminal N-C groups on MCN would be the favoured sites interacted with the NPYR. Since initial concentration can be easily recovered, the interactions of NPYR on MCN were weak and might only involve electrostatic interactions.
    Matched MeSH terms: Porosity
  5. Zuhailawati Hussain, Yong, Tuck Leong
    MyJurnal
    In this paper, densification of in-situ copper-niobium carbide composite using cold pressing technique was addressed. Mixtures of Cu-20vol%NbC powder were prepared by two methods.
    In first method, a mixture of Cu-15.79wt%Nb-2.04wt%C powder was milled at 400 rpm for 35 hours in a planetary mill. In second method, Cu and commercial NbC powder was mixed at 100 rpm for 2 hours in a jar mill. Then, both powders were pressed at different pressure (i.e. 350 MPa, 450 MPa, 550 MPa and 650 MPa) and sintered at 900 o C for 1 hour. Sample of in-situ and ex-situ Cu-20vol%NbC composite were characterized for density, hardness, phase formation by x-ray diffraction analysis and microstructure by scanning electron microscope. Xray diffraction analysis showed that NbC phase was formed in the in-situ processed sample. Hardness of in-situ processed copper composite was higher than that of the ex-situ processed copper composite due to good interface between coper matrix and niobium carbide reinforcement particle as well as distribution of finer niobium carbide particles in copper matrix. Sintered density of in-situ composite is lower than density of ex-situ composite beacuse of work hardening of the Cu-Nb-C mixture powder during powder to ball collision. Density and hardness of the in-situ and ex-situ Cu-20vol%NbC composites increase with the increase in compaction pressure as porosity is eliminated at higher compaction pressure.
    Matched MeSH terms: Porosity
  6. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Yeong CH
    Pharmaceutics, 2019 Nov 12;11(11).
    PMID: 31718079 DOI: 10.3390/pharmaceutics11110596
    INTRODUCTION: Transarterial radioembolization (TARE) has been proven as an effective treatment for unresectable liver tumor. In this study, neutron activated, 153Sm-labeled microspheres were developed as an alternative to 90Y-labeled microspheres for hepatic radioembolization. 153Sm has a theranostic advantage as it emits both therapeutic beta and diagnostic gamma radiations simultaneously, in comparison to the pure beta emitter, 90Y.

    METHODS: Negatively charged acrylic microspheres were labeled with 152Sm ions through electrostatic interactions. In another formulation, the Sm-labeled microsphere was treated with sodium carbonate solution to form the insoluble 152Sm carbonate (152SmC) salt within the porous structures of the microspheres. Both formulations were neutron-activated in a research reactor. Physicochemical characterization, gamma spectrometry, and radiolabel stability tests were carried out to study the performance and stability of the microspheres.

    RESULTS: The Sm- and SmC-labeled microspheres remained spherical and smooth, with a mean size of 35 µm before and after neutron activation. Fourier transform infrared (FTIR) spectroscopy indicated that the functional groups of the microspheres remained unaffected after neutron activation. The 153Sm- and 153SmC-labeled microspheres achieved activity of 2.53 ± 0.08 and 2.40 ± 0.13 GBq·g-1, respectively, immediate after 6 h neutron activation in the neutron flux of 2.0 × 1012 n·cm-2·s-1. Energy-dispersive X-ray (EDX) and gamma spectrometry showed that no elemental and radioactive impurities were present in the microspheres after neutron activation. The retention efficiency of 153Sm in the 153SmC-labeled microspheres was excellent (~99% in distilled water and saline; ~97% in human blood plasma), which was higher than the 153Sm-labeled microspheres (~95% and ~85%, respectively).

    CONCLUSION: 153SmC-labeled microspheres have demonstrated excellent properties for potential application as theranostic agents for hepatic radioembolization.

    Matched MeSH terms: Porosity
  7. Ooi CH, Ling YP, Abdullah WZ, Mustafa AZ, Pung SY, Yeoh FY
    J Mater Sci Mater Med, 2019 Mar 30;30(4):44.
    PMID: 30929088 DOI: 10.1007/s10856-019-6247-5
    Hydroxyapatite is an ideal biomaterial for bone tissue engineering due to its biocompatibility and hemocompatibility which have been widely studied by many researchers. The incorporation of nanoporosity into hydroxyapatite could transform the biomaterial into an effective adsorbent for uremic toxins removal especially in artificial kidney system. However, the effect of nanoporosity incorporation on the hemocompatibility of hydroxyapatite has yet to be answered. In this study, nanoporous hydroxyapatite was synthesized using hydrothermal technique and its hemocompatibility was determined. Non-ionic surfactants were used as soft templates to create porosity in the hydroxyapatite. The presence of pure hydroxyapatite phase in the synthesized samples is validated by X-ray diffraction analysis and Fourier transform infrared spectroscopy. The TEM images show that the hydroxyapatite formed rod-like particles with the length of 21-90 nm and diameter of 11-70 nm. The hydroxyapatite samples exhibit BET surface area of 33-45 m2 g-1 and pore volume of 0.35-0.44 cm3 g-1. The hemocompatibility of the hydroxyapatite was determined via hemolysis test, platelet adhesion, platelet activation and blood clotting time measurement. The nanoporous hydroxyapatite shows less than 5% hemolysis, suggesting that the sample is highly hemocompatible. There is no activation and morphological change observed on the platelets adhered onto the hydroxyapatite. The blood clotting time demonstrates that the blood incubated with the hydroxyapatite did not coagulate. This study summarizes that the synthesized nanoporous hydroxyapatite is a highly hemocompatible biomaterial and could potentially be utilized in biomedical applications.
    Matched MeSH terms: Porosity
  8. Ghalambaz M, Mehryan SAM, Hajjar A, Shdaifat MYA, Younis O, Talebizadehsardari P, et al.
    Molecules, 2021 Mar 09;26(5).
    PMID: 33803488 DOI: 10.3390/molecules26051496
    A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO-coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.
    Matched MeSH terms: Porosity
  9. An X, Chong PL, Zohourkari I, Roy S, Merdji A, Linda Gnanasagaran C, et al.
    Proc Inst Mech Eng H, 2023 Aug;237(8):1008-1016.
    PMID: 37477395 DOI: 10.1177/09544119231187685
    The mechanical properties of tissue scaffolds are essential in providing stability for tissue repair and growth. Thus, the ability of scaffolds to withstand specific loads is crucial for scaffold design. Most research on scaffold pores focuses on grids with pore size and gradient structure, and many research models are based on scaffolding with vertically arranged holes. However, little attention is paid to the influence of the distribution of holes on the mechanical properties of the scaffold. To address this gap, this research investigates the effect of pore distribution on the mechanical properties of tissue scaffolds. The study involves four types of scaffold designs with regular and staggered pore arrangements and porosity ranging from 30% to 80%. Finite element analysis (FEA) was used to compare the mechanical properties of different scaffold designs, with von-Mises stress distribution maps generated for each scaffold. The results show that scaffolds with regular vertical holes exhibit a more uniform stress distribution and better mechanical performance than those with irregular holes. In contrast, the scaffold with a staggered arrangement of holes had a higher probability of stress concentration. The study emphasized the importance of balancing porosity and strength in scaffold design.
    Matched MeSH terms: Porosity
  10. Mohamad Ikubar MR, Abdul Manan M, Md Salleh M, Yahya A
    3 Biotech, 2018 May;8(5):259.
    PMID: 29765817 DOI: 10.1007/s13205-018-1268-1
    In current practice, oil palm frond leaflets and stems are re-used for soil nutrient recycling, while the petioles are typically burned. Frond petioles have high commercialization value, attributed to high lignocellulose fiber content and abundant of juice containing free reducing sugars. Pressed petiole fiber is the subject of interest in this study for the production of lignocellulolytic enzyme. The initial characterization showed the combination of 0.125 mm frond particle size and 60% moisture content provided a surface area of 42.3 m2/g, porosity of 12.8%, and density of 1.2 g/cm3, which facilitated fungal solid-state fermentation. Among the several species of Aspergillus and Trichoderma tested, Aspergillus awamori MMS4 yielded the highest xylanase (109 IU/g) and cellulase (12 IU/g), while Trichoderma virens UKM1 yielded the highest lignin peroxidase (222 IU/g). Crude enzyme cocktail also contained various sugar residues, mainly glucose and xylose (0.1-0.4 g/L), from the hydrolysis of cellulose and hemicellulose. FT-IR analysis of the fermented petioles observed reduction in cellulose crystallinity (I900/1098), cellulose-lignin (I900/1511), and lignin-hemicellulose (I1511/1738) linkages. The study demonstrated successful bioconversion of chemically untreated frond petioles into lignin peroxidase and xylanase-rich enzyme cocktail under SSF condition.
    Matched MeSH terms: Porosity
  11. Kamalaldin N', Jaafar M, Zubairi SI, Yahaya BH
    Adv Exp Med Biol, 2019;1084:1-15.
    PMID: 29299875 DOI: 10.1007/5584_2017_130
    The use of bioceramics, especially the combination of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), as a three-dimensional scaffold in bone engineering is essential because together these elements constitute 60% of the bone content. Different ratios of HA and β-TCP were previously tested for their ability to produce suitable bioceramic scaffolds, which must be able to withstand high mechanical load. In this study, two ratios of HA/TCP (20:80 and 70:30) were used to create pellets, which then were evaluated in vitro to identify any adverse effects of using the material in bone grafting. Diametral tensile strength (DTS) and density testing was conducted to assess the mechanical strength and porosity of the pellets. The pellets then were tested for their toxicity to normal human fibroblast cells. In the toxicity assay, cells were incubated with the pellets for 3 days. At the end of the experiment, cell morphological changes were assessed, and the absorbance was read using PrestoBlue Cell Viability Reagent™. An inversely proportional relationship between DTS and porosity percentage was detected. Fibroblasts showed normal cell morphology in both treatments, which suggests that the HA/TCP pellets were not toxic. In the osteoblast cell attachment assay, cells were able to attach to the surface of both ratios, but cells were also able to penetrate inside the scaffold of the 70:30 pellets. This finding suggests that the 70:30 ratio had better osteoconduction properties than the 20:80 ratio.
    Matched MeSH terms: Porosity
  12. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Porosity
  13. Xiong J, Luo R, Jia Z, Ge S, Lam SS, Xie L, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128399.
    PMID: 38007014 DOI: 10.1016/j.ijbiomac.2023.128399
    To develop a green and facile adsorbent for removing indoor polluted formaldehyde (HCHO) gas, the biomass porous nanofibrous membranes (BPNMs) derived from microcrystalline cellulose/chitosan were fabricated by electrospinning. The enhanced chemical adsorption sites with diverse oxygen (O) and nitrogen (N)-containing functional groups were introduced on the surface of BPNMs by non-thermal plasma modification under carbon dioxide (CO2) and nitrogen (N2) atmospheres. The average nanofiber diameters of nanofibrous membranes and their nanomechanical elastic modulus and hardness values decreased from 341 nm to 175-317 nm and from 2.00 GPa and 0.25 GPa to 1.70 GPa and 0.21 GPa, respectively, after plasma activation. The plasma-activated nanofibers showed superior hydrophilicity (WCA = 0°) and higher crystallinity than that of the control. The optimal HCHO adsorption capacity (134.16 mg g-1) of BPNMs was achieved under a N2 atmosphere at a plasma power of 30 W and for 3 min, which was 62.42 % higher compared with the control. Pyrrolic N, pyridinic N, CO and O-C=O were the most significant O and N-containing functional groups for the improved chemical adsorption of the BPNMs. The adsorption mechanism involved a synergistic combination of physical and chemical adsorption. This study provides a novel strategy that combines clean plasma activation with electrospinning to efficiently remove gaseous HCHO.
    Matched MeSH terms: Porosity
  14. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, et al.
    Crit Rev Biotechnol, 2016 Jun;36(3):553-65.
    PMID: 25641330 DOI: 10.3109/07388551.2014.993588
    Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
    Matched MeSH terms: Porosity
  15. Chen D, Xia X, Wong TW, Bai H, Behl M, Zhao Q, et al.
    Macromol Rapid Commun, 2017 Apr;38(7).
    PMID: 28196300 DOI: 10.1002/marc.201600746
    Device applications of shape memory polymers demand diverse shape changing geometries, which are currently limited to non-omnidirectional movement. This restriction originates from traditional thermomechanical programming methods such as uniaxial, biaxial stretching, bending, or compression. A solvent-modulated programming method is reported to achieve an omnidirectional shape memory behavior. The method utilizes freeze drying of hydrogels of polyethylene glycol networks with a melting transition temperature around 50 °C in their dry state. Such a process creates temporarily fixed macroporosity, which collapses upon heating, leading to significant omnidirectional shrinkage. These shrunken materials can swell in water to form hydrogels again and the omnidirectional programming and recovery can be repeated. The fixity ratio (R f ) and recovery ratio (R r ) can be maintained at 90% and 98% respectively upon shape memory multicycling. The maximum linear recoverable strain, as limited by the maximum swelling, is ≈90%. Amongst various application potentials, one can envision the fabrication of multiphase composites by taking advantages of the omnidirectional shrinkage from a porous polymer to a denser structure.
    Matched MeSH terms: Porosity
  16. Goh KB, Li Z, Chen X, Liu Q, Wu T
    J Colloid Interface Sci, 2022 Feb 15;608(Pt 2):1999-2008.
    PMID: 34749148 DOI: 10.1016/j.jcis.2021.10.092
    HYPOTHESIS: The performance of a polymeric core-shell microreactor depends critically on (i) mass transfer, (ii) catalyzed chemical reaction, and (iii) deactivation within the nonuniform core-shell microstructure environment. As such, these three basic working principles control the active catalytic phase density in the reactor.

    THEORY: We present a high-fidelity, image-based nonequilibrium computational model to quantify and visualize the mass transport as well as the deactivation process of a core-shell polymeric microreactor. In stark contrast with other published works, our microstructure-based computer simulation can provide a single-particle visualization with a micrometer spatial accuracy.

    FINDINGS: We show how the interplay of kinetics and thermodynamics controls the product-induced deactivation process. The model predicts and visualizes the non-trivial, spatially resolved active catalyst phase patterns within a core-shell system. Moreover, we also show how the microstructure influences the formation of foulant within a core-shell structure; that is, begins from the core and grows radially onto the shell section. Our results suggest that the deactivation process is highly governed by the porosity/microstructure of the microreactor as well as the affinity of the products towards the solid phase of the reactor.

    Matched MeSH terms: Porosity
  17. Hapiz A, Jawad AH, Alothman ZA, Wilson LD
    Int J Phytoremediation, 2024 May;26(7):1064-1075.
    PMID: 38084662 DOI: 10.1080/15226514.2023.2288904
    In this study, pineapple crown (PC) feedstock residues were utilized as a potential precursor toward producing activated carbon (PCAC) via pyrolysis induced with ZnCl2 activation. The PCAC has a surface area (457.8 m2/g) and a mesoporous structure with an average pore diameter of 3.35 nm, according to the Brunauer-Emmett-Teller estimate. The removal of cationic dye (Fuchsin basic; FB) was used for investigating the adsorption parameters of PCAC. The optimization of significant adsorption variables (A: PCAC dose (0.02-0.1 g/100 mL); B: pH (4-10); C: time (10-90); and D: initial FB concentration (10-50 mg/L) was conducted using the Box-Behnken design (BBD). The pseudo-second-order (PSO) model characterized the dye adsorption kinetic profile, whereas the Freundlich model reflected the equilibrium adsorption profile. The maximum adsorption capacity (qmax) of PCAC for FB dye was determined to be 171.5 mg/g. Numerous factors contribute to the FB dye adsorption mechanism onto the surface of PCAC, which include electrostatic attraction, H-bonding, pore diffusion, and π-π stacking. This study illustrates the utilization of PC biomass feedstock for the fabrication of PCAC and its successful application in wastewater remediation.
    Matched MeSH terms: Porosity
  18. Kalantari K, Afifi AM, Jahangirian H, Webster TJ
    Carbohydr Polym, 2019 Mar 01;207:588-600.
    PMID: 30600043 DOI: 10.1016/j.carbpol.2018.12.011
    This review outlines new developments in the biomedical applications of environmentally friendly ('green') chitosan and chitosan-blend electrospun nanofibers. In recent years, research in functionalized nanofibers has contributed to the development of new drug delivery systems and improved scaffolds for regenerative medicine, which is currently one of the most rapidly growing fields in all of the life sciences. Chitosan is a biopolymer with non-toxic, antibacterial, biodegradable and biocompatible properties. Due to these properties, they are widely applied for biomedical applications such as drug delivery, tissue engineering scaffolds, wound dressings, and antibacterial coatings. Electrospinning is a novel technique for chitosan nanofiber fabrication. These nanofibers can be used in unique applications in biomedical fields due to their high surface area and porosity. The present work reviews recent reports on the biomedical applications of chitosan-based nanofibers in detail.
    Matched MeSH terms: Porosity
  19. Ghanbari T, Abnisa F, Wan Daud WMA
    Sci Total Environ, 2020 Mar 10;707:135090.
    PMID: 31863992 DOI: 10.1016/j.scitotenv.2019.135090
    The environment sustenance and preservation of global climate are known as the crucial issues of the world today. Currently, the crisis of global warming due to CO2 emission has turned into a paramount concern. To address such a concern, diverse CO2 capture and sequestration techniques (CCS) have been introduced so far. In line with this, Metal Organic Frameworks (MOFs) have been considered as the newest and most promising material for CO2 adsorption and separation. Due to their outstanding properties, this new class of porous materials a have exhibited a conspicuous potential for gas separation technologies especially for CO2 storage and separation. Thus, the present review paper is aimed to discuss the adsorption properties of CO2 on the MOFs based on the adsorption mechanisms and the design of the MOF structures. In addition, the main challenge associated with using this prominent porous material has been mentioned.
    Matched MeSH terms: Porosity
  20. Ahmad M, Asghar A, Abdul Raman AA, Wan Daud WM
    PLoS One, 2015;10(10):e0141348.
    PMID: 26517827 DOI: 10.1371/journal.pone.0141348
    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.
    Matched MeSH terms: Porosity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links