Displaying publications 4201 - 4220 of 9872 in total

Abstract:
Sort:
  1. Al Maini M, Al Weshahi Y, Foster HE, Chehade MJ, Gabriel SE, Saleh JA, et al.
    Clin Rheumatol, 2020 Mar;39(3):627-642.
    PMID: 31127461 DOI: 10.1007/s10067-019-04544-y
    Rheumatic and musculoskeletal diseases (RMDs) encompass a spectrum of degenerative, inflammatory conditions predominantly affecting the joints. They are a leading cause of disability worldwide and an enormous socioeconomic burden. However, worldwide deficiencies in adult and paediatric RMD knowledge among medical school graduates and primary care physicians (PCPs) persist. In October 2017, the World Forum on Rheumatic and Musculoskeletal Diseases (WFRMD), an international think tank of RMD and related experts, met to discuss key challenges and opportunities in undergraduate RMD education. Topics included needs analysis, curriculum content, interprofessional education, teaching and learning methods, implementation, assessment and course evaluation and professional formation/career development, which formed a framework for this white paper. We highlight a need for all medical graduates to attain a basic level of RMD knowledge and competency to enable them to confidently diagnose, treat/manage or refer patients. The importance of attracting more medical students to a career in rheumatology, and the indisputable value of integrated, multidisciplinary and multiprofessional care are also discussed. We conclude that RMD teaching for the future will need to address what is being taught, but also where, why and to whom, to ensure that healthcare providers deliver the best patient care possible in their local setting.
    Matched MeSH terms: Education, Medical, Undergraduate/methods*; Rheumatology/methods
  2. Che Sulaiman IS, Chieng BW, Osman MJ, Ong KK, Rashid JIA, Wan Yunus WMZ, et al.
    Mikrochim Acta, 2020 01 15;187(2):131.
    PMID: 31940088 DOI: 10.1007/s00604-019-3893-8
    This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.
    Matched MeSH terms: Colorimetry/methods*; Biosensing Techniques/methods
  3. Chung WH, Eu WC, Chiu CK, Chan CYW, Kwan MK
    J Orthop Surg (Hong Kong), 2019 12 27;28(1):2309499019888977.
    PMID: 31876259 DOI: 10.1177/2309499019888977
    PURPOSE: To describe the reduction technique of thoracolumbar burst fracture using percutaneous monoaxial screws and its radiological outcomes compared to polyaxial screws.

    METHODS: All surgeries were performed by minimally invasive technique with either percutaneous monoaxial or percutaneous polyaxial screws inserted at adjacent fracture levels perpendicular to both superior end plates. Fracture reduction is achieved with adequate rod contouring and distraction maneuver. Radiological parameters were measured during preoperation, postoperation, and follow-up.

    RESULTS: A total of 21 patients were included. Eleven patients were performed with monoaxial pedicle screws and 10 patients performed with polyaxial pedicle screws. Based on AO thoracolumbar classification system, 10 patients in the monoaxial group had A3 fracture type and 1 had A4. In the polyaxial group, six patients had A3 and four patients had A4. Total correction of anterior vertebral height (AVH) ratio was 0.30 ± 0.10 and 0.08 ± 0.07 in monoaxial and polyaxial groups, respectively (p < 0.001). Total correction of posterior vertebral height (PVH) ratio was 0.11 ± 0.05 and 0.02 ± 0.02 in monoaxial and polyaxial groups, respectively (p < 0.001). Monoaxial group achieved more correction of 13° (62.6%) in local kyphotic angle compared to 8.2° (48.0%) in polyaxial group. Similarly, in regional kyphotic angle, 16.5° (103.1%) in the monoaxial group and 8.1° (76.4%) in the polyaxial group were achieved.

    CONCLUSIONS: Monoaxial percutaneous pedicle screws inserted at adjacent fracture levels provided significantly better fracture reduction compared to polyaxial screws in thoracolumbar fractures.

    Matched MeSH terms: Fracture Fixation, Internal/methods*; Reconstructive Surgical Procedures/methods*
  4. Aslannif R, Suraya K, Koh HB, Tey YS, Tan KL, Tham CH, et al.
    Med J Malaysia, 2019 12;74(6):521-526.
    PMID: 31929479
    INTRODUCTION: Apical Hypertrophic Cardiomyopathy (Apical HCM) is an uncommon variant of hypertrophic cardiomyopathy, but it is relatively more common in Asian countries. This is a retrospective, non-randomised, single centre study of patients with Apical HCM focusing on their diastolic dysfunction grading, echocardiographic parameters and electrocardiograms (ECG).

    METHODS: All Apical HCM patients coming for clinic visits at the Institut Jantung Negara from September 2017 to September 2018 were included. We assessed their echocardiography images, grade their diastolic function and reviewed their ECG on presentation.

    RESULTS: Fifty patient were included, 82% (n=41) were males and 18% (n=9) females. The diastolic function grading of 37 (74%) patients were able to be determined using the updated 2016 American Society of Echocardiography (ASE) diastolic guidelines. Fifty percent (n=25) had the typical ace-ofspades shape left ventricle (LV) appearance in diastole and 12% (n=6) had apical pouch. All patients had T inversion in the anterior leads of their ECG, and only 52% (n=26) fulfilled the ECG left ventricular hypertrophy (LVH) criteria. Majority of our patients presented with symptoms of chest pain (52%, n=26) and dyspnoea (42%, n=21).

    CONCLUSION: The updated 2016 ASE guideline makes it easier to evaluate LV diastolic function in most patients with Apical HCM. It also helps in elucidating the aetiology of dyspnoea, based on left atrial pressure. Clinicians should have a high index of suspicion for Apical HCM when faced with deep T inversion on ECG, in addition to a thick LV apex with an aceof- spades appearance during diastole.

    Matched MeSH terms: Echocardiography/methods*; Electrocardiography/methods*
  5. Salam NA, Naeem MA, Malik NS, Riaz M, Shahiq-Uz-Zaman -, Masood-Ur-Rehman -, et al.
    Pak J Pharm Sci, 2020 Jan;33(1(Supplementary)):269-279.
    PMID: 32122858
    The main objective of the present study was to explore the potential of matrix tablets as extended release dosage form of tianeptine, using HMPC K100 as a polymer. HPMC K100 extended the release of the drug from formulation due to the gel-like structure. Direct compression method was adopted to compress the tablets using different concentrations of polymer. Tablets were evaluated for pre-compression and post-compression parameters. Drug release study showed that tablet extends the release of drug with the increasing concentration of polymer. Drug, polymers and tablets were analyzed and/or characterized for compatibility, degradation, thermal stability, amorphous or crystalline nature via FTIR, DSC, TGA, XRD studies. SEM study predicted that tablets had a uniform structure. HPMC K100 based tablets were similar to that of the reference product. Acute toxicity study conducted on Swiss albino mice showed that matrix tablets were safe and non-toxic, as no changes in physical activity and functions of organs were observed. Biochemical and histopathological study revealed lack of any kind of abnormality in liver and renal function. Moreover, necrotic changes were absent at organ level.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*; Toxicity Tests, Acute/methods*
  6. Nor Hanipah Z, Hsin MC, Liu CC, Huang CK
    Surg Obes Relat Dis, 2019 May;15(5):696-702.
    PMID: 30935839 DOI: 10.1016/j.soard.2019.01.016
    BACKGROUND: Laparoscopic loop duodenojejunal bypass with sleeve gastrectomy (LDJB-SG) is a new metabolic procedure. Our initial data on type 2 diabetes (T2D) remission after LDJB-SG were promising.

    OBJECTIVES: The aim of this study was to look at our intermediate outcomes after LDJB-SG.

    SETTING: An academic medical center.

    METHODS: A prospective analysis of T2D patients who underwent LDJB-SG between October 2011 and October 2014 was performed. Data collected included baseline demographic, body mass index, fasting blood glucose, glycosylated hemoglobin, C-peptide, resolution of co-morbidities, and postoperative complications.

    RESULTS: A total of 163 patients with minimum of follow-up >1 year were enrolled in this study (57 men and 106 women). The mean age and body mass index were 47.7 (±10.7) years and a 30.2 (±5.1) kg/m2, respectively. There were 119 patients on oral hypoglycemic agents only, 29 patients were on oral hypoglycemic agents and insulin, 3 patients were on insulin only, and the other 12 patients were not on diabetic medication. Mean operation time and length of hospital stay were 144.7 (± 45.1) minutes and 2.4 (± 1.0) days, respectively. Seven patients (3.6%) needed reoperation due to bleeding (n = 1), anastomotic leak (n = 2), sleeve strictures (n = 2), and incisional hernia (n = 2). At 2 years of follow-up, there were 56 patients. None of the patients were on insulin and only 20% of patients were on oral hypoglycemic agents. Mean body mass index significantly dropped to 22.9 (±5.6) kg/m2 at 2 years. The mean preoperative fasting blood glucose, glycosylated hemoglobin, and C-peptide levels were 174.7 mg/dL (± 61.0), 8.8% (±1.8), and 2.6 (±1.7) ng/mL, respectively. The mean fasting blood glucose, glycosylated hemoglobin, and C-peptide at 2 years were 112.5 (±60.7) mg/dL, 6.4% (±2.0), and 1.5 (±0.6) ng/mL, respectively. No patient needed revisional surgery because of dumping syndrome, marginal ulcer, or gastroesophageal reflux disease at the last follow up period.

    CONCLUSION: At 2 years, LDJB-SG is a relatively safe and effective metabolic surgery with significant weight loss and resolution of co-morbidities.

    Matched MeSH terms: Gastrectomy/methods*; Laparoscopy/methods*
  7. Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, et al.
    Mikrochim Acta, 2020 04 12;187(5):266.
    PMID: 32279134 DOI: 10.1007/s00604-020-4218-7
    An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
    Matched MeSH terms: Biosensing Techniques/methods*; Electrochemical Techniques/methods*
  8. Kassim A, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Mahmud K, et al.
    Ecotoxicol Environ Saf, 2020 Jun 15;196:110527.
    PMID: 32278138 DOI: 10.1016/j.ecoenv.2020.110527
    Assessment of eco-toxicant using bioluminescent bacterial assay is a widely used and globally accepted method. In this work, a new luminescent bacterium was isolated from squid (Loligo duvauceli) and identified as Photobacterium leiognathi strain AK-MIE using 16S rRNA, phylogeny analysis. The predicted optimum conditions by RSM were 2.76% (w/v) NaCl, 2.28% (w/v) peptone, 0.34% (w/v) yeast extract, and pH 6.83 with 541,211.80 RLU of luminescent production whereas the predicted optimum conditions by ANN were 2.21% (w/v) NaCl, 2.27% (w/v) peptone, 0.39% (w/v) yeast extract, and pH 6.94 which produced 541,986.20 RLU. The validation analysis of both RSM and ANN show 0.60% and 0.69% deviation from the predicted results indicating that both models provided good quality predictions with ANN showing a superior data fitting capability for non-linear regression analysis. Toxicity tests show strain AK-MIE was sensitive to mercury (concentration causing 50% inhibition or IC50 of 0.00978 mgL-1), followed by cadmium (IC50 of 0.5288 mgL-1), copper IC50 of (0.8117 mgL-1), silver (IC50 of 1.109 mgL-1), and lead (IC50 of 10.71 mgL-1) which are more sensitive than previously isolated luminescent bacteria, suggesting that strain AK-MIE has the potential to be used in toxicity assessment of heavy metals in the environment. Based on the field trial results, several sediment samples from industrial areas in Bangi, Selangor managed to inhibit the bioluminescence of strain AK-MIE. Validation method carried out using ICP-MS proved the presence of several toxic heavy metal elements.
    Matched MeSH terms: Environmental Monitoring/methods*; Luminescent Measurements/methods*
  9. Alaini R, Rajikan R, Elias SM
    BMC Public Health, 2019 Jun 13;19(Suppl 4):546.
    PMID: 31196148 DOI: 10.1186/s12889-019-6872-4
    BACKGROUND: Poor dietary habits have been identified as one of the cancer risks factors in various epidemiological studies. Consumption of healthy and balance diet is crucial to reduce cancer risk. Cancer prevention food plan should consist of all the right amounts of macronutrients and micronutrients. Although dietary habits could be changed, affordability of healthy foods has been a major concern, as the price of healthy foods are more expensive the unhealthy counterparts.

    METHODS: Therefore, using linear programming, this study is aimed to develop a healthy and balanced menu with minimal cost in accordance to individual needs that could in return help to prevent cancer. A cross sectional study involving 100 adults from a local university in Kuala Lumpur was conducted in 3 phases. The first phase is the data collection for the subjects, which includes their socio demographic, anthropometry and diet recall. The second phase was the creation of a balanced diet model at a minimum cost. The third and final phase was the finalization of the cancer prevention menu. Optimal and balanced menus were produced based on respective guidelines of WCRF/AICR (World Cancer Research Fund/ American Institute for Cancer Research) 2007, MDG (Malaysian Dietary Guidelines) 2010 and RNI (Recommended Nutrient Intake) 2017, with minimum cost.

    RESULTS: Based on the diet recall, most of subjects did not achieve the recommended micronutrient intake for fiber, calcium, potassium, iron, B12, folate, vitamin A, vitamin E, vitamin K, and beta-carotene. While, the intake of sugar (51 ± 19.8 g), (13% ± 2%) and sodium (2585 ± 544 g) was more than recommended. From the optimization model, three menus, which met the dietary guidelines for cancer prevention by WCRF/AICR 2007, MDG 2010 and RNI 2017, with minimum cost of RM7.8, RM9.2 and RM9.7 per day were created.

    CONCLUSION: Linear programming can be used to translate nutritional requirements based on selected Dietary Guidelines to achieve a healthy, well-balanced menu for cancer prevention at minimal cost. Furthermore, the models could help to shape consumer food choice decision to prevent cancer especially for those in low income group where high cost for health food has been the main deterrent for healthy eating.

    Matched MeSH terms: Diet/methods*; Healthy Diet/methods*
  10. Yildirim O, Baloglu UB, Tan RS, Ciaccio EJ, Acharya UR
    Comput Methods Programs Biomed, 2019 Jul;176:121-133.
    PMID: 31200900 DOI: 10.1016/j.cmpb.2019.05.004
    BACKGROUND AND OBJECTIVE: For diagnosis of arrhythmic heart problems, electrocardiogram (ECG) signals should be recorded and monitored. The long-term signal records obtained are analyzed by expert cardiologists. Devices such as the Holter monitor have limited hardware capabilities. For improved diagnostic capacity, it would be helpful to detect arrhythmic signals automatically. In this study, a novel approach is presented as a candidate solution for these issues.

    METHODS: A convolutional auto-encoder (CAE) based nonlinear compression structure is implemented to reduce the signal size of arrhythmic beats. Long-short term memory (LSTM) classifiers are employed to automatically recognize arrhythmias using ECG features, which are deeply coded with the CAE network.

    RESULTS: Based upon the coded ECG signals, both storage requirement and classification time were considerably reduced. In experimental studies conducted with the MIT-BIH arrhythmia database, ECG signals were compressed by an average 0.70% percentage root mean square difference (PRD) rate, and an accuracy of over 99.0% was observed.

    CONCLUSIONS: One of the significant contributions of this study is that the proposed approach can significantly reduce time duration when using LSTM networks for data analysis. Thus, a novel and effective approach was proposed for both ECG signal compression, and their high-performance automatic recognition, with very low computational cost.

    Matched MeSH terms: Electrocardiography/methods*; Data Compression/methods*
  11. Goh CF, Ong ET
    Curr Pharm Teach Learn, 2019 06;11(6):621-629.
    PMID: 31213319 DOI: 10.1016/j.cptl.2019.02.025
    BACKGROUND AND PURPOSE: The flipped classroom has not been fully exploited to improve tertiary education in Malaysia. A transformation in pharmacy education using flipped classrooms will be pivotal to resolve poor academic performance in certain courses. This study aimed to investigate the effectiveness of the flipped classroom in improving student learning and academic performance in a course with a historically low pass rate.

    EDUCATIONAL ACTIVITY AND SETTING: A quasi-experimental pre- and posttest control group design was employed. The experimental group experienced the flipped classroom for selected topics while the control group learned in a traditional classroom. Analysis of covariance was utilized to compare the performance on the final exam using the grade point of a pre-requisite course as the covariate. Students' perceptions of their experience in the flipped classroom were gauged through a web-based survey.

    FINDINGS: Student performance on the final exam was significantly higher in the flipped classroom group. The lowest-scoring students benefitted the most in terms of academic performance. More than two-thirds of students responded positively to the use of the flipped classroom and felt more confident while participating in classes and tests.

    SUMMARY: The flipped classroom is academically beneficial in a challenging course with a historically low pass rate; it was also effective in stimulating learning interest. The current study identified that for the flipped classroom to be successful, the role of educators, the feasibility of the approach, and the acceptance of students were important.

    Matched MeSH terms: Education, Pharmacy/methods; Educational Measurement/methods
  12. Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, et al.
    Carbohydr Polym, 2021 Sep 01;267:118136.
    PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136
    Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
    Matched MeSH terms: Tissue Engineering/methods; Solid Phase Extraction/methods
  13. Tan JM, Bullo S, Fakurazi S, Hussein MZ
    Sci Rep, 2020 10 09;10(1):16941.
    PMID: 33037287 DOI: 10.1038/s41598-020-73963-8
    This research work represents the first major step towards constructing an effective therapeutic silibinin (SB) in cancer treatment using oxidised multi-walled carbon nanotubes (MWCNT-COOH) functionalised with biocompatible polymers as the potential drug carrier. In an attempt to increase the solubility and dispersibility of SB-loaded nanotubes (MWSB), four water-soluble polymers were adopted in the preparation process, namely polysorbate 20 (T20), polysorbate 80 (T80), polyethylene glycol (PEG) and chitosan (CHI). From the geometry point of view, the hydrophobic regions of the nanotubes were loaded with water-insoluble SB while the hydrophilic polymers functionalised on the outer surfaces of the nanotubes serve as a protective shell to the external environment. The chemical interaction between MWSB nanocomposites and polymer molecules was confirmed by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Besides, high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA) and UV-visible spectrophotometry were also employed to characterise the synthesised nanocomposites. The morphological study indicated that the polymers were deposited on the external surfaces of MWSB and the nanocomposites were seen to preserve their tubular structures even after the coating process was applied. The TGA results revealed that the incorporation of biopolymers practically improved the overall thermal stability of the coated MWSB nanocomposites. Evaluation of the in vitro effect on drug release rate by the nanocomposites was found to follow a biphasic release manner, showing a fast release at an initial stage and then a sustained-release over 2500 min. Besides, the drug release mechanisms of the nanocomposites demonstrated that the amount of SB released in the simulated environment was governed by pseudo-second order in which, the rate-limiting step mainly depends on diffusion of drug through chemisorption reaction. Finally, MTT assay showed that the coated MWSB nanocomposites on 3T3 cells were very much biocompatible at a concentration up to 100 g/mL, which is an evidence of MWSB reduced cytotoxicity.
    Matched MeSH terms: Spectrum Analysis, Raman/methods; Spectroscopy, Fourier Transform Infrared/methods
  14. Sii CKS, Lee JA, Nah SA
    Pediatr Surg Int, 2020 Dec;36(12):1407-1411.
    PMID: 33068142 DOI: 10.1007/s00383-020-04760-7
    PURPOSE: The COVID-19 pandemic has placed extraordinary demands on healthcare services worldwide. Some have reported increased viral transmission to healthcare workers during aerosol-generating procedures such as intubation. We report our experience with universal preoperative and preprocedural screening for COVID-19 in children requiring general anaesthesia with low risk of having the infection.

    METHODS: This was a data review involving children aged 

    Matched MeSH terms: Preoperative Care/methods*; Clinical Laboratory Techniques/methods*
  15. Krishnappa P, Ramakrishnappa S, Kulkarni MH
    J Environ Pathol Toxicol Oncol, 2013;32(2):149-55.
    PMID: 24099428
    Fine-needle aspiration (FNA) cytology of the thyroid is usually performed on an outpatient basis. The results of FNA are operator dependent and may be affected by the lesion characteristics and the aspiration technique. In current practice ultrasound (US) is widely used to guide the needle for aspiration of nondominant nodules. Our study aimed to compare the free-hand FNA with US-guided FNA in the evaluation of thyroid nodules. A total of 91 cases of thyroid lesions were studied at the Department of Pathology, Karnataka Institute of Medical Sciences, Hubli, India. All the cases underwent free-hand and US-guided FNA. The cytological samples from both procedures were analyzed for adequacy, cytological features, and possible diagnosis. The results were correlated with histopathological diagnosis whenever possible. Of 91 aspirates, 89 were satisfactory and 2 were unsatisfactory on US-guided FNA, whereas 85 were satisfactory and 6 were unsatisfactory in free-hand FNA. Of 91 cases 68 (74.7%) were nonneoplastic lesions and 21 (23.1%) were neoplastic lesions in US-guided FNA, whereas 67 cases (73.6%) were nonneoplastic and 18 cases (19.8%) were neoplastic in free-hand FNA. Histopathological study was possible in 25 patients, among whom 15 lesions were nonneoplastic and 10 were neoplastic. Sensitivity and specificity of US-guided FNA to detect neoplastic lesions were 81.81% and 92.85%, respectively, compared with free-hand FNA, for which the sensitivity and specificity were 54.54% and 92.85%, respectively. The diagnostic accuracy of guided FNA was 88% against the 76% accuracy rate of free-hand FNA. US-guided FNA provides a better representative sample and has a higher diagnostic rate in the evaluation of thyroid lesions.
    Matched MeSH terms: Ultrasonography, Interventional/methods; Biopsy, Fine-Needle/methods*
  16. Yap LB, Nguyen ST, Qadir F, Ma SK, Muhammad Z, Koh KW, et al.
    Acta Cardiol, 2016 Jun;71(3):323-30.
    PMID: 27594128 DOI: 10.2143/AC.71.3.3152093
    Matched MeSH terms: Electrocardiography/methods*; Cardiac Resynchronization Therapy/methods
  17. Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, et al.
    Arch Pharm Res, 2018 Feb;41(2):111-129.
    PMID: 29214601 DOI: 10.1007/s12272-017-0995-x
    The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.
    Matched MeSH terms: Drug Delivery Systems/methods; Nanomedicine/methods
  18. Alwi M, Budi RR, Mood MC, Leong MC, Samion H
    Cardiol Young, 2013 Apr;23(2):197-202.
    PMID: 22640635 DOI: 10.1017/S1047951112000595
    Objective: To determine the feasibility and safety of the Conquest Pro wire as an alternative to radiofrequency wire for perforation of atretic pulmonary valve and subsequent balloon dilatation and patent ductus arteriosus stenting in patients with pulmonary atresia with intact ventricular septum.
    Background: Radiofrequency valvotomy and balloon dilatation has become the standard of care for pulmonary atresia with intact ventricular septum in many institutions today.
    Methods: We report eight consecutive patients in whom we used the Conquest Pro coronary guidewire, a stiff wire normally reserved for revascularisation of coronary lesions with chronic total occlusion, for perforation of atretic pulmonary valve and subsequent balloon dilatation, and stenting of the patent ductus arteriosus.
    Results: Perforation of atretic pulmonary valve was successful in seven out of eight cases. Radiofrequency valvotomy was employed after failure of perforation by the Conquest Pro wire in one case where the right ventricular outflow tract was broad based and tapered towards the pulmonary valve, and was heavily trabeculated. Failure of the Conquest Pro wire to perforate the pulmonary valve plate was mainly attributed by the failure to engage the wire at the correct position.
    Conclusion: The Conquest Pro wire for perforation and subsequent interventions in the more straightforward cases of pulmonary atresia with intact ventricular septum is effective and safe, simplifying the entire procedure. However, the radiofrequency generator and wires remain essential tools in the paediatric interventional catheter laboratory.
    Matched MeSH terms: Cardiac Catheterization/methods; Balloon Valvuloplasty/methods
  19. Abdullah-Zawawi MR, Ahmad-Nizammuddin NF, Govender N, Harun S, Mohd-Assaad N, Mohamed-Hussein ZA
    Sci Rep, 2021 10 04;11(1):19678.
    PMID: 34608238 DOI: 10.1038/s41598-021-99206-y
    Transcription factors (TFs) form the major class of regulatory genes and play key roles in multiple plant stress responses. In most eukaryotic plants, transcription factor (TF) families (WRKY, MADS-box and MYB) activate unique cellular-level abiotic and biotic stress-responsive strategies, which are considered as key determinants for defense and developmental processes. Arabidopsis and rice are two important representative model systems for dicot and monocot plants, respectively. A comprehensive comparative study on 101 OsWRKY, 34 OsMADS box and 122 OsMYB genes (rice genome) and, 71 AtWRKY, 66 AtMADS box and 144 AtMYB genes (Arabidopsis genome) showed various relationships among TFs across species. The phylogenetic analysis clustered WRKY, MADS-box and MYB TF family members into 10, 7 and 14 clades, respectively. All clades in WRKY and MYB TF families and almost half of the total number of clades in the MADS-box TF family are shared between both species. Chromosomal and gene structure analysis showed that the Arabidopsis-rice orthologous TF gene pairs were unevenly localized within their chromosomes whilst the distribution of exon-intron gene structure and motif conservation indicated plausible functional similarity in both species. The abiotic and biotic stress-responsive cis-regulatory element type and distribution patterns in the promoter regions of Arabidopsis and rice WRKY, MADS-box and MYB orthologous gene pairs provide better knowledge on their role as conserved regulators in both species. Co-expression network analysis showed the correlation between WRKY, MADs-box and MYB genes in each independent rice and Arabidopsis network indicating their role in stress responsiveness and developmental processes.
    Matched MeSH terms: Computational Biology/methods; Genomics/methods*
  20. Vyas T, Rapalli VK, Chellappan DK, Dua K, Dubey SK, Singhvi G
    Life Sci, 2021 Dec 15;287:120148.
    PMID: 34785190 DOI: 10.1016/j.lfs.2021.120148
    BACKGROUND: Biofilms are microcolonies of microbes that form communities with a variety of microbes, exhibit the same gene composition but differ in gene expression. Biofilm-associated infections have been in existence for a long, however, biofilm-associated skin disorders have not been investigated much.

    OBJECTIVES: Biofilms, which are made mostly of the matrix can be thought of as communities of microbes that are more virulent and more difficult to eradicate as compared to their planktonic counterparts. Currently, several formulations are available in the market which have the potential to treat biofilm-assisted skin disorders. However, the existing pharmacotherapies are not competent enough to cure them effectively and entirely, in several cases.

    KEY FINDINGS: Especially with the rising resistance towards antibiotics, it has become particularly challenging to ameliorate these disorders completely. The new approaches are being used to combat biofilm-associated skin disorders, some of them being photodynamic therapy, nanotherapies, and the use of novel drug delivery systems. The focus of attention, however, is nanotherapy. Micelles, solid lipid nanoparticles, quatsomes, and many others are being considered to find a better solution for the biofilm-associated skin disorders.

    SIGNIFICANCE: This review is an attempt to give a perspective on these new approaches for treating bacterial biofilms associated with skin disorders.

    Matched MeSH terms: Drug Delivery Systems/methods*; Nanotechnology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links