Displaying publications 381 - 400 of 663 in total

Abstract:
Sort:
  1. Shahril MR, Zakarai NS, Appannah G, Nurnazahiah A, Mohamed HJJ, Ahmad A, et al.
    Nutrients, 2021 Sep 24;13(10).
    PMID: 34684340 DOI: 10.3390/nu13103339
    Dietary pattern (DP) and its relationship with disease biomarkers have received recognition in nutritional epidemiology investigations. However, DP relationships with adipokines (i.e., adiponectin and leptin) among breast cancer survivors remain unclear. Therefore, we assessed relationships between DP and high-molecular weight (HMW) adiponectin and leptin concentration among breast cancer survivors. This cross-sectional study involved 128 breast cancer survivors who attended the oncology outpatient clinic at two main government hospitals in the East Coast of Peninsular Malaysia. The serum concentration of HMW adiponectin and leptin were measured using enzyme-linked immunosorbent assay (ELISA) kits. A reduced rank regression method was used to analyze DP. Relationships between DP with HMW adiponectin and leptin were examined using regression models. The findings show that with every 1-unit increase in the 'energy-dense, high-SFA, low-fiber' DP z-score, there was a reduction by 0.41 μg/mL in HMW adiponectin which was independent of age, BMI, education level, occupation status, cancer stage, and duration since diagnosis. A similar relationship with leptin concentration was not observed. In conclusion, the 'energy-dense, high-saturated fat and low-fiber' DP, which is characterized by high intake levels of sugar-sweetened drinks and fat-based spreads but low intake of fruits and vegetables, is an unhealthy dietary pattern and unfavorable for HMW adiponectin concentration, but not for leptin. These findings could serve as a basis in developing specific preventive strategies that are tailored to the growing population of breast cancer survivors.
  2. Ahmad A, Abbasi SA, Hafeez M, Khan TM, Rafique M, Ahmed N, et al.
    Materials (Basel), 2021 Oct 21;14(21).
    PMID: 34771799 DOI: 10.3390/ma14216277
    With many advantages over well-established methods, laser induced breakdown spectroscopy (LIBS) has emerged as a useful analytical technique for the compositional analysis of multi-elemental geological materials. In this study, LIBS was employed for qualitative and quantitative analysis of a rare mineral, astrophyllite, bearing precious elements of industrial and technological interest. The experiment was carried out using second harmonic generation of Nd:YAG laser of pulse width 5 ns and repetition rate of 10 Hz. Microplasma was produced by focusing laser beam on an astrophyllite target, and optical emissions from the generated plasma were recorded in the spectral range of 200-720 nm with the help of a LIBS2000+ detection system. On analyzing the optical spectra, existence of 15 elements in astrophyllite target were revealed. These elements include: Ti, W, Ag, Al, Ba, Ca, Cr, Cu, Fe, Li, Mg, Na, Ni, Si and H. For quantification, calibration-free method was used. Only ten elements, namely Ti, W, Fe, Cr, Cu, Ca, Mg, Ni, Si and Al, were quantified with relative weight concentrations of 55.39%, 18.79%, 18.30%, 4.05%, 2.66, 0.43%, 0.18%, 0.12%, 0.06% and 0.02%, respectively. To benchmark these results, XRF analysis was performed, which confirmed the presence of all the elements detected in the optical spectrum of the sample, except for Na, Li, and H. The concentrations of these ten elements as measured by XRF were in reasonable agreement, especially for the major elements. The presence of a significant amount of Ti and W in an astrophyllite sample, found in Pakistan, highlights the economic value of this mineral. This study may be of further interest in commissioning LIBS technology for exploration of minerals in the region.
  3. Chia TY, Murugaiyah V, Sattar MA, Khan NAK, Ahmad A, Abdulla MH, et al.
    Physiol Res, 2020 12 22;69(6):1051-1066.
    PMID: 33210935
    L-arginine is a substrate for nitric oxide synthase (NOS) responsible for the production of NO. This investigation studied the effect of apocynin, an NADPH oxidase inhibitor and catalase, an H2O2 scavenger on L-arginine induced oxidative stress and hypotension. Forty Wistar-Kyoto rats were treated for 14 days with vehicle, L-arginine (12.5mg/ml p.o.), L-arginine+apocynin (2.5mmol/L p.o.), L-arginine+catalase (10000U/kg/day i.p.) and L-arginine plus apocynin+catalase respectively. Weekly renal functional and hemodynamic parameters were measured and kidneys harvested at the end of the study for histopathological and renal NADPH oxidase 4 (Nox4) assessments. L-arginine administration in normotensive rats decreased systolic blood pressure (120±2 vs 91±2mmHg) and heart rate (298±21 vs 254±15b/min), enhanced urinary output (21.5±4.2 vs 32±1.9ml/24h , increased creatinine clearance (1.72±0.56 vs 2.62±0.40ml/min/kg), and fractional sodium excretion (0.88±0.16 vs 1.18±0.16 %), caused proteinuria (28.10±1.93 vs 35.26±1.69mg/kg/day) and a significant decrease in renal cortical blood perfusion (292±3 vs 258±5bpu) and pulse wave velocity (3.72±0.20 vs 2.84±0.13m/s) (all P<0.05). L-arginine increased plasma malondialdehyde (by ~206 % P<0.05) and NO (by~51 %, P<0.05) but decreased superoxide dismutase (by~31 %, P<0.05) and total antioxidant capacity (by~35 %, P<0.05) compared to control. Renal Nox4 mRNA activity was approximately 2.1 fold higher (P<0.05) in the L-arginine treated rats but was normalized by apocynin and apocynin plus catalase treatment. Administration of apocynin and catalase, but not catalase alone to rats fed L-arginine, restored the deranged renal function and structure, prevented hypotension and enhanced the antioxidant capacity and suppressed Nox4 expression. These findings suggest that apocynin and catalase might be used prophylactically in states of oxidative stress.
  4. Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, et al.
    PLoS One, 2018;13(2):e0192732.
    PMID: 29489838 DOI: 10.1371/journal.pone.0192732
    Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
  5. Chuo SC, Abd-Talib N, Mohd-Setapar SH, Hassan H, Nasir HM, Ahmad A, et al.
    Sci Rep, 2018 01 11;8(1):477.
    PMID: 29323139 DOI: 10.1038/s41598-017-18279-w
    Reverse micelles extraction of erythromycin and amoxicillin were carried out using the novel Sophorolipids biosurfactant. By replacing commonly used chemical surfactants with biosurfactant, reverse micelle extraction can be further improved in terms of environmental friendliness and sustainability. A central composite experimental design was used to investigate the effects of solution pH, KCl concentration, and sophorolipids concentration on the reverse micelle extraction of antibiotics. The most significant factor identified during the reverse micelle extraction of both antibiotics is the pH of aqueous solutions. Best forward extraction performance for erythromycin was found at feed phase pH of approximately 8.0 with low KCl and sophorolipids concentrations. Optimum recovery of erythromycin was obtained at stripping phase pH around 10.0 and with low KCl concentration. On the other hand, best forward extraction performance for amoxicillin was found at feed phase pH around 3.5 with low KCl concentration and high sophorolipids concentration. Optimum recovery of erythromycin was obtained at stripping phase pH around 6.0 with low KCl concentration. Both erythromycin and amoxicillin were found to be very sensitive toaqueous phase pH and can be easily degraded outside of their stable pH ranges.
  6. Marzo RR, Ahmad A, Abid K, Khatiwada AP, Ahmed A, Kyaw TM, et al.
    Vacunas, 2022 May;23:S33-S40.
    PMID: 34483788 DOI: 10.1016/j.vacun.2021.07.007
    BACKGROUND: With the surge of COVID-19 cases worldwide, vaccines against COVID-19 are also developing across the countries. However, the acceptability of COVID-19 vaccination among general people is questionable. The availability of several vaccines' options against COVID-19 has perplexed people regarding individual vaccines' efficacy and safety. Therefore, we aim to determine the acceptance, preferences, impact factors of future COVID-19 vaccines in Malaysia and the factors influencing the COVID-19 vaccination acceptance among vaccine demand and vaccine delay groups.

    MATERIAL AND METHODS: An online-based cross-sectional survey was conducted among Malaysian residents 18 years and above of either gender using the snowball sampling technique. A self-administered questionnaire was made available to participants through various social media networks, email, and telegram. The data obtained from the survey were analyzed using SPSS version 25.0. Association between background characteristics and respondents were analyzed using the Chi-square test in the vaccine delay group and vaccine acceptance group.

    RESULTS: Total of 1282 responses were considered for the study, mainly from male respondents (71%). Among the respondents, 95.9% thought that vaccination would be an effective way to prevent and control COVID-19, and 96% would accept vaccination if the COVID-19 vaccine were successfully developed and approved for listing in the future. Essential factors influencing vaccination decisions were vaccine convenience (95.7%) and doctor's recommendation (97.3%). Bivariate analysis revealed that age less than 24 years, Malay race, living in urban areas, tertiary education, students, single marital status, family income (Malaysian ringgits) RM 4,850 to RM 10,959 and >RM 10,960 were significantly associated with vaccine acceptance of COVID19 vaccination.

    CONCLUSION: All the factors influencing COVID-19 vaccine acceptance rates throughout the country should be studied on a larger scale, and appropriate steps to ensure vaccine acceptance among the public should be meticulously devised by the government and related authorities.

  7. Ahmad A, Jamil SNAM, Choong TSY, Abdullah AH, Faujan NH, Adeyi AA, et al.
    Polymers (Basel), 2022 Dec 10;14(24).
    PMID: 36559783 DOI: 10.3390/polym14245416
    Emerging dye pollution from textile industrial effluents is becoming more challenging for researchers worldwide. The contamination of water by dye effluents affects the living organisms in an ecosystem. Methylene blue (MB) and malachite green (MG) are soluble dyes with a high colour intensity even at low concentration and are hazardous to living organisms. The adsorption method is used in most wastewater plants for the removal of organic pollutants as it is cost-effective, has a high adsorption capacity, and good mechanical stabilities. In this study, a composite adsorbent was prepared by impregnating iron modified silica (FMS) onto polyurethane (PU) foam to produce an iron modified silica/polyurethane (FMS/PU) composite. The composite adsorbent was utilised in batch adsorption of the cationic dyes MB and MG. The effect of adsorption parameters such as the adsorbent load, pH, initial dye concentration, and contact time were discussed. Adsorption kinetics and isotherm were implemented to understand the adsorption mechanism for both dyes. It was found that the adsorption of MB and MG followed the pseudo-second order model. The Langmuir model showed a better fit than the Freundlich model for the adsorption of MB and MG, indicating that the adsorption occurred via the monolayer adsorption system. The maximum adsorption capacity of the FMS/PU obtained for MB was 31.7 mg/g, while for MG, it was 34.3 mg/g. The thermodynamic study revealed that the adsorption of MB and MG were exothermic and spontaneous at room temperature. In addition, the regeneration of FMS/PU was conducted to investigate the composite efficiency in adsorbing dyes for several cycles. The results showed that the FMS/PU composite could be regenerated up to four times when the regeneration efficiency dropped drastically to less than 20.0%. The impregnation of FMS onto PU foam also minimised the adsorbent loss into the environment.
  8. Tuan Naiwi TSR, Aung MM, Ahmad A, Rayung M, Su'ait MS, Yusof NA, et al.
    Polymers (Basel), 2018 Oct 12;10(10).
    PMID: 30961067 DOI: 10.3390/polym10101142
    Polyurethane acrylate (PUA) from vegetable oil has been synthesized and prepared for solid polymer electrolyte. Polyol has been end-capped with Toluene 2,4-Diisocyanate (TDI) followed by hydroxylethylmethylacrylate (HEMA) in a urethanation process to produce PUA. The mixtures were cured to make thin polymeric films under UV radiation to produce excellent cured films which exhibit good thermal stability and obtain high ionic conductivity value. 3 to 15 wt. % of ethylene carbonate (EC) mixed with 25 wt. % LiClO₄ was added to PUA to obtain PUA electrolyte systems. PUA modified with plasticizer EC 9 wt. % achieved the highest conductivity of 7.86 × 10-4 S/cm, and relatively improved the linear sweep voltammetry, transference number and dielectric properties. Fourier Transform Infrared Spectroscopy (FTIR) and dielectric analysis were presented. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), followed by X-ray Diffraction (XRD) and morphology have been studied. The addition of plasticizer to the polyurethane acrylate shows significant improvement in terms of the conductivity and performance of the polymer electrolyte.
  9. Singh AK, Mahto SK, Sinha R, Alibakhshikenari M, Al-Gburi AJA, Ahmad A, et al.
    Sensors (Basel), 2023 Nov 06;23(21).
    PMID: 37960695 DOI: 10.3390/s23218996
    In this paper, a low-cost resin-coated commercial-photo-paper substrate is used to design a printed reconfigurable multiband antenna. The two PIN diodes are used mainly to redistribute the surface current that provides reconfigurable properties to the proposed antenna. The antenna size of 40 mm × 40 mm × 0.44 mm with a partial ground, covers wireless and mobile bands ranging from 1.91 GHz to 6.75 GHz. The parametric analysis is performed to achieve optimized design parameters of the antenna. The U-shaped and C-shaped emitters are meant to function at 2.4 GHz and 5.9 GHz, respectively, while the primary emitter is designed to operate at 3.5 GHz. The proposed antenna achieved peak gain and radiation efficiency of 3.4 dBi and 90%, respectively. Simulated and measured results of the reflection coefficient, radiation pattern, gain, and efficiency show that the antenna design is in favorable agreement. Since the proposed antenna achieved wideband (1.91-6.75 GHz) using PIN diode configuration, using this technique the need for numerous electronic components to provide multiband frequency is avoided.
  10. Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, et al.
    PLoS One, 2020;15(5):e0233461.
    PMID: 32442190 DOI: 10.1371/journal.pone.0233461
    Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
  11. Noor-Hassim MB, Ng CL, Teo HM, Azmi WA, Muhamad-Zalan NB, Karim NB, et al.
    BioTechnologia (Pozn), 2023;104(2):209-216.
    PMID: 37427028 DOI: 10.5114/bta.2023.127209
    As the global human population continues to grow, the demand for food rises accordingly. Unfortunately, anthropogenic activities, climate change, and the release of gases from the utilization of synthetic fertilizers and pesticides are causing detrimental effects on sustainable food production and agroecosystems. Despite these challenges, there remain underutilized opportunities for sustainable food production. This review discusses the advantages and benefits of utilizing microbes in food production. Microbes can be used as alternative food sources to directly supply nutrients for both humans and livestock. Additionally, microbes offer higher flexibility and diversity in facilitating crop productivity and agri-food production. Microbes function as natural nitrogen fixators, mineral solubilizers, nano-mineral synthesizers, and plant growth regulator inducers, all of which promote plant growth. They are also active organisms in degrading organic materials and remediating heavy metals and pollution in soils, as well as soil-water binders. In addition, microbes that occupy the plant rhizosphere release biochemicals that have nontoxic effects on the host and the environment. These biochemicals could act as biocides in controlling agricultural pests, pathogens, and diseases. Therefore, it is important to consider the use of microbes for sustainable food production.
  12. Madinah R, Rusydi F, Fadilla RN, Khoirunisa V, Boli LSP, Saputro AG, et al.
    ACS Omega, 2023 Sep 19;8(37):34022-34033.
    PMID: 37744805 DOI: 10.1021/acsomega.3c04907
    Noncovalent interactions, such as dispersion, play a significant role in the stability of flexible molecules, such as curcumin. This study revealed the importance of dispersion correction in the structure and keto-enol tautomerization of curcumin, which has rarely been addressed in computational studies. We rigorously constructed all possible unique curcumin conformers in the enol and keto forms within the first-principles framework. Regardless of the different environments, we carefully explained the agreement between the computational geometry (in the gas phase) and the experimental measurement (in the polymorph) by using dispersion correction. The calculation results for the aqueous solution of conformational abundance, thermochemistry, and reaction kinetics support the experimental observations after considering the dispersion correction. The study also suggests a water-catalyzed mechanism for keto-enol tautomerization, where dispersion correction plays a role in decreasing the energy barrier and making the keto form thermochemically and kinetically favorable. Our results could be helpful in future computational studies to find a method for increasing the aqueous solubility of curcumin; hence, the potential of curcumin as a multifunctional medicine can be fully achieved.
  13. Irfandi R, Raya I, Ahmad A, Fudholi A, Santi S, Puspa Azalea W, et al.
    J Biomol Struct Dyn, 2023;41(22):12938-12950.
    PMID: 36690606 DOI: 10.1080/07391102.2023.2169764
    Breast cancer continues to be a major health issue for women all over the world. Cancer medications like cisplatin, which are widely used, still have negative side effects. The novel complex was created as a potential anticancer medication candidate that is both effective and safe, with few side effects. The Cu(II) complex using the prolinedithiocarbamate ligands was synthesized in situ. The Cu(II) complexes Characterization by UV-Vis, FT-IR spectroscopy and melting point determination, conductivity, and HOMO-LUMO were studied. Computational NMR spectrum analysis was performed. The interaction of Cu(II)prolineditiocarbamate complex with cancer cell target protein (MCF-7) was confirmed by molecular docking and molecular dynamic. The pharmacokinetic/ADMET properties were also performed on the complex. Results of the cytotoxic complex test against cancer cells (MCF-7) undergoing apoptosis with an IC50 value of 13.64 µg/mL showed high anticancer activity in MCF-7 cancer cells. The in-vivo data for Cu(II)prolineditiocarbamate complex was predicted using the Protox online tool with an LD50 value of 2500 mg/kg and belonging to the GHS toxicity class 5, which means the compound has a low acute toxicity effect. The Cu(II) prolineitiocarbamate complex may pave the way for the development of essential metal-based chemotherapy for the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.
  14. Al-Yateem N, Hijazi H, Saifan AR, Ahmad A, Masa'Deh R, Alrimawi I, et al.
    BMJ Open, 2023 Dec 22;13(12):e076326.
    PMID: 38135338 DOI: 10.1136/bmjopen-2023-076326
    OBJECTIVES: To identify language-related communication barriers that expatriate (non-Arabic) healthcare practitioners in the UAE encounter in their daily practice.

    DESIGN: Qualitative study utilising semi-structured in-depth interviews. The interviews were conducted in English language.

    SETTING: Different healthcare facilities across the UAE. These facilities were accessed for data collection over a period of 3 months from January 2023 to March 2023.

    PARTICIPANTS: 14 purposively selected healthcare practitioners.

    INTERVENTION: No specific intervention was implemented; this study primarily aimed at gaining insights through interviews.

    PRIMARY AND SECONDARY OUTCOMES: To understand the implications of language barriers on service quality, patient safety, and healthcare providers' well-being.

    RESULTS: Three main themes emerged from our analysis of participants' narratives: Feeling left alone, Trying to come closer to their patients and Feeling guilty, scared and dissatisfied.

    CONCLUSIONS: Based on the perspectives and experiences of participating healthcare professionals, language barriers have notably influenced the delivery of healthcare services, patient safety and the well-being of both patients and practitioners in the UAE. There is a pressing need, as highlighted by these professionals, for the inclusion of professional interpreters and the provision of training to healthcare providers to enhance effective collaboration with these interpreters.

  15. Khairuddin F, Zaharah Mohd Fuzi SF, Ahmad A, Oon LK, Bokhari A, Dailin DJ, et al.
    Chemosphere, 2024 Feb;350:141007.
    PMID: 38141667 DOI: 10.1016/j.chemosphere.2023.141007
    Recent advancement in biophotovoltaic systems using microalgae, coupled with biorefinery approach, would improve economy-feasibility in production. The major concern is its commercial strength in terms of scalability, strain selection and extraction procedure cost. It must compete with conventional feedstocks such as fossil fuels. This project proposes to enhance the economic feasibility of microalgae-based biorefinery by evaluating their performance for bio-electricity, bio-diesel and carotenoids production in a single cycle. The first part of the study was to construct and select a Bio-bottle Voltaic (BBV) device that would allow microalgae to grow and produce bioproducts, as well as generate the maximum current output reading derived from the microalgae's photosynthesis process. The second phase consisted of a 25-day investigation into the biorefinery performance of six different microalgal species in producing bio-electricity, bio-diesel and carotenoid in a prototype BBV device. The prototype BBV device with aluminium foil and pencil lead as its anode and cathode produced the highest carotenoid and biodiesel component production from the two microalgae tested, according to the results of the first phase of the experiment. In the second portion of the study, Scenedesmus dimorphus and Chlorella vulgaris were identified as the two microalgae most capable of maintaining their growth throughout the experiment. The maximum current reading observed for C. vulgaris was 653 mV. High Performance Liquid Chromatography analysis showed four major carotenoid compounds found which were Neoxanthin, Cantaxanthin, Astaxanthin and 9-cis antheraxanthin, and the highest carotenoid producer was C. vulgaris which recorded at 1.73 μg/mL. C. vulgaris recorded as the most alkanes producer with 22 compounds detected and Heptacosane and Heneicosane as the two major biodiesel compounds found in the extracts. Evaluation of C. vulgaris data showed that it has enormous potential for microalgal biorefinery candidates. Further ongoing research and development efforts for C. vulgaris will improve the economic viability of microalgae-based industries and reduce reliance on depleted fossil fuels.
  16. Rashid S, Anjum S, Ahmad A, Nadeem R, Ahmed M, Shah SAA, et al.
    Biomed Res Int, 2022;2022:6865472.
    PMID: 35865666 DOI: 10.1155/2022/6865472
    Betamethasone is an important glucocorticoids (GCs), frequently used to cure allergies (such as asthma and angioedema), Crohn's disease, skin diseases (such as dermatitis and psoriasis), systemic lupus erythematosus, rheumatic disorders, and leukemia. Present investigation deals to find potential agonist of glucocorticoid receptors after biotransformation of betamethasone dipropionate (1) and to carry out the molecular docking and ADME analyses. Biotransformation of 1 was carried out with Launaea capitata (dandy) roots and Musa acuminate (banana) leaves. M. acuminate furnished low-cost value-added products such as Sananone dipropionate (2) in 5% yields. Further, biocatalysis of Sananone dipropionate (2) with M. acuminate gave Sananone propionate (3) and Sananone (4) in 12% and 7% yields, respectively. However, Sananone (4) was obtained in 37% yields from Launaea capitata. Compound 5 was obtained in 11% yield after β-elimination of propionic acid at C-17 during oxidation of compound 1. The structure elucidation of new compounds 2-5 was accomplished through combined use of X-ray diffraction and NMR (1D and 2D) studies. In addition to this, molecular docking and ADME analyses of all transformed products of 1 were also done. Compounds 1-5 showed -12.53 to -10.11 kcal/mol potential binding affinity with glucocorticoid receptor (GR) and good ADME profile. Moreover, all the compounds showed good oral bioavailability with the octanol/water partition coefficient in the range of 2.23 to 3.65, which indicated that compounds 1-5 were in significant agreement with the given criteria to be considered as drug-like.
  17. Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Azam M, et al.
    PLoS One, 2016;11(3):e0150137.
    PMID: 26963622 DOI: 10.1371/journal.pone.0150137
    Hydrogen sulphide (H2S) is an emerging molecule in many cardiovascular complications but its role in left ventricular hypertrophy (LVH) is unknown. The present study explored the effect of exogenous H2S administration in the regression of LVH by modulating oxidative stress, arterial stiffness and expression of cystathione γ lyase (CSE) in the myocardium. Animals were divided into four groups: Control, LVH, Control-H2S and LVH-H2S. LVH was induced by administering isoprenaline (5mg/kg, every 72 hours, S/C) and caffeine in drinking water (62mg/L) for 2 weeks. Intraperitoneal NaHS, 56μM/kg/day for 5 weeks, was given as an H2S donor. Myocardial expression of Cystathione γ lyase (CSE) mRNA was quantified using real time polymerase chain reaction (qPCR).There was a 3 fold reduction in the expression of myocardial CSE mRNA in LVH but it was up regulated by 7 and 4 fold in the Control-H2S and LVH-H2S myocardium, respectively. Systolic blood pressure, mean arterial pressure, pulse wave velocity were reduced (all P<0.05) in LVH-H2S when compared to the LVH group. Heart, LV weight, myocardial thickness were reduced while LV internal diameter was increased (all P<0.05) in the LVH-H2S when compared to the LVH group. Exogenous administration of H2S in LVH increased superoxide dismutase, glutathione and total antioxidant capacity but significantly reduced (all P<0.05) plasma malanodialdehyde in the LVH-H2S compared to the LVH group. The renal cortical blood perfusion increased by 40% in LVH-H2S as compared to the LVH group. Exogenous administration of H2S suppressed the progression of LVH which was associated with an up regulation of myocardial CSE mRNA/ H2S and a reduction in pulse wave velocity with a blunting of systemic hemodynamic. This CSE/H2S pathway exhibits an antihypertrophic role by antagonizing the hypertrophic actions of angiotensin II(Ang II) and noradrenaline (NA) but attenuates oxidative stress and improves pulse wave velocity which helps to suppress LVH. Exogenous administration of H2S augmented the reduced renal cortical blood perfusion in the LVH state.
  18. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, et al.
    Front Chem, 2020;8:341.
    PMID: 32509720 DOI: 10.3389/fchem.2020.00341
    Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.
  19. Ahmad A, Sattar MA, Rathore HA, Khan SA, Lazhari MI, Afzal S, et al.
    Indian J Pharmacol, 2015 May-Jun;47(3):243-7.
    PMID: 26069359 DOI: 10.4103/0253-7613.157106
    In the family of gas transmitters, hydrogen sulfide (H2S) is yet not adequately researched. Known for its rotten egg smell and adverse effects on the brain, lungs, and kidneys for more than 300 years, the vasorelaxant effects of H2S on blood vessel was first observed in 1997. Since then, research continued to explore the possible therapeutic effects of H2S in hypertension, inflammation, pancreatitis, different types of shock, diabetes, and heart failure. However, a considerable amount of efforts are yet needed to elucidate the mechanisms involved in the therapeutic effects of H2S, such as nitric oxide-dependent or independent vasodilation in hypertension and regression of left ventricular hypertrophy. More than a decade of good repute among researchers, H2S research has certain results that need to be clarified or reevaluated. H2S produces its response by multiple modes of action, such as opening the ATP-sensitive potassium channel, angiotensin-converting enzyme inhibition, and calcium channel blockade. H2S is endogenously produced from two sulfur-containing amino acids L-cysteine and L-methionine by the two enzymes cystathionine γ lyase and cystathionine β synthase. Recently, the third enzyme, 3-mercaptopyruvate sulfur transferase, along with cysteine aminotransferase, which is similar to aspartate aminotransferase, has been found to produce H2S in the brain. The H2S has interested researchers, and a great deal of information is being generated every year. This review aims to provide an update on the developments in the research of H2S in hypertension amid the ambiguity in defining the exact role of H2S in hypertension because of insufficient number of research results on this area. This critical review on the role of H2S in hypertension will clarify the gray areas and highlight its future prospects.
  20. Nasim I, Ghani N, Nawaz R, Irfan A, Arshad M, Nasim M, et al.
    ACS Omega, 2024 Feb 13;9(6):6731-6740.
    PMID: 38371818 DOI: 10.1021/acsomega.3c07919
    Carbon nanotubes (CNTs) possess remarkable properties that make them valuable for various industrial applications. However, concerns have arisen regarding their potential adverse health effects, particularly in occupational settings. The main aim of this research was to examine the effects of short-term exposure to multiwalled carbon nanotube nanoparticles (MWCNT-NPs) on testicular oxidative stress in Swiss albino mice, taking into account various factors such as dosage, duration of exposure, and particle size of MWCNT-NP. In this study, 20 mice were used and placed into six different groups randomly. Four of these groups comprised four repetitions each, while the two groups served as the vehicle control with two repetitions each. The experimental groups received MWCNT-NP treatment, whereas the control group remained untreated. The mice in the experimental groups were exposed to MWCNT-NP for either 7 days or 14 days. Through oral administration, the MWCNT-NP solution was introduced at two distinct dosages: 0.45 and 0.90 μg, whereas the control group was subjected to distilled water rather than the MWCNT-NP solution. The investigation evaluated primary oxidative balance indicators-glutathione (GSH) and glutathione disulfide (GSSG)-in response to MWCNT-NP exposure. Significantly, a noticeable reduction in GSH levels and a concurrent increase in GSSG concentrations were observed in comparison to the control group. To better understand and explore the assessment of the redox status, the Nernst equation was used to calculate the redox potential. Intriguingly, the calculated redox potential exhibited a negative value, signifying an imbalance in the oxidative state in the testes. These findings suggest that short-term exposure to MWCNT-NP can lead to the initiation of testicular oxidative stress and may disrupt the male reproductive system. This is evident from the alterations observed in the levels of GSH and GSSG, as well as the negative redox potential. The research offers significant insights into the reproductive effects of exposure to MWCNTs and emphasizes the necessity of assessing oxidative stress in nanomaterial toxicity studies.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links