Displaying publications 21 - 40 of 52 in total

Abstract:
Sort:
  1. Shahdadi F, Faryabi M, Khan H, Sardoei AS, Fazeli-Nasab B, Goh BH, et al.
    Molecules, 2023 Jun 05;28(11).
    PMID: 37299028 DOI: 10.3390/molecules28114554
    Mentha longifolia is a valuable medicinal and aromatic plant that belongs to Lamiaceae family. This study looked at the antibacterial effects of M. longifolia essential oil and pulegone in edible coatings made of chitosan and alginate on the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli in cheese. For this purpose, first fresh mint plant was collected from the cold region of Jiroft in Kerman province. Plant samples were dried in the shade at ambient temperature, and essential oil was prepared using Clevenger. The essential oil was analyzed by gas chromatography using mass spectrometric (GC/MS) detection. The major composition of M. longifolia oil was pulegone (26.07%), piperitone oxide (19.72%), and piperitone (11.88%). The results showed that adding M. longifolia essential oils and pulegone to edible coatings significantly reduced the growth of bacteria during storage. The bacterial population decreased by increasing the concentration of chitosan, M. longifolia, and pulegone in edible coatings. When the effects of pulegone and M. longifolia essential oils on bacteria were compared, it was found that pulegone had a stronger effect on bacterial population reduction. Coating treatments showed more antibacterial activity on E. coli than other bacteria. In general, the results of this research showed that alginate and chitosan coatings along with M. longifolia essential oil and its active ingredient pulegone had antibacterial effects against S. aureus, L. monocytogenes, and E. coli in cheese.
    Matched MeSH terms: Monoterpenes/chemistry
  2. Sim LY, Abd Rani NZ, Husain K
    Front Pharmacol, 2019;10:677.
    PMID: 31275149 DOI: 10.3389/fphar.2019.00677
    The prevalence of allergic diseases such as asthma, allergic rhinitis, food allergy and atopic dermatitis has increased dramatically in recent decades. Conventional therapies for allergy can induce undesirable effects and hence patients tend to seek alternative therapies like natural compounds. Considering the fact above, there is an urgency to discover potential medicinal plants as future candidates in the development of novel anti-allergic therapeutic agents. The Lamiaceae family, or mint family, is a diverse plant family which encompasses more than 7,000 species and with a cosmopolitan distribution. A number of species from this family has been widely employed as ethnomedicine against allergic inflammatory skin diseases and allergic asthma in traditional practices. Phytochemical analysis of the Lamiaceae family has reported the presence of flavonoids, flavones, flavanones, flavonoid glycosides, monoterpenes, diterpenes, triterpenoids, essential oil and fatty acids. Numerous investigations have highlighted the anti-allergic activities of Lamiaceae species with their active principles and crude extracts. Henceforth, this review has the ultimate aim of compiling the up-to-date (2018) findings of published scientific information about the anti-allergic activities of Lamiaceae species. In addition, the botanical features, medicinal uses, chemical constituents and toxicological studies of Lamiaceae species were also documented. The method employed for data collection in this review was mainly the exploration of the PubMed, Ovid and Scopus databases. Additional research studies were obtained from the reference lists of retrieved articles. This comprehensive summarization serves as a useful resource for a better understanding of Lamiaceae species. The anti-allergic mechanisms related to Lamiaceae species are also reviewed extensively which aids in future exploration of the anti-allergic potential of Lamiaceae species.
    Matched MeSH terms: Monoterpenes
  3. Jusoh N, Zainal H, Abdul Hamid AA, Bunnori NM, Abd Halim KB, Abd Hamid S
    J Mol Model, 2018 Mar 15;24(4):93.
    PMID: 29546582 DOI: 10.1007/s00894-018-3619-6
    Recent outbreaks of highly pathogenic influenza strains have highlighted the need to develop new anti-influenza drugs. Here, we report an in silico study of carvone derivatives to analyze their binding modes with neuraminidase (NA) active sites. Two proposed carvone analogues, CV(A) and CV(B), with 36 designed ligands were predicted to inhibit NA (PDB ID: 3TI6) using molecular docking. The design is based on structural resemblance with the commercial inhibitor, oseltamivir (OTV), ligand polarity, and amino acid residues in the NA active sites. Docking simulations revealed that ligand A18 has the lowest energy binding (∆Gbind) value of -8.30 kcal mol-1, comparable to OTV with ∆Gbind of -8.72 kcal mol-1. A18 formed seven hydrogen bonds (H-bonds) at residues Arg292, Arg371, Asp151, Trp178, Glu227, and Tyr406, while eight H-bonds were formed by OTV with amino acids Arg118, Arg292, Arg371, Glu119, Asp151, and Arg152. Molecular dynamics (MD) simulation was conducted to compare the stability between ligand A18 and OTV with NA. Our simulation study showed that the A18-NA complex is as stable as the OTV-NA complex during the MD simulation of 50 ns through the analysis of RMSD, RMSF, total energy, hydrogen bonding, and MM/PBSA free energy calculations.
    Matched MeSH terms: Monoterpenes/pharmacology; Monoterpenes/chemistry*
  4. Nigjeh SE, Yeap SK, Nordin N, Rahman H, Rosli R
    Molecules, 2019 Sep 05;24(18).
    PMID: 31492037 DOI: 10.3390/molecules24183241
    Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among females globally. The tumorigenic activities of cancer cells such as aldehyde dehydrogenase (ALDH) activity and differentiation have contributed to relapse and eventual mortality in breast cancer. Thus, current drug discovery research is focused on targeting breast cancer cells with ALDH activity and their capacity to form secondary tumors. Citral (3,7-dimethyl-2,6-octadienal), from lemon grass (Cymbopogoncitrates), has been previously reported to have a cytotoxic effect on breast cancer cells. Hence, this study was conducted to evaluate the in vivo effect of citral in targeting ALDH activity of breast cancer cells. BALB/c mice were challenged with 4T1 breast cancer cells followed by daily oral feeding of 50 mg/kg citral or distilled water for two weeks. The population of ALDH+ tumor cells and their capacity to form secondary tumors in both untreated and citral treated 4T1 challenged mice were assessed by Aldefluor assay and tumor growth upon cell reimplantation in normal mice, respectively. Citral treatment reduced the size and number of cells with ALDH+ activity of the tumors in 4T1-challenged BALB/c mice. Moreover, citral-treated mice were also observed with smaller tumor size and delayed tumorigenicity after reimplantation of the primary tumor cells into normal mice. These findings support the antitumor effect of citral in targeting ALDH+ cells and tumor recurrence in breast cancer cells.
    Matched MeSH terms: Monoterpenes
  5. Kamarulzaman NH, Le-Minh N, Stuetz RM
    Talanta, 2019 Jan 01;191:535-544.
    PMID: 30262095 DOI: 10.1016/j.talanta.2018.09.019
    Different extraction procedures were evaluated to assess their potential for measuring volatile organic compounds (VOCs) from raw rubber materials. Four headspace sampling techniques (SHS, DHS, HS-SPME and µ-CTE) were studied. Each method was firstly optimised to ensure their reliability in performance. Passive sampling was also compared as a rapid identification of background VOCs. 352 VOCs were identified, 71 from passive sampling and 281 from active headspace sampling, with 62 not previously reported (hexanenitrile, octanone, decanal, indole, aniline, anisole, alpha-pinene as well as pentanol and butanol). The volatiles belonged to a broad range of chemical classes (ketones, aldehydes, aromatics, acids, alkanes, alcohol and cyclic) with their thermal effects (lower boiling points) greatly affecting their abundance at a higher temperature. Micro-chamber (µ-CTE) was found to be the most suitability for routine assessments due to its operational efficiency (rapidity, simplicity and repeatability), identifying 115 compounds from both temperatures (30 °C and 60 °C). Whereas, HS-SPME a widely applied headspace technique, only identified 75 compounds and DHS identified 74 VOCs and SHS only 17 VOCs. Regardless of the extraction technique, the highest extraction efficiency corresponded to aromatics and acids, and the lowest compound extraction were aldehyde and hydrocarbon. The interaction between techniques and temperature for all chemical groups were evaluated using two-way ANOVA (p-value is 0.000197) explaining the highly significant interactions between factors.
    Matched MeSH terms: Monoterpenes
  6. Agatonovic-Kustrin S, Kustrin E, Morton DW
    Neural Regen Res, 2019 Mar;14(3):441-445.
    PMID: 30539810 DOI: 10.4103/1673-5374.245467
    As total life expectancy increases, the prevalence of age-related diseases such as diabetes and Alzheimer's disease is also increasing. Many hypotheses about Alzheimer's disease have been developed, including cholinergic neuron damage, oxidative stress, and inflammation. Acetylcholine is a major neurotransmitter in the brain and cholinergic deficits leads to cognitive dysfunction and decline. Recent studies have linked diabetes as a risk factor in developing Alzheimer's disease and other types of dementia. The incidence of patients with type II diabetes and increased levels and activity of α-amylase is higher in patients with dementia. It has been shown that aromatherapy with essential oils from the mint family can improve cognitive performance in Alzheimer's disease patients. Selected monoterpenoids from these essential oils are reported to inhibit acetylcholinesterase, both in vitro and in vivo. Terpenoids are small, fat-soluble organic molecules that can transfer across nasal mucosa if inhaled, or penetrate through the skin after topical application, enter into the blood and cross the blood-brain barrier. Recent evidence supports the idea that the common constituents of essential oils also inhibit α-amylase, a starch digestive enzyme that plays an important role in the control of diabetes. The mint family is a fragrant plant family that contains most of the culinary herbs found in the Mediterranean diet. The Mediterranean diet is considered to be one of the healthiest diets in the world, and is found to be beneficial not only for the heart but also for the brain. Herbs used in this diet are rich in antioxidants that can prevent oxidative damage caused by free radicals. However, our study shows that they also contain biologically active compounds with potent α-amylase and acetylcholinesterase inhibitory activities. Consumption of fresh herbs can help boost memory and reduce sugar levels in the body. The use of herbs as a functional food could lead to significant improvements in health. Cognitive stimulation with medical food and medical herbs could delay development of cognitive decline, and improve the quality of life of Alzheimer's disease patients. This effect can be enhanced if combined with aromatherapy, topically or by inhalation, and/or by ingestion. Terpenes and terpenoids, the primary constituents of these essential oils are small, lipid soluble organic molecules that can be absorbed through the skin or across nasal mucosa into the systemic blood circulation. Many terpenes can also cross the blood-brain barrier. Therefore, topical application or inhalation of essential oils will also produce a systemic effect.
    Matched MeSH terms: Monoterpenes
  7. Ali A, Hei GK, Keat YW
    J Food Sci Technol, 2016 Mar;53(3):1435-44.
    PMID: 27570268 DOI: 10.1007/s13197-015-2124-5
    Effect of 2.0 % ginger oil (GO) and 1.5 % ginger extract (GE) in combination with 10.0 % gum arabic (GA) was evaluated for the postharvest control of anthracnose and maintaining quality of Eksotika II papaya fruit during storage at 12 ± 1 °C and 80-85 % RH. Antifungal compounds present in GO and GE were analyzed using gas chromatography and GO was found to contain α-pinene, 1, 8-cineole and borneol, while only borneol was present in GE due to different extraction methods applied. The highest antifungal activity was shown in 2.0 % GO combined with 10 % GA, which significantly (P 
    Matched MeSH terms: Monoterpenes
  8. Saad KA, Mohamad Roff MN, Hallett RH, Abd-Ghani IB
    Insect Sci, 2019 Feb;26(1):76-85.
    PMID: 28594105 DOI: 10.1111/1744-7917.12488
    Plant virus infections are known to alter host plant attractiveness and suitability for insect herbivores. This study was conducted to determine how cucumber mosaic virus (CMV)-infected chilli plants affect the fitness and settling preferences of nonvector whitefly, Bemisia tabaci adults under dual-choice conditions with volatile organic compounds analyzed using solid phase microextraction coupled with gas chromatography-mass spectrometry (GC-MS). Results showed that the presence of CMV in chilli plants substantially affects the settling preferences of the B. tabaci, which preferred to settle on noninfected plants. Duration of the egg stage and the longevity and fecundity of adult B. tabaci on CMV-infected chilli plants were not markedly different from those on noninfected chilli plants. In contrast, the developmental time from egg to adult was significantly reduced in CMV-infected chilli plants compared to the noninfected plants. The results also showed that CMV-infected chilli plants released significantly more linalool and phenylacetaldehyde than noninfected plants. Overall, it was suggested that the behavioral response of B. tabaci might be modified by CMV-infected plants, which alter the release of specific headspace volatiles. Based on these results, the modification of plant volatile profiles may help in enhancing the effectiveness of biological control and the protection of crop plants against B. tabaci.
    Matched MeSH terms: Monoterpenes
  9. Aburigal, Yasmin A. A., Elmogtaba, Elfadl Y., Sirible, Awatif M., Hamza, Nada B., Hussein, Ismail H., Mirghani, Mohamed E. S.
    MyJurnal
    Sweet basil (Ocimum basilicum L.) is a very important food additive as well as for its therapeutic and cosmetic potential. The composition of essential oils in plants is affected by genetics and environmental conditions, which is determined by growth region and harvesting time in terms of ontogenetical variability. This study was carried out to assess the effect of plant ontogeny (pre-flowering, at flowering, fruiting) on essential oil content and chemical constituents for four sweet basil cultivated under irrigation conditions in the experimental farm of the National Oilseed Processing Research Institute (NOPRI), University of Gezira, Sudan. The essential oils were hydro-distilled from the leaves using Clevenger apparatus and the chemical constituents were determined by GC-MS. The results reveal that the essential oil yield content ranged from 0.1% to 0.2% at pre-flowering stage, whereas the oil content obtained at post-flowering stage was 0.1% for the investigated accessions. The highest essential oil content was recorded at flowering stage (0.2-0.5%), where the two Sudanese accessions had the maximum content (0.5%). The major chemical constituents, linalool, citral, methyleugenol, and eucalyptol reported at different developmental stages, punctuated between 5.73% and 32.93% in the four investigated accessions.
    Matched MeSH terms: Monoterpenes
  10. Devi RC, Sim SM, Ismail R
    PMID: 22675383 DOI: 10.1155/2012/539475
    Cymbopogon citratus has been shown to have antioxidant, antimicrobial, antispasmodic and chemo-protective properties. Citral, is the major constituent of C. citratus. This study investigated the effects of methanolic extracts of leaves (LE), stems (SE), and roots (RE) of C. citratus and citral on vascular smooth muscle and explored their possible mechanisms of action. The experiment was conducted using isolated tissue preparations, where citral, LE, SE, and RE were added separately into a tissue bath that contained aortic rings, which were pre-contracted with phenylephrine (PE). Citral, LE, and RE exhibited a dose-dependent relaxant effect on the PE-induced contractions. Citral appeared to partially act via NO as its vasorelaxant effect was attenuated by L-NAME. However, the effect of LE may involve prostacyclin as indomethacin reversed the relaxant effect of LE on the PE-induced contraction. Furthermore, citral, LE, and RE abolished the restoration of PE-induced contraction caused by the addition of increasing doses of calcium in both endothelium intact and denuded rings. These findings suggest that the relaxation effect of citral, LE, and RE is endothelium-independent and may be mainly by affecting the intracellular concentration of calcium. Citral may partially act through the NO pathway while a vasodilator prostaglandin may mediate the effect of LE.
    Matched MeSH terms: Monoterpenes
  11. Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM
    Phytother Res, 2013 Oct;27(10):1439-56.
    PMID: 23281145 DOI: 10.1002/ptr.4897
    Coriander (Coriandrum sativum L.), a herbal plant, belonging to the family Apiceae, is valued for its culinary and medicinal uses. All parts of this herb are in use as flavoring agent and/or as traditional remedies for the treatment of different disorders in the folk medicine systems of different civilizations. The plant is a potential source of lipids (rich in petroselinic acid) and an essential oil (high in linalool) isolated from the seeds and the aerial parts. Due to the presence of a multitude of bioactives, a wide array of pharmacological activities have been ascribed to different parts of this herb, which include anti-microbial, anti-oxidant, anti-diabetic, anxiolytic, anti-epileptic, anti-depressant, anti-mutagenic, anti-inflammatory, anti-dyslipidemic, anti-hypertensive, neuro-protective and diuretic. Interestingly, coriander also possessed lead-detoxifying potential. This review focuses on the medicinal uses, detailed phytochemistry, and the biological activities of this valuable herb to explore its potential uses as a functional food for the nutraceutical industry.
    Matched MeSH terms: Monoterpenes/chemistry
  12. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Monoterpenes/isolation & purification; Monoterpenes/pharmacology; Monoterpenes/chemistry
  13. Sanimah Simoh, Sew YS, Fazri Abd Rahim, Muhammad Aizuddin Ahmad, Alizah Zainal
    Sains Malaysiana, 2018;47:3031-3041.
    A comparative analysis of metabolites from different parts of Curcuma aeruginosa, i.e. leaves, stems, adventitious
    roots and rhizomes was performed by GC-MS/MS coupled with multivariate statistical analysis. The GC-MS/MS analysis
    confirmed the occurrence of 26 metabolites belonged to terpenoids in almost all the samples. The Principal Component
    Analysis (PCA) indicated that there was a clear distinction between rhizomes and other plant parts, i.e. stems, leaves,
    and adventitious roots that could be explained by relatively higher contents of terpenoids including curzerene, alphafarnesen, furanocoumarin, velleral, germacrone cineole, borneol, beta- and gamma- elemene and methenolone. The
    results of Hierarchical Clustering Analyses (HCA) corresponded with the PCA results where many terpenoids found
    abundantly high in rhizome were clustered together. This was supported by the Pearson correlation analysis that
    showed a significantly good relationship between those terpenoids. The adventitious roots demonstrated the strongest
    antioxidant activity as compared to the other plant parts which could be attributed to its highest Total Phenolic
    Contents (TPC). Total phenolic contents of all the plant parts were positively correlated with their antioxidant activities
    which indicate that phenolic compounds may play a role in the overall antioxidant activities of the plants. The results
    of the study highlighted the potential of this underexploited Curcuma species which could serve as a new source of
    important phytochemicals and natural antioxidant that could be incorporated in functional foods and nutraceuticals.
    In addition, chemical and biological evidence shown in the present work has rationalised the different uses of various
    plant parts of C. aeruginosa.
    Matched MeSH terms: Monoterpenes
  14. Hassan EM, El Gendy AEG, Abd-ElGawad AM, Elshamy AI, Farag MA, Alamery SF, et al.
    Molecules, 2020 Dec 29;26(1).
    PMID: 33383905 DOI: 10.3390/molecules26010119
    Guava (Psidium guajava) leaves are commonly used in the treatment of diseases. They are considered a waste product resulting from guava cultivation. The leaves are very rich in essential oils (EOs) and volatiles. This work represents the detailed comparative chemical profiles of EOs derived from the leaves of six guava varieties cultivated in Egypt, including Red Malaysian (RM), El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red Indian (RI), cultivated on the same farm in Egypt. The EOs from the leaves of guava varieties were extracted by hydro-distillation and analyzed with GC-MS. The EOs were categorized in a holistic manner using chemometric tools. The hydro-distillation of the samples yielded 0.11-0.48% of the EO (v/w). The GC-MS analysis of the extracted EOs showed the presence of 38 identified compounds from the six varieties. The sesquiterpene compounds were recorded as main compounds of E, EQ, ESEG, RI, and WI varieties, while the RM variety attained the highest content of monoterpenes (56.87%). The sesquiterpenes, β-caryophyllene (11.21-43.20%), and globulol (76.17-26.42%) were detected as the major compounds of all studied guava varieties, while trans-nerolidol (0.53-10.14) was reported as a plentiful compound in all of the varieties except for the RM variety. A high concentration of D-limonene was detected in the EOs of the RM (33.96%), WI (27.04%), and ESEG (9.10%) varieties. These major compounds were consistent with those reported for other genotypes from different countries. Overall, the EOs' composition and the chemometric analysis revealed substantial variations among the studied varieties that might be ascribed to genetic variability, considering the stability of the cultivation and climate conditions. Therefore, this chemical polymorphism of the studied varieties supports that these varieties could be considered as genotypes of P. guajava. It is worth mentioning here that the EOs, derived from leaves considered to be agricultural waste, of the studied varieties showed that they are rich in biologically active compounds, particularly β-caryophyllene, trans-nerolidol, globulol, and D-limonene. These could be considered as added value for pharmacological and industrial applications. Further study is recommended to confirm the chemical variations of the studied varieties at a molecular level, as well as their possible medicinal and industrial uses.
    Matched MeSH terms: Monoterpenes/analysis
  15. Mohd Rezuan M Aspar, Rashidah Abdul Rahim, Mohamad Hekarl Uzir
    MyJurnal
    Yeast producing alcohol dehydrogenase 1 (YADH 1) enzyme has been used as a biocatalyst for the synthesis of an optically active flavouring compound known as citronellol. However, the slow growth of yeast (Saccharomyces cerevisiae) has deterred the progress of biotransformation. The main purpose of this work is to clone the genes producing YADH1 enzyme from yeast into a faster growing bacteria, Escherichia coli. Initially, the sequence of the gene encoding this protein has been identified in the S. cerevisiae Genome Databases (SGD). The so-called Yadh1 gene sequence is located from coordinate 159548 to 160594 on chromosome XV of yeast. Based on this information, two primer sequences (Forward and Reverse) were constructed. Each of these primers will bind to either end of the Yadh1 gene. The Yadh1 gene was then amplified using Polymerase Chain Reaction (PCR) technique. The amplified Yadh 1 gene was successfully cloned into a cloning vector, TOPO TA plasmid. This plasmid also contains a gene which confers resistance to ampicillin. This recombinant
    plasmid was then inserted into Escherichia coli TOP 10 using heat shock protocol at 42oC. Finally, the cloned bacteria containing the recombinant TOPO TA plasmid harbouring Yadh1 gene was able to grow on Luria Bertani (LB) media supplied with antibiotic.
    Matched MeSH terms: Monoterpenes
  16. Nigjeh SE, Yeap SK, Nordin N, Kamalideghan B, Ky H, Rosli R
    BMC Complement Altern Med, 2018 Feb 13;18(1):56.
    PMID: 29433490 DOI: 10.1186/s12906-018-2115-y
    BACKGROUND: Breast cancer remains a leading cause of death in women worldwide. Although breast cancer therapies have greatly advanced in recent years, many patients still develop tumour recurrence and metastasis, and eventually succumb to the disease due to chemoresistance. Citral has been reported to show cytotoxic effect on various cancer cell lines. However, the potential of citral to specifically target the drug resistant breast cancer cells has not yet been tested, which was the focus of our current study.

    METHODS: The cytotoxic activity of citral was first tested on MDA-MB-231 cells in vitro by MTT assay. Subsequently, spheroids of MDA-MB-231 breast cancer cells were developed and treated with citral at different concentrations. Doxorubicin, cisplatin and tamoxifen were used as positive controls to evaluate the drug resistance phenotype of MDA-MB-231 spheroids. In addition, apoptosis study was performed using AnnexinV/7AAD flowcytometry. Aldefluor assay was also carried out to examine whether citral could inhibit the ALDH-positive population, while the potential mechanism of the effect of citral was carried out by using quantitative real time- PCR followed by western blotting analysis.

    RESULTS: Citral was able to inhibit the growth of the MDA-MB-231 spheroids when compared to a monolayer culture of MDA-MB-231 cells at a lower IC50 value. To confirm the inhibition of spheroid self-renewal capacity, the primary spheroids were then cultured to additional passages in the absence of citral. A significant reduction in the number of secondary spheroids were formed, suggesting the reduction of self-renewal capacity of these aldehyde dehydrogenase positive (ALDH+) drug resistant spheroids. Moreover, the AnnexinV/7AAD results demonstrated that citral induced both early and late apoptotic changes in a dose-dependent manner compared to the vehicle control. Furthermore, citral treated spheroids showed lower cell renewal capacity compared to the vehicle control spheroids in the mammosphere formation assay. Gene expression studies using quantitative real time PCR and Western blotting assays showed that citral was able to suppress the self-renewal capacity of spheroids and downregulate the Wnt/β-catenin pathway.

    CONCLUSION: The results suggest that citral could be a potential new agent which can eliminate drug-resistant breast cancer cells in a spheroid model via inducing apoptosis.

    Matched MeSH terms: Monoterpenes/pharmacology*
  17. Fujiki M, Wang L, Ogata N, Asanoma F, Okubo A, Okazaki S, et al.
    Front Chem, 2020;8:685.
    PMID: 32903703 DOI: 10.3389/fchem.2020.00685
    We report emerging circularly polarized luminescence (CPL) at 4f-4f transitions when lanthanide (EuIII and TbIII) tris(β-diketonate) embedded to cellulose triacetate (CTA), cellulose acetate butyrate (CABu), D-/L-glucose pentamethyl esters ( D-/ L-Glu), and D-/L-arabinose tetramethyl esters ( D-/ L-Ara) are in film states. Herein, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) and 2,2,6,6-tetramethyl-3,5-heptanedione (dpm) were chosen as the β-diketonates. The glum value of Eu(fod)3 in CABu are +0.0671 at 593 nm (5


    D


    0







    7


    F1) and -0.0059 at 613 nm (5


    D


    0







    7


    F2), respectively, while those in CTA are +0.0463 and -0.0040 at these transitions, respectively. The glum value of Tb(fod)3 in CABu are -0.0029 at 490 nm (5


    D


    4







    7


    F6), +0.0078 at 540 nm (5


    D


    4







    7


    F5), and -0.0018 at 552 nm (5


    D


    4







    7


    F5), respectively, while those in CTA are -0.0053, +0.0037, and -0.0059 at these transitions, respectively. D-/ L-Glu and D-/ L-Ara induced weaker glum values at 4f-4f transitions of Eu(fod)3, Tb(fod)3, and Tb(dpm)3. For comparison, Tb(dpm)3 in α-pinene showed clear CPL characteristics, though Eu(dpm)3 did not. A surplus charge neutralization hypothesis was applied to the origin of attractive intermolecular interactions between the ligands and saccharides. This idea was supported from the concomitant opposite tendency in upfield 19F-NMR and downfield 1H-NMR chemical shifts of Eu(fod)3 and the opposite Mulliken charges between F-C bonds (fod) and H-C bonds (CTA and D-/ L-Glu). An analysis of CPL excitation (CPLE) and CPL spectra suggests that (+)- and (-)-sign CPL signals of EuIII and TbIII at different 4f-4f transitions in the visible region are the same with the (+)-and (-)-sign exhibited by CPLE bands at high energy levels of EuIII and TbIII in the near-UV region.
    Matched MeSH terms: Monoterpenes
  18. Takayama H
    Chem Pharm Bull (Tokyo), 2004 Aug;52(8):916-28.
    PMID: 15304982
    The leaves of a tropical plant, Mitragyna speciosa KORTH (Rubiaceae), have been traditionally used as a substitute for opium. Phytochemical studies of the constituents of the plant growing in Thailand and Malaysia have led to the isolation of several 9-methoxy-Corynanthe-type monoterpenoid indole alkaloids, including new natural products. The structures of the new compounds were elucidated by spectroscopic and/or synthetic methods. The potent opioid agonistic activities of mitragynine, the major constituent of this plant, and its analogues were found in in vitro and in vivo experiments and the mechanisms underlying the analgesic activity were clarified. The essential structural features of mitragynines, which differ from those of morphine and are responsible for the analgesic activity, were elucidated by pharmacological evaluation of the natural and synthetic derivatives. Among the mitragynine derivatives, 7-hydroxymitragynine, a minor constituent of M. speciosa, was found to exhibit potent antinociceptive activity in mice.
    Matched MeSH terms: Monoterpenes/chemistry
  19. Awang K, Ibrahim H, Rosmy Syamsir D, Mohtar M, Mat Ali R, Azah Mohamad Ali N
    Chem Biodivers, 2011 Apr;8(4):668-73.
    PMID: 21480512 DOI: 10.1002/cbdv.201000225
    The essential oils from the leaves and rhizomes of Alpinia pahangensis Ridl., collected from Pahang, Peninsular Malaysia, were obtained by hydrodistillation, and their chemical compositions were determined by GC and GC/MS analyses. The major components of the rhizome oil were γ-selinene (11.60%), β-pinene (10.87%), (E,E)-farnesyl acetate (8.65%), and α-terpineol (6.38%), while those of the leaf oil were β-pinene (39.61%), α-pinene (7.55%), and limonene (4.89%). The investigation of the antimicrobial activity of the essential oils using the broth microdilution technique revealed that the rhizome oil of A. pahangensis inhibited five Staphylococcus aureus strains with minimum inhibitory concentration (MIC) values between 0.08 and 0.31 μg/μl, and four selected fungi with MIC values between 1.25 and 2.50 μg/μl.
    Matched MeSH terms: Monoterpenes/isolation & purification; Monoterpenes/pharmacology; Monoterpenes/chemistry
  20. Salleh WM, Ahmad F, Yen KH, Sirat HM
    Int J Mol Sci, 2011;12(11):7720-31.
    PMID: 22174627 DOI: 10.3390/ijms12117720
    Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9%) and stems (87.0%) oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil showed the highest inhibitory activity towards lipid peroxidation (114.9 ± 0.9%), compared to BHT (95.5 ± 0.5%), while leaves oil showed significant total phenolic content (27.4 ± 0.5 mg GA/g) equivalent to gallic acid. However, the essential oils showed weak activity towards DPPH free-radical scavenging. Evaluation of antimicrobial activity revealed that both oils exhibited strong activity against all bacteria strains with MIC values in the range 62.5 to 250 μg/mL, but weak activity against fungal strains. These findings suggest that the essential oils can be used as antioxidant and antimicrobial agents for therapeutic, nutraceutical industries and food manufactures.
    Matched MeSH terms: Monoterpenes/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links