Displaying publications 21 - 40 of 509 in total

Abstract:
Sort:
  1. Hamsawahini K, Sathishkumar P, Ahamad R, Yusoff AR
    Talanta, 2015 Nov 1;144:969-76.
    PMID: 26452915 DOI: 10.1016/j.talanta.2015.07.049
    In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water.
    Matched MeSH terms: Rivers
  2. Nik Nur Syafika Pahri, Nur Huda Syazwani Jafri, Husna Ahmad Tajuddin, Yusilawati Ahmad Nor
    MyJurnal
    Effective treatment of wastewater is crucial in order to achieve a sustainable development. For instance, highly efficient treatment processes with low capital requirements are the major prerequisite for implementation of the advanced wastewater treatment operations. Among various available treatment methods, the application of coagulation-flocculation process by using natural coagulant; chitosan has vast advantages such as low operating cost, environmental friendly and highly effective in the wastewater treatment operations. The application of nanotechnology in numerous treatment techniques are considered as the most significant advances in water and wastewater treatment practices. The utilization of magnesium oxide (MgO) as nano-adsorbent has recently gained attention as a potential treatment method in water remediation particularly for treating effluents with high amount of organic dyes and heavy metals due to its high treatment efficiency, low cost, versatility and environment compatibility. The purpose of this study was to determine the effectiveness of coagulation-flocculation process when using novel coagulant in which MgO coated with chitosan by investigating the percentage removal of several significant parameters which were turbidity, chemical oxygen demand (COD) and suspended solid. The removal efficiencies were determined throughout a series of experiments carried out using a standard jar test procedure in which three different coagulants; chitosan, MgO coated with chitosan and MgO were tested on water samples taken from Sg. Pusu. In addition, a set of experiments was designed using response surface methodology (RSM) in order to optimize adsorption of chitosan into MgO. The experiments were conducted at various concentrations of chitosan (10-30 mg/ml) and selected MgO dosage ranges (10-30 mg). From the obtained results, it was found that chitosan-MgO coagulant has good removal efficiencies of turbidity, chemical oxygen demand (COD) and suspended solids at 92%, 91%, and 98% respectively from the optimization of adsorption of chitosan-MgO. The MgO coated with chitosan is the best coagulant in this study compared to chitosan and MgO alone because of the ability of treating the river water with up to 90 % removal for all the main parameters. The results showed that coagulation-flocculation is effective as a treatment for treating river water.
    Matched MeSH terms: Rivers
  3. Mohamed I, Othman F, Ibrahim AI, Alaa-Eldin ME, Yunus RM
    Environ Monit Assess, 2015 Jan;187(1):4182.
    PMID: 25433545 DOI: 10.1007/s10661-014-4182-y
    This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.
    Matched MeSH terms: Rivers/chemistry*
  4. Boyero L, Pearson RG, Hui C, Gessner MO, Pérez J, Alexandrou MA, et al.
    Proc Biol Sci, 2016 Apr 27;283(1829).
    PMID: 27122551 DOI: 10.1098/rspb.2015.2664
    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.
    Matched MeSH terms: Rivers*
  5. Sakai N, Shirasaka J, Matsui Y, Ramli MR, Yoshida K, Ali Mohd M, et al.
    Chemosphere, 2017 Apr;172:234-241.
    PMID: 28081507 DOI: 10.1016/j.chemosphere.2016.12.139
    Five homologs (C10-C14) of linear alkylbenzene sulfonate (LAS) were quantitated in surface water collected in the Langat and Selangor River basins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to spatially analyze the occurrence of LAS in both river basins, and the LAS contamination associated with the population was elucidated by spatial analysis at a sub-basin level. The LAS concentrations in the dissolved phase (<0.45 μm) and 4 fractions separated by particle size (<0.1 μm, 0.1-1 μm, 1-11 μm and >11 μm) were analyzed to elucidate the environmental fate of LAS in the study area. The environmental risks of the observed LAS concentration were assessed based on predicted no effect concentration (PNEC) normalized by a quantitative structure-activity relationship model. The LAS contamination mainly occurred from a few populated sub-basins, and it was correlated with the population density and ammonia nitrogen. The dissolved phase was less than 20% in high contamination sites (>1000 μg/L), whereas it was more than 60% in less contaminated sites (<100 μg/L). The environmental fate of LAS in the study area was primarily subject to the adsorption to suspended solids rather than biodegradation because the LAS homologs, particularly in longer alkyl chain lengths, were considerably absorbed to the large size fraction (>11 μm) that settled in a few hours. The observed LAS concentrations exceeded the normalized PNEC at 3 sites, and environmental risk areas and susceptible areas to the LAS contamination were spatially identified based on their catchment areas.
    Matched MeSH terms: Rivers
  6. Wilkinson CL, Chua KWJ, Fiala R, Liew JH, Kemp V, Hadi Fikri A, et al.
    Ecology, 2021 01;102(1):e03199.
    PMID: 32969053 DOI: 10.1002/ecy.3199
    In Southeast Asia, biodiversity-rich forests are being extensively logged and converted to oil palm monocultures. Although the impacts of these changes on biodiversity are largely well documented, we know addition to samples we collected in 201 little about how these large-scale impacts affect freshwater trophic ecology. We used stable isotope analyses (SIA) to determine the impacts of land-use changes on the relative contribution of allochthonous and autochthonous basal resources in 19 stream food webs. We also applied compound-specific SIA and bulk-SIA to determine the trophic position of fish apex predators and meso-predators (invertivores and omnivores). There was no difference in the contribution of autochthonous resources in either consumer group (70-82%) among streams with different land-use type. There was no change in trophic position for meso-predators, but trophic position decreased significantly for apex predators in oil palm plantation streams compared to forest streams. This change in maximum food chain length was due to turnover in identity of the apex predator among land-use types. Disruption of aquatic trophic ecology, through reduction in food chain length and shift in basal resources, may cause significant changes in biodiversity as well as ecosystem functions and services. Understanding this change can help develop more focused priorities for mediating the negative impacts of human activities on freshwater ecosystems.
    Matched MeSH terms: Rivers*
  7. Hashim R, Song TH, Muslim NZ, Yen TP
    Trop Life Sci Res, 2014 Dec;25(2):21-39.
    PMID: 27073597 MyJurnal
    This study aimed to assess the concentrations of cadmium (Cd), nickel (Ni) and lead (Pb) in the tissues of fish collected from the lower reach of the Kelantan River, Malaysia. Fishes were collected using gill nets during the dry and wet seasons. A total of 78 individual fish were caught and comprised 6 families, 11 genera and 13 species. The dorsal muscle was analysed using a graphite furnace Atomic Absorption Spectrometer (AAS). The mean concentration of Cd in Chitala chitala (0.076 mg/kg) was above the critical limit values of the European Commission (EC), World Health Organization (WHO) and Food and Agriculture Organization (FAO). The mean concentrations of Cd in Barbonymus gonionatus and Tachysurus maculatus were already at the level of concern, whereas the other species were approaching the limits of permissible levels. No fish samples were found to have a Ni level higher than the permissible limit of 0.5-0.6 mg/kg set by the WHO (1985). Osteochilus hasseltii (0.169 mg/kg) and T. maculatus (0.156 mg/kg) showed high Pb concentrations. The concentrations of heavy metals were found to be elevated in the wet season (p<0.05). Omnivorous fish were detected with elevated concentrations of Cd and Ni, whereas carnivorous fish had the highest concentration of Pb. The concentrations of Cd and Pb in fish tissues were positively correlated with fish weight (p<0.05). This study determined that the fish species caught in the Kelantan River were contaminated with non-essential metals (Cd, Ni and Pb). Nevertheless, the heavy metal concentration in the fish tissues, with the exception of C. chitala, O. hasseltii and T. maculatus, did not exceed the EC, FAO, Malaysian Food Act (MFA) or WHO guidelines.
    Matched MeSH terms: Rivers
  8. Alam MS, Siraz MMM, A M J, Das SC, Bradley DA, Khandaker MU, et al.
    PLoS One, 2023;18(5):e0286267.
    PMID: 37220107 DOI: 10.1371/journal.pone.0286267
    Radon (222Rn), an inert gas, is considered a silent killer due to its carcinogenic characteristics. Dhaka city is situated on the banks of the Buriganga River, which is regarded as the lifeline of Dhaka city because it serves as a significant source of the city's water supply for domestic and industrial purposes. Thirty water samples (10 tap water from Dhaka city and 20 surface samples from the Buriganga River) were collected and analyzed using a RAD H2O accessory for 222Rn concentration. The average 222Rn concentration in tap and river water was 1.54 ± 0.38 Bq/L and 0.68 ± 0.29 Bq/L, respectively. All the values were found below the maximum contamination limit (MCL) of 11.1 Bq/L set by the USEPA, the WHO-recommended safe limit of 100 Bq/L, and the UNSCEAR suggested range of 4-40 Bq/L. The mean values of the total annual effective doses due to inhalation and ingestion were calculated to be 9.77 μSv/y and 4.29 μSv/y for tap water and river water, respectively. Although all these values were well below the permissible limit of 100 μSv/y proposed by WHO, they cannot be neglected because of the hazardous nature of 222Rn, especially considering their entry to the human body via inhalation and ingestion pathways. The obtained data may serve as a reference for future 222Rn-related works.
    Matched MeSH terms: Rivers*
  9. Wan Mohtar WHM, Abdul Maulud KN, Muhammad NS, Sharil S, Yaseen ZM
    Environ Pollut, 2019 May;248:133-144.
    PMID: 30784832 DOI: 10.1016/j.envpol.2019.02.011
    Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
    Matched MeSH terms: Rivers
  10. Jamei M, Ahmadianfar I, Karbasi M, Jawad AH, Farooque AA, Yaseen ZM
    J Environ Manage, 2021 Dec 15;300:113774.
    PMID: 34560461 DOI: 10.1016/j.jenvman.2021.113774
    The concentration of soluble salts in surface water and rivers such as sodium, sulfate, chloride, magnesium ions, etc., plays an important role in the water salinity. Therefore, accurate determination of the distribution pattern of these ions can improve better management of drinking water resources and human health. The main goal of this research is to establish two novel wavelet-complementary intelligence paradigms so-called wavelet least square support vector machine coupled with improved simulated annealing (W-LSSVM-ISA) and the wavelet extended Kalman filter integrated with artificial neural network (W-EKF- ANN) for accurate forecasting of the monthly), magnesium (Mg+2), and sulfate (SO4-2) indices at Maroon River, in Southwest of Iran. The monthly River flow (Q), electrical conductivity (EC), Mg+2, and SO4-2 data recorded at Tange-Takab station for the period 1980-2016. Some preprocessing procedures consisting of specifying the number of lag times and decomposition of the existing original signals into multi-resolution sub-series using three mother wavelets were performed to develop predictive models. In addition, the best subset regression analysis was designed to separately assess the best selective combinations for Mg+2 and SO4-2. The statistical metrics and authoritative validation approaches showed that both complementary paradigms yielded promising accuracy compared with standalone artificial intelligence (AI) models. Furthermore, the results demonstrated that W-LSSVM-ISA-C1 (correlation coefficient (R) = 0.9521, root mean square error (RMSE) = 0.2637 mg/l, and Kling-Gupta efficiency (KGE) = 0.9361) and W-LSSVM-ISA-C4 (R = 0.9673, RMSE = 0.5534 mg/l and KGE = 0.9437), using Dmey mother that outperformed the W-EKF-ANN for predicting Mg+2 and SO4-2, respectively.
    Matched MeSH terms: Rivers
  11. Tao H, Al-Hilali AA, Ahmed AM, Mussa ZH, Falah MW, Abed SA, et al.
    Chemosphere, 2023 Mar;317:137914.
    PMID: 36682637 DOI: 10.1016/j.chemosphere.2023.137914
    Heavy metals (HMs) are a vital elements for investigating the pollutant level of sediments and water bodies. The Murray-Darling river basin area located in Australia is experiencing severe damage to increased crop productivity, loss of soil fertility, and pollution levels within the vicinity of the river system. This basin is the most effective primary production area in Australia where agricultural productivity is increased the gross domastic product in the entire mainland. In this study, HMs contaminations are examined for eight study sites selected for the Murray-Darling river basin where the inverse Distance Weighting interpolation method is used to identify the distribution of HMs. To pursue this, four different pollution indices namely the Geo-accumulation index (Igeo), Contamination factor (CF), Pollution load index (PLI), single-factor pollution index (SPLI), and the heavy metal pollution index (HPI) are computed. Following this, the Pearson correlation matrix is used to identify the relationships among the two HM parameters. The results indicate that the conductivity and N (%) are relatively high in respect to using Igeo and PLI indexes for study sites 4, 6, and 7 with 2.93, 3.20, and 1.38, respectively. The average HPI is 216.9071 that also indicates higher level pollution in the Murray-Darling river basin and the highest HPI value is noted in sample site 1 (353.5817). The study also shows that the levels of Co, P, Conductivity, Al, and Mn are mostly affected by HMs and that these indices indicate the maximum HM pollution level in the Murray-Darling river basin. Finally, the results show that the high HM contamination level appears to influence human health and local environmental conditions.
    Matched MeSH terms: Rivers
  12. Sharifinia M, Mahmoudifard A, Imanpour Namin J, Ramezanpour Z, Yap CK
    Chemosphere, 2016 Sep;159:584-594.
    PMID: 27343865 DOI: 10.1016/j.chemosphere.2016.06.064
    This study evaluates the impact of anthropogenic activities on the Shahrood River using water physico-chemical variables and macroinvertebrates data sets obtained over a period of 12 months between February 2012 and February 2013 at 8 sampling sites. Biotic indices i.e. FBI and BMWP based on macroinvertebrates and physico-chemical indices (MPI, HPI and NSF-WQI) were employed to evaluate the water quality status in connection with natural- and human-induced pressures. Based on physico-chemical indices, water quality was categorized as low polluted level and it is suitable for drinking purposes. The water quality based on biotic indices was related to the anthropic activities; a clear deterioration of the water quality was observed from upstream to downstream sites. The water quality along the river changed from very good (class I; reference sites) to good (class II; midstream sites) and turned into moderate (class III) and poor (class IV) quality (downstream sites). These findings indicate that biotic indices are more powerful indicators in assessing water quality than physico-chemical indices. Allocapnia, Glossosoma and Hesperoperla were exclusively related to least disturbed sites, and Naididae, Orthocladiinae and Ecdyonurus were found in sites showing notable degradation. Our results recommended that the use of macroinvertebrates could be employed as a cost-effective tool for biomonitoring and controlling of polluted riverine ecosystems in the Middle East. Finally, the results from this study may be useful not only for developing countries, but also for any organization struggling to use macroinvertebrate based indices with restricted financial resources and knowledge.
    Matched MeSH terms: Rivers/chemistry*
  13. Yang S, Tan ML, Song Q, He J, Yao N, Li X, et al.
    J Environ Manage, 2023 Mar 15;330:117244.
    PMID: 36621311 DOI: 10.1016/j.jenvman.2023.117244
    Global climate change has led to an increase in both the frequency and magnitude of extreme events around the world, the risk of which is especially imminent in tropical regions. Developing hydrological models with better capabilities to simulate streamflow, especially peak flow, is urgently needed to facilitate water resource planning and management as well as climate change mitigation efforts in the tropics. In view of the need, this paper explores the feasibility of improving streamflow simulation performance in the tropical Kelantan River Basin (KRB) of Peninsular Malaysia through coupling a conceptual process-based hydrological model - Soil and Water Assessment Tool (SWAT) with a deep learning model - Bidirectional Long Short-Term Memory (Bi-LSTM) in two ways. All SWAT parameters were set as their default values in one hybrid model (SWAT-D-LSTM), whereas three most sensitive SWAT parameters were calibrated in the other hybrid model (SWAT-T-LSTM). Comparison of daily streamflow simulation results have shown that SWAT-T-LSTM consistently performs better than SWAT-D-LSTM as well as the stand-alone SWAT and Bi-LSTM model throughout the simulation period. Particularly, SWAT-T-LSTM performs considerably better than the other three models in simulating daily peak flow. Based on the latest projection results of five GCMs from the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) under three emission scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5), the best-performed SWAT-T-LSTM was run to assess the potential impacts of climate change on streamflow in the KRB. Ensemble assessment results have concluded that both average and extreme streamflow is much likely to increase considerably in the already wet northeast monsoon season from November to January, which has surely raised the alarm for more frequent flood occurrence in the KRB.
    Matched MeSH terms: Rivers
  14. Wee, Siaw Khur, Chok, Vui Soon, Gorin, Alexander, Chua, Han Bing, Yan, Hong Ming
    MyJurnal
    Compartmented Fluidized Bed Gasifier (CFBG), consisting of two compartments - the combustorand gasifier, uses air blown instead of pure oxygen for syngas production in bubbling fluidization mode, eliminating the need of air separation unit, and reducing the capital cost, thus distinguishes it from other traditional ones. Fluidization quality is a determining factor in the CFBG to guarantee its well-lifted behaviour. Previous study, without solid circulation at ambient conditions, brought to the fore the necessity of considering the effect of the minimum allowable effective diameter. The study was then performed in the CFBG cold physical model of 0.66m overall diameter (effective diameter for combustor and gasifier is 0.413m and 0.257m) to investigate the fluidization quality and compare it with the results obtained from the previous cold model of about 1.36 times smaller, but with the same compartmented ratio of 65:35. Different inert particles (river sand, quartz sand and alumina) were used, over a range of aspect ratios, for the aforementioned objective. The results showed that the fluidization quality in the gasifier has not been achieved and the degradation of fluidization quality in the combustor is still observed, notwithstanding the fact that the condition of the minimum allowable effective diameter has been met. The reduction of distributor free area, to increase the distributor pressure drop, showed a marginal effect on the quality. The effect of the minimum allowable effective diameter on fluidization quality in CFBG as well as the interplay of geometric and operational parameters require further studies be carried out. The fluidization quality of the binary mixture is also currently under investigation.
    Matched MeSH terms: Rivers
  15. Cheng H, Wang FF, Dong DW, Liang JC, Zhao CF, Yan B
    Front Public Health, 2021;9:769687.
    PMID: 34746088 DOI: 10.3389/fpubh.2021.769687
    This article takes the Guangdong Province of China as the research object and uses the difference-in-difference model to evaluate the impact of smart city construction on the quality of public occupational health and intercity differences. The obtained results show that smart city construction significantly improves the quality of public occupational health, and it is still valid after a series of robustness tests. The effect of this policy is stronger in cities that belong to the Pearl River Delta region or sub-provincial level cities. This study indicates that the central government should improve the pilot evaluation system and the performance appraisal mechanism of smart cities from the perspective of top-level design during the process of promoting smart city construction, which aims to correctly guide local governments to promote the construction of smart cities. To achieve the full improvement effect of smart city construction on the quality of public occupational health, local governments should implement smart city strategies in a purposeful and planned way according to the actual situation of the development of the jurisdiction.
    Matched MeSH terms: Rivers
  16. Rosli NRM, Yahya K
    Trop Life Sci Res, 2017 Jul;28(2):189-199.
    PMID: 28890770 MyJurnal DOI: 10.21315/tlsr2017.28.2.14
    The study of river water quality plays an important role in assessing the pollution status and health of the water bodies. Human-induced activities such as domestic activities, aquaculture, agriculture and industries have detrimentally affected the river water quality. Pinang River is one of the important rivers in Balik Pulau District that supplies freshwater for human consumption. A total of 442 physical and chemical parameters data of the Pinang River, Balik Pulau catchment were analysed to determine the sources of pollutants entering the river. Non-supervised artificial neural network (ANN) was employed to classify and cluster the river into upstream, middle-stream and downstream zones. The monitored data and non-supervised ANN analysis demonstrated that the source of nitrate was derived from the upper part of the Pinang River, Balik Pulau while the sources of nitrite, ammonia and ortho-phosphate are predominant at the middle-stream of the river system. Meanwhile, the sources of high total suspended solid and biological oxygen demand were concentrated at the downstream of the river.
    Matched MeSH terms: Rivers
  17. Rasul MG, Islam MS, Yunus RBM, Mokhtar MB, Alam L, Yahaya FM
    Water Environ Res, 2017 Dec 01;89(12):2088-2102.
    PMID: 28087920 DOI: 10.2175/106143017X14839994522740
      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
    Matched MeSH terms: Rivers/chemistry*
  18. Girei SH, Lim HN, Ahmad MZ, Mahdi MA, Md Zain AR, Yaacob MH
    Sensors (Basel), 2020 Aug 21;20(17).
    PMID: 32825539 DOI: 10.3390/s20174713
    The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.
    Matched MeSH terms: Rivers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links