Displaying publications 21 - 40 of 337 in total

Abstract:
Sort:
  1. Rozaini MNH, Semail NF, Saad B, Kamaruzaman S, Abdullah WN, Rahim NA, et al.
    Talanta, 2019 Jul 01;199:522-531.
    PMID: 30952293 DOI: 10.1016/j.talanta.2019.02.096
    Molecularly imprinted silica gel (MISG) was incorporated through dispersion in agarose polymer matrix to form a mixed matrix membrane (MMM) and was applied for the determination of three sulfonamide antibiotic compounds (i.e. sulfamethoxazole (SMX), sulfamonomethoxine (SMM), and sulfadiazine (SDZ)) from environmental water samples. Several important microextraction conditions, such as type of desorption solvent, extraction time, amount of sorbent, sample volume, pH, and effect of desorption time, were comprehensively optimized. A preconcentration factors of ≥ 20 was achieved by the extraction of 12.5 mL of water samples using the developed method. This microextraction-HPLC method demonstrated good linearity (1-500 μg L-1) with a coefficient of determination (R2) of 0.9959-0.9999, low limits of detection (0.06-0.17 μg L-1) and limits of quantification (0.20-0.56 μg L-1), good analyte recoveries (80-96%), and acceptable relative standard deviations (< 10%) under the optimized conditions. The method is systematically compared to those reported in the literature.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  2. Kamaruzaman S, Sanagi MM, Endud S, Wan Ibrahim WA, Yahaya N
    PMID: 24140656 DOI: 10.1016/j.jchromb.2013.09.017
    Mesoporous silica material, MCM-41, was utilized for the first time as an adsorbent in solid phase membrane tip extraction (SPMTE) of non-steroidal anti-inflammatory drugs (NSAIDs) in urine prior to high performance liquid chromatography-ultraviolet (HPLC-UV) analysis. The prepared MCM-41 material was enclosed in a polypropylene membrane tip and used as an adsorbent in SPMTE. Four NSAIDs namely ketoprofen, diclofenac, mefenamic acid and naproxen were selected as model analytes. Several important parameters, such as conditioning solvent, sample pH, salting-out effect, sample volume, extraction time, desorption solvent and desorption time were optimized. Under the optimum extraction conditions, the MCM-41-SPMTE method showed good linearity in the range of 0.01-10μg/mL with excellent correlation coefficients (r=0.9977-0.9995), acceptable RSDs (0.4-9.4%, n=3), good limits of detection (5.7-10.6μg/L) and relative recoveries (81.4-108.1%). The developed method showed a good tolerance to biological sample matrices.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  3. Shabaneh A, Girei S, Arasu P, Mahdi M, Rashid S, Paiman S, et al.
    Sensors (Basel), 2015;15(5):10452-64.
    PMID: 25946634 DOI: 10.3390/s150510452
    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.
    Matched MeSH terms: Silicon Dioxide
  4. Chen L, Xie W, Luo Y, Ding X, Fu B, Gopinath SCB, et al.
    PMID: 33786878 DOI: 10.1002/bab.2155
    A highly sensitive silica-alumina (Si-Al)-modified capacitive non-Faradaic glucose biosensor was introduced to monitor gestational diabetes. Glucose oxidase (GOx) was attached to the Si-Al electrode surface as the probe through amine-modification followed by glutaraldehyde premixed GOx as aldehyde-amine chemistry. This Si-Al (∼50 nm) modified electrode surface has increased the current flow upon binding of GOx with glucose. Capacitance values were increased by increasing the glucose concentrations. A mean capacitance value was plotted and the detection limit was found as 0.03 mg/mL with the regression coefficient value, R² = 0.9782 [y = 0.8391x + 1.338] on the linear range between 0.03 and 1 mg/mL. Further, a biofouling experiment with fructose and galactose did not increase the capacitance, indicating the specific glucose detection. This Si-Al-modified capacitance sensor detects a lower level of glucose presence and helps in monitoring gestational diabetes.
    Matched MeSH terms: Silicon Dioxide
  5. Mahmad-Toher AS, Govender N, Dorairaj D, Wong MY
    Sci Rep, 2022 Sep 20;12(1):15690.
    PMID: 36127366 DOI: 10.1038/s41598-022-19308-z
    Rice brown spot (BS) exerts devastating agronomic effects on grain quality and overall productivity. In Peninsular Malaysia, BS disease incidence is fairly prevalent and little is known about the diversity of BS pathogens in the local granaries. Fifteen isolates from BS symptomatic rice plants were identified at five different rice granaries across Peninsular Malaysia. Based on the morphological and molecular analyses, two isolates were confirmed as Bipolaris oryzae while the rest were identified as Exserohilum rostratum. Phylogenetic tree analysis revealed that BS incidence in rice granaries in Peninsular Malaysia is caused by a pair of closely related fungal pathogens, E. rostratum and B. oryzae, with the former being more predominant. Cultural characterization of E. rostratum isolate KT831962 showed the best growth and sporulation activity on corn meal agar plates incubated in complete darkness. The effects of calcium silicate (CaSiO3) and rice husk ash (RHA) soil amendment against MR219 and MR253 rice varieties were evaluated during rice-E. rostratum interaction. Results showed that soil amelioration using CaSiO3 and RHA singly and in combination with manganese (Mn) significantly reduced rice BS disease severity. The BS disease index was reduced significantly to less than 31.6% in the silicon-treated rice plants relative to the control plants at 41.2%. Likewise, the grain yield at the harvest stage showed significantly higher yield in the Si-treated rice plants in comparison to the control, non-Si treated rice plants. The findings highlight the potential of RHA agro-waste as Si fertilizer in a sustainable rice production system.
    Matched MeSH terms: Silicon Dioxide/pharmacology
  6. Dorairaj D, Govender N, Zakaria S, Wickneswari R
    Sci Rep, 2022 Nov 23;12(1):20162.
    PMID: 36424408 DOI: 10.1038/s41598-022-24484-z
    Agriculture plays a crucial role in safeguarding food security, more so as the world population increases gradually. A productive agricultural system is supported by seed, soil, fertiliser and good management practices. Food productivity directly correlates to the generation of solid wastes and utilization of agrochemicals, both of which negatively impact the environment. The rice and paddy industry significantly adds to the growing menace of waste management. In low and middle-income countries, rice husk (RH) is an underutilized agro-waste discarded in landfills or burned in-situ. RH holds enormous potential in the development of value-added nanomaterials for agricultural applications. In this study, a simple and inexpensive sol-gel method is described to extract mesoporous silica nanoparticles (MSNs) from UKMRC8 RH using the bottom-up approach. RHs treated with hydrochloric acid were calcinated to obtain rice husk ash (RHA) with high silica purity (> 98% wt), as determined by the X-ray fluorescence analysis (XRF). Calcination at 650 °C for four hours in a box furnace yielded RHA that was devoid of metal impurities and organic matter. The X-ray diffraction pattern showed a broad peak at 2θ≈20-22 °C and was free from any other sharp peaks, indicating the amorphous property of the RHA. Scanning electron micrographs (SEM) showed clusters of spherically shaped uniform aggregates of silica nanoparticles (NPs) while transmission electron microscopy analysis indicated an average particle size of 
    Matched MeSH terms: Silicon Dioxide/chemistry
  7. Kaewbuddee C, Chanpiwat P, Kidkhunthod P, Wantala K
    Sains Malaysiana, 2016;45:1155-1167.
    The aims of this work were to investigate the characteristics of nanoscale zero valent irons (nZVI) coupled with mesoporous
    materials (RH-MCM-41) adsorbent and to study the removal mechanisms of Pb (II) from synthetical solutions using full
    pictorial design batch experiments. Synthetic nZVI coupled with RH MCM-41 as Pb (II) adsorbent were characterized
    by XRD, TEM, BET and XANES. The results of XANES analyses confirmed the ability of RH-MCM-41 to prevent oxidations of
    Fe0
    to Fe2+ and Fe3+. XANES results also verified the oxidation states of Pb (II). The solution pH was the most significant
    positive effect in controlling Pb (II) adsorption. The equilibrium and kinetic adsorption isotherms well fitted with the
    Langmuir isotherm. The pseudo-second order kinetic adsorption indicated that the adsorption process is the rate limiting
    step for Pb (II) removal. Furthermore, Langmuir-Hinshelwood confirmed the obvious Pb (II) adsorption at the active
    site of adsorbents. The reduction rate constant (kr
    = 5,000 mg/L.min) was higher than the adsorption rate constant (Kad
    = 0.0002 L/mg). Regarding the research results, four pathways including: reduction process, adsorption on FeOOH,
    adsorption on RH-MCM-41 and complex reaction between Fe and Pb ions were suggested for Pb (II) removal by nZVI
    coupled with RH-MCM-41.
    Matched MeSH terms: Silicon Dioxide
  8. Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WS
    Bioresour Technol, 2013 Sep;143:584-91.
    PMID: 23835263 DOI: 10.1016/j.biortech.2013.06.055
    Bioregeneration of mono-amine modified silica gel (MAMS) adsorbent loaded with Acid Orange 7 (AO7), Acid Yellow 9 (AY9) and Acid Red 14 (AR14), respectively, was investigated under two different operational conditions, namely absence/presence of sucrose/bacto-peptone as the co-substrate and different biomass acclimation concentrations. The results revealed that the AY9- and AR14-loaded MAMS adsorbents could almost be completely bioregenerated but only in the presence of co-substrate whereas the bioregeneration of AO7-loaded MAMS could achieve up to 71% in the absence of the co-substrate. These differences could be related to the structural properties of the investigated azo dyes. In addition, the results showed that the bioregeneration duration of AO7-loaded MAMS could be progressively shortened by using biomass acclimated to increasingly higher AO7 concentration. However, the bioregeneration efficiencies were found to be relatively unchanged under different biomass acclimation concentrations.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  9. Kamaruzaman S, Sanagi MM, Yahaya N, Wan Ibrahim WA, Endud S, Wan Ibrahim WN
    J Sep Sci, 2017 Nov;40(21):4222-4233.
    PMID: 28837263 DOI: 10.1002/jssc.201700549
    A new facile magnetic micro-solid-phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite-MCM-41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite-MCM-41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05-500 μg/L (r2  = 0.996-0.999). Good limits of detection (0.008-0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1-115.4%. Results indicate that magnetite micro-solid-phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.
    Matched MeSH terms: Silicon Dioxide*
  10. Ibrahim Zubil, AR., Wan Adnan W. A
    MyJurnal
    Occupational health hazards as a result to exposure to mineral dust containing silica has been established long time ago in occupational health history. Its effects on lung function and symptom was evaluated in a cross sectional studied among 49 small enterprise pottery workers in the county of Sayong clustered in 3 villages. Respiratory symptoms and lung function was evaluated using MRC respiratory questionnaire 86 and standard spirometry performed. The prevalence of chronic cough, phlegm and chest tightness was 24.5%, 16% and16% respectively. There was no significant decrement in lung function parameters from the predicted normal value with the mean predicted FVC; FEV1 and FEV1/FVC ratio was 85.32%, 83.87% and 99.22 respectively. The relationship between lung symptoms and lung function parameters was evaluated and the result was not significant.
    Matched MeSH terms: Silicon Dioxide
  11. Hussin H, Soin N, Bukhori MF, Hatta SW, Wahab YA
    ScientificWorldJournal, 2014;2014:490829.
    PMID: 25221784 DOI: 10.1155/2014/490829
    We present a simulation study on negative bias temperature instability (NBTI) induced hole trapping in E' center defects, which leads to depassivation of interface trap precursor in different geometrical structures of high-k PMOSFET gate stacks using the two-stage NBTI model. The resulting degradation is characterized based on the time evolution of the interface and hole trap densities, as well as the resulting threshold voltage shift. By varying the physical thicknesses of the interface silicon dioxide (SiO2) and hafnium oxide (HfO2) layers, we investigate how the variation in thickness affects hole trapping/detrapping at different stress temperatures. The results suggest that the degradations are highly dependent on the physical gate stack parameters for a given stress voltage and temperature. The degradation is more pronounced by 5% when the thicknesses of HfO2 are increased but is reduced by 11% when the SiO2 interface layer thickness is increased during lower stress voltage. However, at higher stress voltage, greater degradation is observed for a thicker SiO2 interface layer. In addition, the existence of different stress temperatures at which the degradation behavior differs implies that the hole trapping/detrapping event is thermally activated.
    Matched MeSH terms: Silicon Dioxide
  12. Onoja E, Wahab RA
    Appl Biochem Biotechnol, 2020 Oct;192(2):585-599.
    PMID: 32495234 DOI: 10.1007/s12010-020-03348-0
    Strategies to immobilize the individual enzymes are crucial for enhancing catalytic applicability and require a controlled immobilization process. Herein, protocol for immobilizing Candida rugosa lipase (CRL) onto modified magnetic silica derived from oil palm leaves ash (OPLA) was optimized for the effects of concentration of CRL, immobilization time, and temperature, monitored by titrimetric and spectrometric methods. XRD and TGA-DTG spectrometric observations indicated that OPLA-silica was well coated over magnetite (SiO2-MNPs) and CRLs were uniformly bound by covalent bonds to SiO2-MNPs (CRL/Gl-A-SiO2-MNPs). The optimized immobilization protocol showed that in the preparation of CRL/Gl-A-SiO2-MNPs, CRL with 68.3 mg/g protein loading and 74.6 U/g specific activity was achieved using 5 mg/mL of CRL, with an immobilization time of 12 h at 25 °C. The present work also demonstrated that acid-pretreated OPLA is a potential source of renewable silica, envisioning its applicability for practical use in enzymatic catalysis on solid support.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  13. Onoja E, Chandren S, Razak FIA, Wahab RA
    J Biotechnol, 2018 Oct 10;283:81-96.
    PMID: 30063951 DOI: 10.1016/j.jbiotec.2018.07.036
    The study reports the preparation of a composite consisting of magnetite coated with nanosilica extracted from oil palm leaves (OPL) ash as nanosupports for immobilization of Candida rugosa lipase (CRL) and its application for the synthesis of butyl butyrate. Results of immobilization parameters showed that ∼ 80% of CRL (84.5 mg) initially offered was immobilized onto the surface of the nanosupports to yield a maximum protein loading and specific activity of 67.5 ± 0.72 mg/g and 320.8 ± 0.42 U/g of support, respectively. Surface topography, morphology as well as information on surface composition obtained by Raman spectroscopy, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy showed that CRL was successfully immobilized onto the nanosupports, affirming its biocompatibility. Under optimal conditions (3.5 mg/mL protein loading, at 45 ℃, 3 h and molar ratio 2:1 (1-butanol:n-butyric acid) the CRL/Gl-A-SiO2-MNPs gave a maximum yield of 94 ± 0.24% butyl butyrate as compared to 84 ± 0.32% in the lyophilized CRL. CRL/Gl-A-SiO2-MNPs showed an extended operational stability, retaining 50% of its initial activity after 17 consecutive esterification cycles. The results indicated that OPL derived nanosilica coated on magnetite can potentially be employed as carrier for lipase immobilization in replacement of the non-renewable conventionalsilica sources.
    Matched MeSH terms: Silicon Dioxide/isolation & purification*; Silicon Dioxide/chemistry
  14. Shaha DC, Hasan J, Kundu SR, Yusoff FM, Salam MA, Khan M, et al.
    Sci Rep, 2022 Dec 05;12(1):20980.
    PMID: 36470973 DOI: 10.1038/s41598-022-24500-2
    The tropical estuarine ecosystem is fascinating for studying the dynamics of water quality and phytoplankton diversity due to its frequently changing hydrological conditions. Most importantly, phytoplankton is the main supplier of ω3 polyunsaturated fatty acids (PUFA) in the coastal food web for fish as they could not synthesize PUFA. This study evaluated seasonal variations of water quality parameters in the Meghna River estuary (MRE), explored how phytoplankton diversity changes according to hydro-chemical parameters, and identified the major phytoplankton groups as the main source of PUFA for hilsa fish. Ten water quality indicators including temperature, dissolved oxygen, pH, salinity, dissolved inorganic nitrogen (DIN = nitrate, nitrite, ammonia) and phosphorus, dissolved silica and chlorophyll-a were evaluated. In addition, phytoplankton diversity was assessed in the water and hilsa fish gut. Principal component analysis (PCA) was used to analyze the spatio-temporal changes in the water quality conditions, and the driving factors in the MRE. Four main components were extracted and explained 75.4% variability of water quality parameters. The most relevant driving factors were dissolved oxygen, salinity, temperature, and DIN (nitrate, nitrite and ammonia). These variabilities in physicochemical parameters and dissolved inorganic nutrients caused seasonal variations in two major groups of phytoplankton. Peak abundance of Chlorophyta (green algae) occurred in water in nutrient-rich environments (nitrogen and phosphorus) during the wet (36%) season, while Bacillariophyta (diatoms) were dominant during the dry (32%) season that depleted dissolved silica. Thus, the decrease of green algae and the increase of diatoms in the dry season indicated the potential link to seasonal changes of hydro-chemical parameters. The green algae (53.7%) were the dominant phytoplankton group in the hilsa gut content followed by diatoms (22.6%) and both are contributing as the major source of PUFAs for hilsa fish according to the electivity index as they contain the highest amounts of PUFAs (60 and 28% respectively).
    Matched MeSH terms: Silicon Dioxide/analysis
  15. Hashim S, Bradley DA, Saripan MI, Ramli AT, Wagiran H
    Appl Radiat Isot, 2010 Apr-May;68(4-5):700-3.
    PMID: 19892557 DOI: 10.1016/j.apradiso.2009.10.027
    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.
    Matched MeSH terms: Silicon Dioxide/radiation effects*; Silicon Dioxide/chemistry*
  16. Ramli AT, Bradley DA, Hashim S, Wagiran H
    Appl Radiat Isot, 2009 Mar;67(3):428-32.
    PMID: 18693114 DOI: 10.1016/j.apradiso.2008.06.034
    Ion beams are used in radiotherapy to deliver a more precise dose to the target volume while minimizing dose to the surrounding healthy tissue. For optimum dose monitoring in ion-beam therapy, it is essential to be able to measure the delivered dose with a sensitivity, spatial resolution and dynamic range that is sufficient to meet the demands of the various therapy situations. Optical fibres have been demonstrated by this group to show promising thermoluminescence properties with respect to photon, electron and proton irradiation. In particular, and also given the flexibility and small size of optical fibre cores, for example 125.0+/-0.1 microm for the Al- and Ge-doped fibres used in this study, these fibres have the potential to fulfill the above requirements. This study investigates the thermoluminescence dosimetric characteristics of variously doped SiO(2) optical fibres irradiated with alpha particles from (241)Am. Following subtraction of the gamma contribution from the above source, the thermoluminescence characteristics of variously doped SiO(2) optical fibres have been compared with that of TLD-100 rods. The irradiations were performed in a bell jar. Of related potential significance is the effective atomic number, Z(eff) of the fibre, modifying measured dose from that deposited in tissues; in the present work, a scanning electron microscope and associated energy dispersive X-ray spectroscopy facility have been used to provide evaluation of Z(eff). For Ge-doped fibres, the effective atomic numbers value was 11.4, the equivalent value for Al-doped fibres was 12.3. This paper further presents results on dose response and the glow curves obtained. The results obtained indicate there to be good potential for use of variously doped SiO(2) optical fibres in measuring ion-beam doses in radiotherapeutic applications.
    Matched MeSH terms: Silicon Dioxide/radiation effects*
  17. Hashim S, Al-Ahbabi S, Bradley DA, Webb M, Jeynes C, Ramli AT, et al.
    Appl Radiat Isot, 2009 Mar;67(3):423-7.
    PMID: 18693024 DOI: 10.1016/j.apradiso.2008.06.030
    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
    Matched MeSH terms: Silicon Dioxide*
  18. Chowdhury M, Vohra M
    Sains Malaysiana, 2016;45:477-487.
    The present study investigated the use of modified titanium dioxide (TiO2) based photocatalytic degradation (PCD) process for the removal of some critical charged aqueous phase pollutants. First of all, the use of Nafion TiO2 (Nf-TiO2) and silica TiO2 (Si-TiO2) for the removal of aqueous phase ammonia (NH4+/NH3) species employing near UV lamp as energy source was studied. The use of Nf-TiO2 enhanced NH4+/NH3 PCD with optimum removal noted for 1 mL of Nafion solution coating per g of TiO2 and respective overall NH4+/NH3 removal was about 1.7 times higher compared to plain TiO2 at 6 h reaction time. Similarly the 0.5 mL silica solution coating per g TiO2 sample, also enhanced NH4+/NH3 removal with optimum efficiency similar to Nf-TiO2. The results from effect of ammonia concentration on to its PCD using Nf-TiO2 indicated that overall mass based NH4+/NH3 removal was higher at greater NH4+/NH3 amounts indicating high efficiency of Nf-TiO2. Similar trends were noted for Si-TiO2 as well. Furthermore, the results from modified TiO2 and mixed NH4+/NH3 and cyanide (CN-) systems indicated successful removal of co-pollutant CN- along with simultaneous degradation of NH4+/NH3 species at rates that were still higher than plain TiO2. Nevertheless application of Nf-TiO2 for the treatment of cationic dye methylene blue (MB) indicated slower MB removal compared to plain TiO2 though significant MB degradation using Nf-TiO2 could still be achieved at pH3. Additionally the results from solar radiation energized PCD process indicated positive role of solar radiation for the removal of NH4+/NH3 species under a varying set of conditions.
    Matched MeSH terms: Silicon Dioxide
  19. Ng KH, Chen K, Cheng CK, Vo DN
    J Hazard Mater, 2021 05 05;409:124532.
    PMID: 33221078 DOI: 10.1016/j.jhazmat.2020.124532
    Powdered-photocatalysis of organic wastewater is widely investigated, unfortunately not industrially implemented due to its high energy requirement. Interestingly, such issue may be alleviated via the elimination of mechanical stirring required. Core-shell ZnO-based photocatalysts were developed herein, subsequently demonstrated efficient photocatalytic activities in the absence of mechanical stirring. Results show that the developed SiO2-cored ZnO photocatalyst are highly crystalline, while significantly smaller than coreless, pure ZnO due to the multi-point crystallization prompted. Additionally, it is also inherited with considerable buoyancy ability from SiO2-core in the absence of mechanical stirring, concurrently rendered with UV-active properties due to its ZnO-shell. Experimentally, 55% of particles of ZnO_0.0025 (0.0025 mol of ZnO-deposition) were found stably suspended for 60 min in liquid substrate, as opposed to the instant-settling of pure ZnO particles. In term of photocatalytic activity, ZnO_0.01 manifested the best methylene blue (MB) degradation with 150 mL/min of O2-bubbling. 67.63% of MB was degraded with photocatalyst loading of 0.2 g/L after 120 min UV-irradiation, simultaneously recorded the highest pseudo-first order reaction constant of 9.636 × 10-3 min-1. As summary, the auto-suspending photocatalysis conceptualized in current study offers a high possibility in reducing energy requirement for photo-treatment of wastewater, hence advocating its industrialization potential in near future.
    Matched MeSH terms: Silicon Dioxide
  20. Azhar Abdullah, Shamsuddin Sulaiman, Hang Tuah Baharudin, B.T., Mohd Khairol Anuar Mohd Ariffin, Vijayaram, Thoguluva Raghvan
    MyJurnal
    Tailing sand is the residue mineral from tin extraction that contains between 94% and 99.5% silica, which can be used as moulding sand. It is found in abundance in the Kinta Valley in the state of Perak, Malaysia. Adequate water content and clay in moulding sand are important factors for better strength and
    casting quality of products made from tailing sand. Samples of tailing sand were investigated according
    to the American Foundrymen Society (AFS) standard. Cylindrical test pieces of Ø50 mm×50 mm in height from various sand-water ratios were compacted by applying three ramming blows of 6666g each using a Ridsdale-Dietert metric standard rammer. The specimens were tested for green compression strength using a Ridsdale-Dietert universal sand strength machine. Before the tests were conducted, moisture content of the tailing sand was measured using a moisture analyser. A mixture bonded with 8% clay possesses higher green compression strength compared to samples bonded with 4% clay. The results also show that in order to achieve maximum green compression strength, the optimum allowable moisture content for mixtures bonded with 8% clay is ranged between 3.75 and 6.5% and for mixtures bonded with 4% clay is 3-5.5%.
    Matched MeSH terms: Silicon Dioxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links