Displaying publications 21 - 40 of 171 in total

Abstract:
Sort:
  1. Perumal, V., Khoo, W.C., Abdul-Hamid, A., Ismail, A., Saari, K., Murugesu, S., et al.
    MyJurnal
    Momordica charantia, also known as bitter melon or ‘peria katak’ in Malaysia, is a member of the family Cucurbitaceae. Bitter melon is an excellent source of vitamins and minerals that made it extensively nutritious. Moreover, the seed, fruit and leave of the plant contain bioactive compounds with a wide range of biological activities that have been used in traditional medicines in the treatment of several diseases, including inflammation, infections, obesity and diabetes. The aim of this study was to evaluate changes in urinary metabolite profile of the normal, streptozotocin-induced type 1 diabetes and M. charantia treated diabetic rats using proton nuclear magnetic resonance (1H-NMR) -based metabolomics profiling. Study had been carried out by inducing diabetes in the rats through injection of streptozotocin, which exhibited type 1 diabetes. M. charantia extract (100 and 200 mg/kg body weight) was administrated to the streptozotocin-induced diabetic rats for one week. Blood glucose level after administration was measured to examine hypoglycemic effect of the extract. The results obtained indicated that M. charantia was effective in lowering blood glucose level of the diabetic rats. The loading plot of Partial Least Square (PLS) component 1 showed that diabetic rats had increased levels of lactate and glucose in urine whereas normal and the extract treated diabetic rats had higher levels of succinate, creatine, creatinine, urea and phenylacetylglycine in urine. While the loading plot of PLS component 2 showed a higher levels of succinate, citrate, creatine, creatinine, sugars, and hippurate in urine of normal rat compared to the extract treated diabetic rat. Administration of M. charantia extract was found to be able to regulate the altered metabolic processes. Thus, it could be potentially used to treat the diabetic patients.
    
    Matched MeSH terms: Metabolomics
  2. Xu J, Cheng KK, Yang Z, Wang C, Shen G, Wang Y, et al.
    PMID: 26170882 DOI: 10.1155/2015/801691
    Gastric mucosal lesion (GML) is a common gastrointestinal disorder with multiple pathogenic mechanisms in clinical practice. In traditional Chinese medicine (TCM), electroacupuncture (EA) treatment has been proven as an effective therapy for GML, although the underlying healing mechanism is not yet clear. Here, we used proton nuclear magnetic resonance- ((1)H NMR-) based metabolomic method to investigate the metabolic perturbation induced by GML and the therapeutic effect of EA treatment on stomach meridian (SM) acupoints. Clear metabolic differences were observed between GML and control groups, and related metabolic pathways were discussed by means of online metabolic network analysis toolbox. By comparing the endogenous metabolites from GML and GML-SM groups, the disturbed pathways were partly recovered towards healthy state via EA treated on SM acupoints. Further comparison of the metabolic variations induced by EA stimulated on SM and the control gallbladder meridian (GM) acupoints showed a quite similar metabolite composition except for increased phenylacetylglycine, 3,4-dihydroxymandelate, and meta-hydroxyphenylacetate and decreased N-methylnicotinamide in urine from rats with EA treated on SM acupoints. The current study showed the potential application of metabolomics in providing further insight into the molecular mechanism of acupuncture.
    Matched MeSH terms: Metabolomics
  3. Maulidiani, Abas F, Khatib A, Perumal V, Suppaiah V, Ismail A, et al.
    J Ethnopharmacol, 2016 Mar 2;180:60-9.
    PMID: 26775274 DOI: 10.1016/j.jep.2016.01.001
    'Pegaga' is a traditional Malay remedy for a wide range of complaints. Among the 'pegaga', Centella asiatica has been used as a remedy for diabetes mellitus. Thus, we decided to validate this claim by evaluating the in vivo antidiabetic property of C. asiatica (CA) on T2DM rat model using the holistic (1)H NMR-based metabolomics approach.
    Matched MeSH terms: Metabolomics
  4. Rehman SU, Choe K, Yoo HH
    Molecules, 2016 Mar 10;21(3):331.
    PMID: 26978330 DOI: 10.3390/molecules21030331
    Eurycoma longifolia Jack (known as tongkat ali), a popular traditional herbal medicine, is a flowering plant of the family Simaroubaceae, native to Indonesia, Malaysia, Vietnam and also Cambodia, Myanmar, Laos and Thailand. E. longifolia, is one of the well-known folk medicines for aphrodisiac effects as well as intermittent fever (malaria) in Asia. Decoctions of E. longifolia leaves are used for washing itches, while its fruits are used in curing dysentery. Its bark is mostly used as a vermifuge, while the taproots are used to treat high blood pressure, and the root bark is used for the treatment of diarrhea and fever. Mostly, the roots extract of E. longifolia are used as folk medicine for sexual dysfunction, aging, malaria, cancer, diabetes, anxiety, aches, constipation, exercise recovery, fever, increased energy, increased strength, leukemia, osteoporosis, stress, syphilis and glandular swelling. The roots are also used as an aphrodisiac, antibiotic, appetite stimulant and health supplement. The plant is reported to be rich in various classes of bioactive compounds such as quassinoids, canthin-6-one alkaloids, β-carboline alkaloids, triterpene tirucallane type, squalene derivatives and biphenyl neolignan, eurycolactone, laurycolactone, and eurycomalactone, and bioactive steroids. Among these phytoconstituents, quassinoids account for a major portion of the E. longifolia root phytochemicals. An acute toxicity study has found that the oral Lethal Dose 50 (LD50) of the alcoholic extract of E. longifolia in mice is between 1500-2000 mg/kg, while the oral LD50 of the aqueous extract form is more than 3000 mg/kg. Liver and renal function tests showed no adverse changes at normal daily dose and chronic use of E. longifolia. Based on established literature on health benefits of E. longifolia, it is important to focus attention on its more active constituents and the constituents' identification, determination, further development and most importantly, the standardization. Besides the available data, more evidence is required regarding its therapeutic efficacy and safety, so it can be considered a rich herbal source of new drug candidates. It is very important to conserve this valuable medicinal plant for the health benefit of future generations.
    Matched MeSH terms: Metabolomics/methods
  5. Mediani A, Abas F, Maulidiani M, Khatib A, Tan CP, Ismail IS, et al.
    J Pharm Biomed Anal, 2016 Sep 05;128:302-312.
    PMID: 27318080 DOI: 10.1016/j.jpba.2016.06.003
    Herbal medicine has been proven to be an effective therapy offering a variety of benefits, such as moderate reduction in hypoglycemia, in the treatment and prevention of obesity and diabetes. Phyllanthus niruri has been used as a treatment for diabetes mellitus. Herein, the induction of type 2 diabetes in Sprague-Dawley rats was achieved by a low dose of streptozotocin (STZ) (25mg/kgbw). Here, we evaluated the in vivo antidiabetic properties of two concentrations (250 and 500mg/kg bw) of P. niruri via metabolomics approach. The administration of 500mg/kgbw of P. niruri extract caused the metabolic disorders of obese diabetic rats to be improved towards the normal state. The extract also clearly decreased the serum glucose level and improved the lipid profile in obese diabetic rats. The results of this study may contribute towards better understanding the molecular mechanism of this medicinal plant in managing diabetes mellitus.
    Matched MeSH terms: Metabolomics
  6. Abdul Ghani ZD, Husin JM, Rashid AH, Shaari K, Chik Z
    J Ethnopharmacol, 2016 Oct 7.
    PMID: 27725236 DOI: 10.1016/j.jep.2016.10.022
    Piper Betle L. (PB) belongs to the Piperaceae family. The presence of a fairly large quantity of diastase in the betel leaf is deemed to play an important role in starch digestion and calls for the study of weight loss activities and metabolite profile from PB leaf extracts using metabolomics approach to be performed. PB dried leaves were extracted with 70% ethanol and the extracts were subjected to five groups of rats fed with high fat (HF) and standard diet (SD). They were then fed with the extracts in two doses and compared with a negative control group given water only according to the study protocol. The body weights and food intakes were monitored every week. At the end of the study, blood serum of the experimental animal was analysed to determine the biochemical and metabolite changes. PB treated group demonstrated inhibition of body weight gain without showing an effect on the food intake. In serum bioassay, the PB treated group (HF/PB (100mg/kg and 500mg/kg) showed an increased in glucose and cholesterol levels compared to the Standard Diet (SD/WTR) group, a decrease in LDL level and increase in HDL level when compared with High Fat Diet (HF/WTR) group. For metabolite analysis, two separation models were made to determine the metabolite changes via group activities. The best separation of PCA serum in Model 1 and 2 was achieved in principle component 1 and principle component 2. SUS-Plot model showed that HF group was characterized by high-level of glucose, glycine and alanine. Increase in the β-hydroxybutyrate level similar with SD group animals was evident in the HF/PB(500mg/kg) group. This finding suggested that the administration of 500mg/kg PB extracts leads to increase in oxidation process in the body thus maintaining the body weight and without giving an effect on the appetite even though HF was continuously consumed by the animals until the end of the studies and also a reduction in food intake, thus maintaining their body weight although they were continuously consumed HF.
    Matched MeSH terms: Metabolomics
  7. Abdul-Hamid NA, Mediani A, Maulidiani M, Abas F, Ismail IS, Shaari K, et al.
    Molecules, 2016 Oct 28;21(11).
    PMID: 27801841
    This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO) inhibitory activity. Identification of the metabolites was generated using ¹H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.
    Matched MeSH terms: Metabolomics
  8. Mostafa H, Amin AM, Teh CH, Murugaiyah V, Arif NH, Ibrahim B
    Drug Alcohol Depend, 2016 12 01;169:80-84.
    PMID: 27788404 DOI: 10.1016/j.drugalcdep.2016.10.016
    BACKGROUND: Alcohol-dependence (AD) is a ravaging public health and social problem. AD diagnosis depends on questionnaires and some biomarkers, which lack specificity and sensitivity, however, often leading to less precise diagnosis, as well as delaying treatment. This represents a great burden, not only on AD individuals but also on their families. Metabolomics using nuclear magnetic resonance spectroscopy (NMR) can provide novel techniques for the identification of novel biomarkers of AD. These putative biomarkers can facilitate early diagnosis of AD.

    OBJECTIVES: To identify novel biomarkers able to discriminate between alcohol-dependent, non-AD alcohol drinkers and controls using metabolomics.

    METHOD: Urine samples were collected from 30 alcohol-dependent persons who did not yet start AD treatment, 54 social drinkers and 60 controls, who were then analysed using NMR. Data analysis was done using multivariate analysis including principal component analysis (PCA) and orthogonal partial least square-discriminate analysis (OPLS-DA), followed by univariate and multivariate logistic regression to develop the discriminatory model. The reproducibility was done using intraclass correlation coefficient (ICC).

    RESULTS: The OPLS-DA revealed significant discrimination between AD and other groups with sensitivity 86.21%, specificity 97.25% and accuracy 94.93%. Six biomarkers were significantly associated with AD in the multivariate logistic regression model. These biomarkers were cis-aconitic acid, citric acid, alanine, lactic acid, 1,2-propanediol and 2-hydroxyisovaleric acid. The reproducibility of all biomarkers was excellent (0.81-1.0).

    CONCLUSION: This study revealed that metabolomics analysis of urine using NMR identified AD novel biomarkers which can discriminate AD from social drinkers and controls with high accuracy.

    Matched MeSH terms: Metabolomics/methods*
  9. Kumarasingha R, Karpe AV, Preston S, Yeo TC, Lim DSL, Tu CL, et al.
    Int J Parasitol Drugs Drug Resist, 2016 12;6(3):171-178.
    PMID: 27639945 DOI: 10.1016/j.ijpddr.2016.08.002
    Anthelmintic resistance is widespread in gastrointestinal nematode populations, such that there is a consistent need to search for new anthelmintics. However, the cost of screening for new compounds is high and has a very low success rate. Using the knowledge of traditional healers from Borneo Rainforests (Sarawak, Malaysia), we have previously shown that some traditional medicinal plants are a rich source of potential new anthelmintic drug candidates. In this study, Picria fel-terrae Lour. plant extract, which has previously shown promising anthelmintic activities, was fractionated via the use of a solid phase extraction cartridge and each isolated fraction was then tested on free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. We found that a single fraction was enriched for nematocidal activity, killing ≥90% of C. elegans adults and inhibiting the motility of exsheathed L3 of H. contortus, while having minimal cytotoxic activity in mammalian cell culture. Metabolic profiling and chemometric analysis of the effective fraction indicated medium chained fatty acids and phenolic acids were highly represented.
    Matched MeSH terms: Metabolomics/methods*
  10. Liew KL, Jee JM, Yap I, Yong PV
    PLoS One, 2016;11(4):e0153356.
    PMID: 27054608 DOI: 10.1371/journal.pone.0153356
    Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection.
    Matched MeSH terms: Metabolomics*
  11. Watanabe M, Roth TL, Bauer SJ, Lane A, Romick-Rosendale LE
    PLoS One, 2016;11(5):e0156318.
    PMID: 27232336 DOI: 10.1371/journal.pone.0156318
    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health monitoring and may provide insight into the progression of this and other insidious diseases.
    Matched MeSH terms: Metabolomics*
  12. Gooda Sahib Jambocus N, Saari N, Ismail A, Khatib A, Mahomoodally MF, Abdul Hamid A
    J Diabetes Res, 2016;2016:2391592.
    PMID: 26798649 DOI: 10.1155/2016/2391592
    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a (1)H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment.
    Matched MeSH terms: Metabolomics/methods*
  13. Ebrahimi F, Ibrahim B, Teh CH, Murugaiyah V, Lam CK
    Planta Med, 2017 Jan;83(1-02):172-182.
    PMID: 27399233 DOI: 10.1055/s-0042-110857
    Quassinoids, the major secondary metabolites of Eurycoma longifolia roots, improve male fertility. Hence, it is crucial to investigate their quantitative level in E. longifolia extracts. A profile was established to identify the primary metabolites and major quassinoids, and quantify quassinoids using external calibration curves. Furthermore, the metabolic discrimination of E. longifolia roots from different regions was investigated. The (1)H-NMR spectra of the quassinoids, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside were obtained. The (1)H-NMR profiles of E. longifolia root aqueous extracts from Perak (n = 30) were obtained and used to identify primary metabolites and the quassinoids. Selangor, Kedah, Terengganu (n = 5 for each), and Perak samples were checked for metabolic discrimination. Hotelling's T(2) plot was used to check for outliers. Orthogonal partial least-squares discriminant analysis was run to reveal the discriminatory metabolites. Perak samples contained formic, succinic, methylsuccinic, fumaric, lactic, acetic and syringic acids as well as choline, alanine, phenylalanine, tyrosine, α-glucose, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside. The extracts from other locations contained the same metabolites. The limit of quantification values were 1.96 (eurycomanone), 15.62 (eurycomanol), 3.91 (13,21-dihydroeurycomanone), and 31.25 (eurycomanol-2-O-β-D-glycopyranoside) ppm. The Hotelling's T(2) plot revealed no outlier. The orthogonal partial least-squares discriminant analysis model showed that choline, eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, and lactic and succinic acid levels were different among regions. Terengganu and Perak samples contained higher amounts of eurycomanol and eurycomanol-2-O-β-D-glycopyranoside, respectively. The current approach efficiently detected E. longifolia root metabolites, quantified the quassinoids, and discriminated E. longifolia roots from different locations. These findings could be applicable to future research on E. longifolia where the higher content of quassinoids is required.
    Matched MeSH terms: Metabolomics/methods*
  14. Pariyani R, Ismail IS, Azam A, Khatib A, Abas F, Shaari K, et al.
    J Pharm Biomed Anal, 2017 Feb 20;135:20-30.
    PMID: 27987392 DOI: 10.1016/j.jpba.2016.12.010
    Orthosiphon stamineus (OS) is a popular medicinal herb used in traditional Chinese medicine as a diuretic agent and for renal system disorders. This study employed 1H NMR based metabolomics approach to investigate the possible protective activity of OS in cisplatin induced nephrotoxicity owing to its diuretic and antioxidant activities. Aqueous (OSAE) and 50% aqueous ethanolic (OSFE) extracts of OS leaves were orally administered at 400mg/kg BW doses to rats which were then intraperitoneally injected with cisplatin at 5mg/kg BW dose. The 1H NMR profile of the urine samples collected on day 5 after cisplatin administration were analyzed by multivariate pattern recognition techniques, whereby 19 marker metabolites suggestive in the involvement of TCA cycle, disturbed energy metabolism, altered gut microflora and BCAA metabolism pathways were identified. It was observed that OSFE caused significant changes (p<0.05) in the levels of 8 markers namely leucine, acetate, hippurate, lysine, valine, 2-oxoglutarate, 3-HBT and acetoacetate resulting in a moderate ameliorative effect, however, it did not completely protect from nephrotoxicity. OSAE did not demonstrate significant down regulatory effects on any markers, albeit, it potentiated the cisplatin nephrotoxicity by inducing significant increase in glucose, glycine, creatinine, citrate, TMAO, acetate and creatine levels. A Principal Component Analysis (PCA) of the 1H NMR spectra of OS extracts identified that OSFE had higher concentrations of the secondary metabolites such as caffeic acid, chlorogenic acid, protocatechuic acid and orthosiphol, among others. Whereas, OSAE was characterized by higher concentrations of acetate, lactate, succinic acid, valine and phosphatidylcholine. This research denotes the first comprehensive analysis to identify the effects of OS extracts on cisplatin nephrotoxicity.
    Matched MeSH terms: Metabolomics/methods*
  15. Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M, et al.
    J Proteomics, 2017 02 23;155:85-98.
    PMID: 28040509 DOI: 10.1016/j.jprot.2016.12.009
    Leishmania parasites multiply and develop in the gut of a sand fly vector in order to be transmitted to a vertebrate host. During this process they encounter and exploit various nutrients, including sugars, and amino and fatty acids. We have previously generated a mutant Leishmania line that is deficient in glucose transport and which displays some biologically important phenotypic changes such as reduced growth in axenic culture, reduced biosynthesis of hexose-containing virulence factors, increased sensitivity to oxidative stress, and dramatically reduced parasite burden in both insect vector and macrophage host cells. Here we report the generation and integration of proteomic and metabolomic approaches to identify molecular changes that may explain these phenotypes. Our data suggest changes in pathways of glycoconjugate production and redox homeostasis, which likely represent adaptations to the loss of sugar uptake capacity and explain the reduced virulence of this mutant in sand flies and mammals. Our data contribute to understanding the mechanisms of metabolic adaptation in Leishmania and illustrate the power of integrated proteomic and metabolomic approaches to relate biochemistry to phenotype.

    BIOLOGICAL SIGNIFICANCE: This paper reports the application of comparative proteomic and metabolomic approaches to reveal the molecular basis for important phenotypic changes Leishmania parasites that are deficient in glucose uptake. Leishmania cause a very significant disease burden across the world and there are few effective drugs available for control. This work shows that proteomics and metabolomics can produce complementary data that advance understanding of parasite metabolism and highlight potential new targets for chemotherapy.

    Matched MeSH terms: Metabolomics*
  16. Azam AA, Pariyani R, Ismail IS, Ismail A, Khatib A, Abas F, et al.
    BMC Complement Altern Med, 2017 May 25;17(1):278.
    PMID: 28545435 DOI: 10.1186/s12906-017-1777-1
    BACKGROUND: Orthosiphon stamineus (OS) is a herb known in ethnomedicine for treating diabetes mellitus (DM). In this study, a (1)H NMR based urine metabolomics tool has been used for the first time to identify the metabolic protective mechanism of OS in DM using Streptozotocin (STZ) induced experimental model in rats.

    METHODS: Four different solvent extracts of OS, namely aqueous, ethanolic, 50% aqueous ethanolic and methanolic, at a dose of 500 mg/kg body weight (bw) were orally administered for 14 days to diabetic rats induced via intraperitoneal injection of 60 mg/kg bw STZ. NMR metabolomics approach using pattern recognition combined with multivariate statistical analysis was applied in the rat urine to study the resulted metabolic perturbations.

    RESULTS: OS aqueous extract (OSAE) caused a reversal of DM comparable to that of 10 mg/kg bw glibenclamide. A total of 15 urinary metabolites, which levels changed significantly upon treatment were identified as the biomarkers of OSAE in diabetes. A systematic metabolic pathways analysis identified that OSAE contributed to the antidiabetic activity mainly through regulating the tricarboxylic acid cycle, glycolysis/gluconeogenesis, lipid and amino acid metabolism.

    CONCLUSIONS: The results of this study validated the ethnopharmacological use of OS in diabetes and unveiled the biochemical and metabolic mechanisms involved.

    Matched MeSH terms: Metabolomics
  17. Mostafa H, Amin AM, Teh CH, Murugaiyah VA, Arif NH, Ibrahim B
    J Subst Abuse Treat, 2017 06;77:1-5.
    PMID: 28476260 DOI: 10.1016/j.jsat.2017.02.015
    BACKGROUND: Alcohol use disorders (AUD) is a phase of alcohol misuse in which the drinker consumes excessive amount of alcohol and have a continuous urge to consume alcohol which may lead to various health complications. The current methods of alcohol use disorders diagnosis such as questionnaires and some biomarkers lack specificity and sensitivity. Metabolomics is a novel scientific field which may provide a novel method for the diagnosis of AUD by using a sensitive and specific technique such as nuclear magnetic resonance (NMR).

    METHODS: A cross sectional study was conducted on three groups: individuals with alcohol use disorders (n=30), social drinkers (n=54) and alcohol-naive controls (n=60). 1H NMR-based metabolomics was used to obtain the metabolic profiles of plasma samples. Data were processed by multivariate principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) followed by univariate and multivariate logistic regressions to produce the best fit-model for discrimination between groups.

    RESULTS: The OPLS-DA model was able to distinguish between the AUD group and the other groups with high sensitivity, specificity and accuracy of 64.29%, 98.17% and 91.24% respectively. The logistic regression model identified two biomarkers in plasma (propionic acid and acetic acid) as being significantly associated with alcohol use disorders. The reproducibility of all biomarkers was excellent (0.81-1.0).

    CONCLUSIONS: The applied plasma metabolomics technique was able to differentiate the metabolites between AUD and the other groups. These metabolites are potential novel biomarkers for diagnosis of alcohol use disorders.

    Matched MeSH terms: Metabolomics/methods*
  18. Al-Zuaidy MH, Mumtaz MW, Hamid AA, Ismail A, Mohamed S, Razis AFA
    BMC Complement Altern Med, 2017 Jul 10;17(1):359.
    PMID: 28693595 DOI: 10.1186/s12906-017-1849-2
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by continuous hyperglycemia associated with insulin resistance and /or reduced insulin secretion. There is an emerging trend regarding the use of medicinal plants for the treatment of diabetes mellitus. Melicope lunu-ankenda (ML) is one of the Melicope species belonging to the family Rutaceae. In traditional medicines, its leaves and flowers are known to exhibit prodigious health benefits. The present study aimed at investigating anti-diabetic effect of Melicope lunu-ankenda (ML) leaves extract.

    METHODS: In this study, anti-diabetic effect of ML extract is investigated in vivo to evaluate the biochemical changes, potential serum biomarkers and alterations in metabolic pathways pertaining to the treatment of HFD/STZ induced diabetic rats with ML extract using 1H NMR based metabolomics approach. Type 2 diabetic rats were treated with different doses (200 and 400 mg/kg BW) of Melicope lunu-ankenda leaf extract for 8 weeks, and serum samples were examined for clinical biochemistry. The metabolomics study of serum was also carried out using 1H NMR spectroscopy in combination with multivariate data analysis to explore differentiating serum metabolites and altered metabolic pathways.

    RESULTS: The ML leaf extract (400 mg/kg BW) treatment significantly increased insulin level and insulin sensitivity of obese diabetic rats, with concomitant decrease in glucose level and insulin resistance. Significant reduction in total triglyceride, cholesterol and low density lipoprotein was also observed after treatment. Interestingly, there was a significant increase in high density lipoprotein of the treated rats. A decrease in renal injury markers and activities of liver enzymes was also observed. Moreover, metabolomics studies clearly demonstrated that, ML extract significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism.

    CONCLUSION: ML leaf extract exhibits potent antidiabetic properties, hence could be a useful and affordable alternative option for the management of T2DM.

    Matched MeSH terms: Metabolomics
  19. Pariyani R, Ismail IS, Ahmad Azam A, Abas F, Shaari K
    J Sci Food Agric, 2017 Sep;97(12):4169-4179.
    PMID: 28233369 DOI: 10.1002/jsfa.8288
    BACKGROUND: Java tea is a well-known herbal infusion prepared from the leaves of Orthosiphon stamineus (OS). The biological properties of tea are in direct correlation with the primary and secondary metabolite composition, which in turn largely depends on the choice of drying method. Herein, the impact of three commonly used drying methods, i.e. shade, microwave and freeze drying, on the metabolite composition and antioxidant activity of OS leaves was investigated using proton nuclear magnetic resonance (1 H NMR) spectroscopy combined with multivariate classification and regression analysis tools.

    RESULTS: A total of 31 constituents comprising primary and secondary metabolites belonging to the chemical classes of fatty acids, amino acids, sugars, terpenoids and phenolic compounds were identified. Shade-dried leaves were identified to possess the highest concentrations of bioactive secondary metabolites such as chlorogenic acid, caffeic acid, luteolin, orthosiphol and apigenin, followed by microwave-dried samples. Freeze-dried leaves had higher concentrations of choline, amino acids leucine, alanine and glutamine and sugars such as fructose and α-glucose, but contained the lowest levels of secondary metabolites.

    CONCLUSION: Metabolite profiling coupled with multivariate analysis identified shade drying as the best method to prepare OS leaves as Java tea or to include in traditional medicine preparation. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Metabolomics
  20. Ismail SN, Maulidiani M, Akhtar MT, Abas F, Ismail IS, Khatib A, et al.
    Molecules, 2017 Sep 25;22(10).
    PMID: 28946701 DOI: 10.3390/molecules22101612
    Gaharu (agarwood, Aquilaria malaccensis Lamk.) is a valuable tropical rainforest product traded internationally for its distinctive fragrance. It is not only popular as incense and in perfumery, but also favored in traditional medicine due to its sedative, carminative, cardioprotective and analgesic effects. The current study addresses the chemical differences and similarities between gaharu samples of different grades, obtained commercially, using ¹H-NMR-based metabolomics. Two classification models: partial least squares-discriminant analysis (PLS-DA) and Random Forests were developed to classify the gaharu samples on the basis of their chemical constituents. The gaharu samples could be reclassified into a 'high grade' group (samples A, B and D), characterized by high contents of kusunol, jinkohol, and 10-epi-γ-eudesmol; an 'intermediate grade' group (samples C, F and G), dominated by fatty acid and vanillic acid; and a 'low grade' group (sample E and H), which had higher contents of aquilarone derivatives and phenylethyl chromones. The results showed that ¹H- NMR-based metabolomics can be a potential method to grade the quality of gaharu samples on the basis of their chemical constituents.
    Matched MeSH terms: Metabolomics/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links