Displaying publications 21 - 40 of 65 in total

Abstract:
Sort:
  1. Azman AR, Mahat NA, Wahab RA, Ahmad WA, Puspanadan JK, Huri MAM, et al.
    Biotechnol Lett, 2021 Apr;43(4):881-898.
    PMID: 33389272 DOI: 10.1007/s10529-020-03052-3
    OBJECTIVE: Optimisation of the green novel nanobio-based reagent (NBR) for rapid visualisation of groomed fingerprints on wet non-porous substrates using response surface methodology and assessment of its stability and sensitivity were attempted for forensic applications.

    RESULTS: Scanning electron microscopy images demonstrated successful attachments of NBR onto the constituents of fingerprints on the substrates. The highest average quality of visualised fingerprints was attained at the optimum condition (100 mg of CRL; 75 mg of acid-functionalised multi-walled carbon nanotubes; 5 h of immobilisation). The NBR produced comparable average quality of fingerprints with the commercially available small particle reagent, even after 4 weeks of storage (without any preservatives) in both chilled and sultry conditions. The NBR was sensitive enough to visualise the increasingly weaker fingerprints, particularly on glass slides.

    CONCLUSION: The optimised novel NBR could be the relatively greener option for visualising latent fingerprints on wet, non-porous substrates for forensic applications.

    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  2. Nouri M, Meshginqalam B, Sahihazar MM, Sheydaie Pour Dizaji R, Ahmadi MT, Ismail R
    IET Nanobiotechnol, 2018 Dec;12(8):1125-1129.
    PMID: 30964025 DOI: 10.1049/iet-nbt.2018.5068
    Nowadays, sensitive biosensors with high selectivity, lower costs and short response time are required for detection of DNA. The most preferred materials in DNA sensor designing are nanomaterials such as carbon and Au nanoparticles, because of their very high surface area and biocompatibility which lead to performance and sensitivity improvements in DNA sensors. Carbon nanomaterials such as carbon nanotubes (CNTs) can be considered as a suitable DNA sensor platform due to their high surface-to-volume ratio, favourable electronic properties and fast electron transfer rate. Therefore, in this study, the CNTs which are synthesised by pulsed AC arc discharge method on a high-density polyethylene substrate are used as conducting channels in a chemiresistor for the electrochemical detection of double stranded DNA. Moreover, the response of the proposed sensor is investigated experimentally and analytically in different temperatures, which confirm good agreement between the presented model and experimental data.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  3. Bahrami A, Talib ZA, Shahriari E, Yunus WMM, Kasim A, Behzad K
    Int J Mol Sci, 2012;13(1):918-928.
    PMID: 22312294 DOI: 10.3390/ijms13010918
    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  4. TermehYousefi A, Bagheri S, Shahnazar S, Rahman MH, Kadri NA
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:636-642.
    PMID: 26652417 DOI: 10.1016/j.msec.2015.10.041
    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nanoscale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems, which is a powerful finite element (FE) tool to perform the numerical analysis and visualize the interactions between proposed tip and membrane of the cell. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney-Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  5. Hussein MZ, Jaafar AM, Yahaya AH, Masarudin MJ, Zainal Z
    Int J Mol Sci, 2014;15(11):20254-65.
    PMID: 25380526 DOI: 10.3390/ijms151120254
    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  6. TermehYousefi A, Bagheri S, Shinji K, Rouhi J, Rusop Mahmood M, Ikeda S
    Biomed Res Int, 2014;2014:691537.
    PMID: 25258714 DOI: 10.1155/2014/691537
    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  7. Hajian R, Yusof NA, Faragi T, Shams N
    PLoS One, 2014;9(5):e96686.
    PMID: 24809346 DOI: 10.1371/journal.pone.0096686
    In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L-1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10-8 to 4.0×10-5 mol L-1 with the detection limit of 1.2×10-8 mol L-1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  8. Basri S, Kamarudin SK, Daud WR, Yaakob Z, Kadhum AA
    ScientificWorldJournal, 2014;2014:547604.
    PMID: 24883406 DOI: 10.1155/2014/547604
    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.
    Matched MeSH terms: Nanotubes, Carbon/chemistry
  9. Tehrani RM, Ab Ghani S
    Biosens Bioelectron, 2012 Oct-Dec;38(1):278-83.
    PMID: 22742810 DOI: 10.1016/j.bios.2012.05.044
    A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  10. Ghadimi H, Tehrani RM, Ali AS, Mohamed N, Ab Ghani S
    Anal Chim Acta, 2013 Feb 26;765:70-6.
    PMID: 23410628 DOI: 10.1016/j.aca.2012.12.039
    A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02-450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  11. Abdullahi N, Saion E, Shaari AH, Al-Hada NM, Keiteb A
    PLoS One, 2015;10(5):e0125511.
    PMID: 25993127 DOI: 10.1371/journal.pone.0125511
    MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible regions compared with the commercial TiO2 (P25). The catalytic activity of these nanocomposites was determined by photooxidation of MB aqueous solution in the presence of visible light. The MWCNTs/TiO2 (1:3) mass ratio showed maximum degradation efficiency. However, its activity was more favourable in alkaline and a neutral pH than an acidic medium.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  12. Mohamed A, Anas AK, Bakar SA, Ardyani T, Zin WM, Ibrahim S, et al.
    J Colloid Interface Sci, 2015 Oct 1;455:179-87.
    PMID: 26070188 DOI: 10.1016/j.jcis.2015.05.054
    Here is presented a systematic study of the dispersibility of multiwall carbon nanotubes (MWCNTs) in natural rubber latex (NR-latex) assisted by a series of single-, double-, and triple-sulfosuccinate anionic surfactants containing phenyl ring moieties. Optical polarising microscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy have been performed to obtain the dispersion-level profiles of the MWCNTs in the nanocomposites. Interestingly, a triple-chain, phenyl-containing surfactant, namely sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3-phenylpropoxy)carbonyl) pentane-2-sulfonate (TCPh), has a greater capacity the stabilisation of MWCNTs than a commercially available single-chain sodium dodecylbenzenesulfonate (SDBS) surfactant. TCPh provides significant enhancements in the electrical conductivity of nanocomposites, up to ∼10(-2) S cm(-1), as measured by a four-point probe instrument. These results have allowed compilation of a road map for the design of surfactant architectures capable of providing the homogeneous dispersion of MWCNTs required for the next generation of polymer-carbon-nanotube materials, specifically those used in aerospace technology.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  13. Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al.
    Biomed Pharmacother, 2018 Aug;104:496-508.
    PMID: 29800914 DOI: 10.1016/j.biopha.2018.05.066
    Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  14. Fatin MF, Rahim Ruslinda A, Gopinath SCB, Arshad MKM
    Int J Biol Macromol, 2019 Mar 15;125:414-422.
    PMID: 30529550 DOI: 10.1016/j.ijbiomac.2018.12.066
    Interaction between split RNA aptamer and the clinically important target, HIV-1 Tat was investigated on a biosensing surface transduced by functionally choreographed multiwall carbon nanotubes (MWCNTs). Acid oxidation was performed to functionalize MWCNTs with carboxyl functional groups. X-ray photoelectron spectroscopy analysis had profound ~2.91% increment in overall oxygen group and ~1% increment was noticed with a specific carboxyl content owing to CO and OCO bonding. The interaction between split RNA aptamer and HIV-1 Tat protein was quantified by electrical measurements with the current signal (Ids) over a gate voltage (Vgs). Initially, 34.4 mV gate voltage shift was observed by the immobilization of aptamer on MWCNT. With aptamer and HIV-1 Tat interaction, the current flow was decreased with the concomitant gate voltage shift of 23.5 mV. The attainment of sensitivity with split aptamer and HIV-1 Tat interaction on the fabricated device was 600 pM. To ensure the genuine interaction of aptamer with HIV-1 Tat, other HIV-1 proteins, Nef and p24 were interacted with aptamer and they displayed the negligible interferences with gate voltage shift of 3.5 mV and 5.7 mV, which shows 4 and 2.5 folds lesser than HIV-1 Tat interaction, respectively.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  15. AlOmar MK, Alsaadi MA, Hayyan M, Akib S, Ibrahim M, Hashim MA
    Chemosphere, 2017 Jan;167:44-52.
    PMID: 27710842 DOI: 10.1016/j.chemosphere.2016.09.133
    Recently, deep eutectic solvents (DESs) have shown their new and interesting ability for chemistry through their involvement in variety of applications. This study introduces carbon nanotubes (CNTs) functionalized with DES as a novel adsorbent for Hg(2+) from water. Allyl triphenyl phosphonium bromide (ATPB) was combined with glycerol as the hydrogen bond donor (HBD) to form DES, which can act as a novel CNTs functionalization agent. The novel adsorbent was characterized using Raman, FTIR, XRD, FESEM, EDX, BET surface area, TGA, TEM and Zeta potential. Response surface methodology was used to optimize the removal conditions for Hg(2+). The optimum removal conditions were found to be pH 5.5, contact time 28 min, and an adsorbent dosage of 5 mg. Freundlich isotherm model described the adsorption isotherm of the novel adsorbent, and the maximum adsorption capacity obtained from the experimental data was 186.97 mg g(-1). Pseudo-second order kinetics describes the adsorption rate order.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  16. Ahmad A, Razali MH, Mamat M, Mehamod FS, Anuar Mat Amin K
    Chemosphere, 2017 Feb;168:474-482.
    PMID: 27855344 DOI: 10.1016/j.chemosphere.2016.11.028
    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO2. Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO2 nanoparticles onto functionalized-CNTs loaded TiO2, with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  17. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y
    Int J Nanomedicine, 2017;12:2957-2978.
    PMID: 28442906 DOI: 10.2147/IJN.S127683
    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.
    Matched MeSH terms: Nanotubes, Carbon/chemistry
  18. Alim S, Kafi AKM, Jose R, Yusoff MM, Vejayan J
    Int J Biol Macromol, 2018 Jul 15;114:1071-1076.
    PMID: 29625222 DOI: 10.1016/j.ijbiomac.2018.03.184
    A novel third generation H2O2 biosensor is fabricated using multiporous SnO2 nanofiber/carbon nanotubes (CNTs) composite as a matrix for the immobilization of redox protein onto glassy carbon electrode. The multiporous nanofiber (MPNFs) of SnO2 is synthesized by electrospinning technique from the tin precursor. This nanofiber shows high surface area and good electrical conductivity. The SnO2 nanofiber/CNT composite increases the efficiency of biomolecule loading due to its high surface area. The morphology of the nanofiber has been evaluated by scanning electron microscopy (SEM). Cyclic Voltammetry and amperometry technique are employed to study and optimize the performance of the fabricated electrode. A direct electron transfer between the protein's redox centre and the glassy carbon electrode is established after fabrication of the electrode. The fabricated electrode shows excellent electrocatalytic reduction to H2O2. The catalysis currents increases linearly to the H2O2 concentration in a wide range of 1.0 10-6-1.4×10-4M and the lowest detection limit was 30nM (S/N=3). Moreover, the biosensor showed a rapid response to H2O2, a good stability and reproducibility.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  19. Ibrahim RK, Fiyadh SS, AlSaadi MA, Hin LS, Mohd NS, Ibrahim S, et al.
    Molecules, 2020 Mar 26;25(7).
    PMID: 32225061 DOI: 10.3390/molecules25071511
    In the recent decade, deep eutectic solvents (DESs) have occupied a strategic place in green chemistry research. This paper discusses the application of DESs as functionalization agents for multi-walled carbon nanotubes (CNTs) to produce novel adsorbents for the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solution. Also, it focuses on the application of the feedforward backpropagation neural network (FBPNN) technique to predict the adsorption capacity of DES-functionalized CNTs. The optimum adsorption conditions that are required for the maximum removal of 2,4-DCP were determined by studying the impact of the operational parameters (i.e., the solution pH, adsorbent dosage, and contact time) on the adsorption capacity of the produced adsorbents. Two kinetic models were applied to describe the adsorption rate and mechanism. Based on the correlation coefficient (R2) value, the adsorption kinetic data were well defined by the pseudo second-order model. The precision and efficiency of the FBPNN model was approved by calculating four statistical indicators, with the smallest value of the mean square error being 5.01 × 10-5. Moreover, further accuracy checking was implemented through the sensitivity study of the experimental parameters. The competence of the model for prediction of 2,4-DCP removal was confirmed with an R2 of 0.99.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  20. Ashraf MA, Islam A, Butt MA, Hussain T, Khan RU, Bashir S, et al.
    Int J Biol Macromol, 2021 Nov 30;191:872-880.
    PMID: 34571131 DOI: 10.1016/j.ijbiomac.2021.09.131
    Mixed matrix membranes (MMMs) of cellulose acetate/poly(vinylpyrrolidone) (CA/PVP) infused with acid functionalized multiwall carbon nanotubes (f-MWCNTs) were fabricated by an immersion phase separation technique for hemodialysis application. Membranes were characterized using FTIR, water uptake, contact angle, TGA, DMA and SEM analysis. The FTIR was used to confirm the bonding interaction between CA/PVP membrane matrix and f-MWCNTs. Upon addition of f-MWCNTs, TGA thermograms and glass transition temperature indicated improved thermal stability of MMMs. The surface morphological analysis demonstrated revealed uniform distribution of f-MWCNTs and asymmetric membrane structure. The water uptake and contact angle confirmed that hydrophilicity was increased after incorporation of f-MWCNTs. The membranes demonstrated enhancement in water permeate flux, bovine serum albumin (BSA) rejection with the infusion of f-MWCNTs; whereas BSA based anti-fouling analysis using flux recovery ratio test shown up to 8.4% improvement. The urea and creatinine clearance performance of MMMs were evaluated by dialysis experiment. It has been found that f-MWCNTs integrated membranes demonstrated the higher urea and creatinine clearance with increase of 12.6% and 10.5% in comparison to the neat CA/PVP membrane. Thus, the prepared CA/PVP membranes embedded with f-MWCNTs can be employed for wide range of dialysis applications.
    Matched MeSH terms: Nanotubes, Carbon/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links