Displaying publications 521 - 540 of 6933 in total

Abstract:
Sort:
  1. Asif M, Jabeen Q, Abdul-Majid AM, Atif M
    Pak J Pharm Sci, 2014 Nov;27(6):1811-7.
    PMID: 25362605
    The aim of the study was to evaluate the effect of crude aqueous extract of Boswellia serrata Roxb. oleo gum on urinary electrolytes, pH and diuretic activity in normal albino rats. Moreover, acute toxicity of the gum extract was assessed using mice. Albino rats were divided into five groups. Control group received normal saline (10 mg/kg), reference group received furosemide (10 mg/kg) and test groups were given different doses of crude extract (10, 30 and 50 mg/kg) by intra-peritoneal route, respectively. The Graph Pad Prism was used for the statistical analysis and p < 0.05 was considered statistically significant. Significant diuretic, kaliuretic and natriuretic effects were observed in the treated groups in a dose dependent manner. Diuretic index showed good diuretic activity of the crude extract. Lipschitz values indicated that the crude extract, at the dose of 50 mg/kg, showed 44 % diuretic activity compared to the reference drug. No lethal effects were observed among albino mice even at the higher dose of 3000 mg/kg. It is concluded that aqueous extract of Boswellia serrata oleo gum, at the dose of 50 mg/kg showed significant effects on urinary volume and concentration of urinary electrolytes with no signs of toxicity.
    Matched MeSH terms: Diuretics/pharmacology*; Plant Extracts/pharmacology*
  2. Cyranoski D
    Nat Med, 2005 Sep;11(9):912.
    PMID: 16145563 DOI: 10.1038/nm0905-912a
    Matched MeSH terms: Aphrodisiacs/pharmacology*; Plant Extracts/pharmacology
  3. Fan L, Wei Y, Chen Y, Jiang S, Xu F, Zhang C, et al.
    Food Chem, 2023 Mar 01;403:134419.
    PMID: 36191421 DOI: 10.1016/j.foodchem.2022.134419
    This study investigatedthe mechanism of epinecidin-1 against Botrytis cinerea, in vitro, and its effectiveness at inhibiting gray mold on postharvest peach fruit. We found that in vitro, epinecidin-1 had significantly greater antifungal activity against B. cinerea than either clavanin-A or mytimycin, two other marine derived antimicrobial peptides that we tested. Its antifungal activity was heat-resistant (15 min at 40-100 °C) and tolerant to lower concentrations of cations (<100 mM Na+, K+; <10 mM Ca2+). Epinecidin-1 interacted directly with B. cinerea genomic DNA, and that in mycelia, epinecidin-1 exposure induced accumulation of intracellular ROS and increased the permeability of cell membranes resulting in leakage of nucleic acids and aberrant cell morphology. Meanwhile, 200 μM of epinecidin-1 had a significant inhibitory effect on gray mold injected into peach fruit. These results suggested that epinecidin-1 showed promise as a potential method for controlling postharvest gray mold in peaches.
    Matched MeSH terms: Antifungal Agents/pharmacology; Peptides/pharmacology
  4. Ang HH, Sim MK
    Arch Pharm Res, 1998 Dec;21(6):779-81.
    PMID: 9868556 DOI: 10.1007/BF02976776
    The aim of this study is to provide evidence on the aphrodisiac property of Eurycoma longifolia Jack. An electric grid was used as an obstruction in the electrical copulation cage in order to determine how much an aversive stimulus the sexually naive male rat for both the treated with E. longifolia Jack and control groups were willing to overcome to reach the estrous receptive female in the goal cage. The intensity of the grid current was maintained at 0.12 mA and this was the intensity in which the male rats in the control group failed to crossover to reach the goal cage. Results showed that E. longifolia Jack continued to enhance and also maintain a high level of both the total number of successful crossovers, mountings, intromissions and ejaculations during the 9-12th week observation period. In conclusion, these results further enhanced and strengthened the aphrodisiac property of E. longifolia Jack.
    Matched MeSH terms: Aphrodisiacs/pharmacology*; Plant Extracts/pharmacology*
  5. Shahzad S, Batool Z, Afzal A, Haider S
    Metab Brain Dis, 2022 Dec;37(8):2793-2805.
    PMID: 36152087 DOI: 10.1007/s11011-022-01090-6
    Quercetin, a polyphenolic compound found in a variety of plant products possesses various biological activities and beneficial effects on human health. Schizophrenia (SZ) is one of the neuropsychiatric disorders in human beings with rapid mortality and intense morbidity which can be treated with antipsychotics, but these commercial drugs exert adverse effects and have less efficacy to treat the full spectrum of SZ. The present study was conducted to evaluate neuroprotective effects of quercetin in the preventive and therapeutic treatment of SZ. Quercetin was administered as pre- and post-regimens at the dose of 50 mg/kg in dizocilpine-induced SZ rat model for two weeks. Rats were then subjected for the assessment of different behaviors followed by biochemical, neurochemical, and inflammatory marker analyses. The present findings revealed that quercetin significantly reverses the effects of dizocilpine-induced psychosis-like symptoms in all behavioral assessments as well as it also combats oxidative stress. This flavonoid also regulates dopaminergic, serotonergic, and glutamatergic neurotransmission. A profound effect on inflammatory cytokines and decreased %DNA fragmentation was also observed following the administration of quercetin. The findings suggest that quercetin can be considered as a preventive as well as therapeutic strategy to attenuate oxidative stress and cytokine toxicity, regulate neurotransmission, and prevent enhanced DNA fragmentation that can lead to the amelioration of psychosis-like symptoms in SZ.
    Matched MeSH terms: Antioxidants/pharmacology; Dizocilpine Maleate/pharmacology
  6. Shahruzaman SH, Yusof FZ, Maniam S, Fakurazi S, Maniam S
    BMC Complement Med Ther, 2021 Oct 01;21(1):245.
    PMID: 34598696 DOI: 10.1186/s12906-021-03417-9
    BACKGROUND: Adaptive metabolic response towards a low oxygen environment is essential to maintain rapid tumour proliferation and progression. The vascular network that surrounds the tumour develops an intermittent hypoxic condition and stimulates hypoxia-inducing factors. Baeckea frutescens is used in traditional medicine and known to possess antibacterial and cytoprotective properties. In this study, the cytotoxic effect of B. frutescens leaves and branches extracts against hypoxic human breast cancer (MCF-7) was investigated.

    METHOD: The extracts were prepared using Soxhlet apparatus for ethanol and hexane extracts while the water extracts were freeze-dried. In vitro cytotoxic activities of B. frutescens extracts of various concentrations (20 to 160 μg/mL) at 24, 48, and 72 hours time points were studied using MTT in chemically induced hypoxic condition and in 3-dimensional in vitro cell culture system. An initial characterisation of B. frutescens extracts was carried out using Fourier-transform Infrared- Attenuated Total Reflection (FTIR-ATR) to determine the presence of functional groups.

    RESULTS: All leaf extracts except for water showed IC50 values ranging from 23 -158 μg/mL. Hexane extract showed the lowest IC50 value (23 μg/mL), indicating its potent cytotoxic activity. Among the branch extracts, only the 70% ethanolic extract (B70) showed an IC50 value. The hexane leaf extract tested on 3- dimensional cultured cells showed an IC50 value of 17.2 μg/mL. The FTIR-ATR spectroscopy analysis identified various characteristic peak values with different functional groups such as alcohol, alkenes, alkynes, carbonyl, aromatic rings, ethers, ester, and carboxylic acids. Interestingly, the FTIR-ATR spectra report a complex and unique profile of the hexane extract, which warrants further investigation.

    CONCLUSION: Adaptation of tumour cells to hypoxia significantly contributes to the aggressiveness and chemoresistance of different tumours. The identification of B. frutescens and its possible role in eliminating breast cancer cells in hypoxic conditions defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Plant Extracts/pharmacology
  7. Razali NNM, Ng CT, Fong LY
    Planta Med, 2019 Nov;85(16):1203-1215.
    PMID: 31539918 DOI: 10.1055/a-1008-6138
    Centella asiatica, a triterpene-rich medicinal herb, is traditionally used to treat various types of diseases including neurological, dermatological, and metabolic diseases. A few articles have previously reviewed a broad range of pharmacological activities of C. asiatica, but none of these reviews focuses on the use of C. asiatica in cardiovascular diseases. This review aims to summarize recent findings on protective effects of C. asiatica and its active constituents (asiatic acid, asiaticoside, madecassic acid, and madecassoside) in cardiovascular diseases. In addition, their beneficial effects on conditions associated with cardiovascular diseases were also reviewed. Articles were retrieved from electronic databases such as PubMed and Google Scholar using keywords "Centella asiatica," "asiatic acid," "asiaticoside," "madecassic acid," and "madecassoside." The articles published between 2004 and 2018 that are related to the aforementioned topics were selected. A few clinical studies published beyond this period were also included. The results showed that C. asiatica and its active compounds possess potential therapeutic effects in cardiovascular diseases and cardiovascular disease-related conditions, as evidenced by numerous in silico, in vitro, in vivo, and clinical studies. C. asiatica and its triterpenes have been reported to exhibit cardioprotective, anti-atherosclerotic, antihypertensive, antihyperlipidemic, antidiabetic, antioxidant, and anti-inflammatory activities. In conclusion, more clinical and pharmacokinetic studies are needed to support the use of C. asiatica and its triterpenes as therapeutic agents for cardiovascular diseases. Besides, elucidation of the molecular pathways modulated by C. asiatica and its active constituents will help to understand the mechanisms underlying the cardioprotective action of C. asiatica.
    Matched MeSH terms: Triterpenes/pharmacology*; Pentacyclic Triterpenes/pharmacology
  8. Ali AM, Mackeen MM, Hamid M, Aun QB, Zauyah Y, Azimahtol HL, et al.
    Planta Med, 1997 Feb;63(1):81-3.
    PMID: 9063100
    The cytotoxicity of goniothalamin was found to be strong towards both cancerous (HGC-27, MCF-7, PANC-1, HeLa), and non-cancerous (3T3) cell lines, especially in cases of dividing cells. Drug exposure studies indicated that the cytotoxic action of goniothalamin was time- and dose-dependent. At the ultrastructural level, goniothalamin-induced cytotoxicity revealed a necrotic mode of cell death towards MCF-7 cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Pyrones/pharmacology*
  9. Kamal MSA, Mediani A, Kasim N, Ismail NH, Satar NA, Azis NA, et al.
    J Pharm Biomed Anal, 2022 Feb 20;210:114579.
    PMID: 35016031 DOI: 10.1016/j.jpba.2021.114579
    Ficus deltoidea var angustifolia (FD-A) reduces blood pressure in spontaneously hypertensive rats (SHR) but the mechanism remains unknown. Changes in urine metabolites following FD-A treatment in SHR were, therefore, examined to identify the mechanism of its antihypertensive action. Male SHR were given either FD-A (1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 mL of ethanolic-water (control) daily for 4 weeks. Systolic blood pressure (SBP) was measured every week and urine spectra data acquisition, on urine collected after four weeks of treatment, were compared using multivariate data analysis. SBP in FD-A and losartan treated rats was significantly lower than that in the controls after four weeks of treatment. Urine spectra analysis revealed 24 potential biomarkers with variable importance projections (VIP) above 0.5. These included creatine, hippurate, benzoate, trimethylamine N-oxide, taurine, dimethylamine, homocysteine, allantoin, methylamine, n-phenylacetylglycine, guanidinoacetate, creatinine, lactate, glucarate, kynurenine, ethanolamine, betaine, 3-hydroxybutyrate, glycine, lysine, glutamine, 2-hydroxyphenylacetate, 3-indoxylsulfate and sarcosine. From the profile of these metabolites, it seems that FD-A affects urinary levels of metabolites like taurine, hypotaurine, glycine, serine, threonine, alanine, aspartate and glutamine. Alterations in these and the pathways involved in their metabolism might underlie the molecular mechanism of its antihypertensive action.
    Matched MeSH terms: Antihypertensive Agents/pharmacology; Plant Extracts/pharmacology
  10. Khan TM, Wu DB, Dolzhenko AV
    Phytother Res, 2018 Mar;32(3):402-412.
    PMID: 29193352 DOI: 10.1002/ptr.5972
    A systematic review and network-meta analysis (NMA) were performed to test significance of the galactagogue effect of fenugreek administrated to lactating women versus other comparators (i.e., placebo/control/other galactagogues). A pairwise comparison for the treatment effect was carried out to generate the forest plot for the NMA. League tables were generated using treatment effect, weighted mean difference (WMD; 95% confidence interval, CI) for all pairwise comparisons, where WMD > 0 favors the column-defining treatment. Five studies were identified with 122 participants receiving treatment with fenugreek. The NMA results of 4 studies indicated that consumption of fenugreek significantly increased amount of the produced breast milk [11.11, CI 95% 6.77, 15.46] versus placebo. The pairwise comparison revealed that fenugreek was effective as a galactagogue compared to placebo, control, and reference groups WMD 17.79 [CI 11.71, 23.88]. However, the effect of fenugreek was substantially inferior to Coleus amboinicus Lour and palm date. The NMA using pairwise comparison demonstrated the effect of C. amboinicus and palm date in the stimulation of the breast milk production was comparable and superior to all comparators.
    Matched MeSH terms: Plant Extracts/pharmacology; Galactogogues/pharmacology
  11. Nocca G, Ahmed HMA, Martorana GE, Callà C, Gambarini G, Rengo S, et al.
    J Endod, 2017 Sep;43(9):1545-1552.
    PMID: 28734651 DOI: 10.1016/j.joen.2017.04.025
    INTRODUCTION: The literature reveals controversies regarding the formation of para-chloroaniline (PCA) when chlorhexidine (CHX) is mixed with sodium hypochlorite (NaOCl). This study aimed to investigate the stability of PCA in the presence of NaOCl and to examine the in vitro cytotoxic effects of CHX/NaOCl reaction mixtures.

    METHODS: Different volumes of NaOCl were added to CHX (mix 1) or PCA (mix 2). Upon centrifugation, the supernatant and precipitate fractions collected from samples were analyzed using high-performance liquid chromatography. The cytotoxic effects of both fractions were examined on human periodontal ligament and 3T3 fibroblast cell lines.

    RESULTS: High-performance liquid chromatographic analysis showed no PCA signal when NaOCl was mixed with CHX (mix 1). In mix 2, the intensity of PCA was decreased when NaOCl was added to PCA, and chromatographic signals, similar to that of CHX/NaOCl, were also observed. The mortality of precipitates exerted on both cell lines was lower compared with that of supernatants.

    CONCLUSIONS: The discrepancy in the data from the literature could be caused by the instability of the PCA in the presence of NaOCl. The CHX/NaOCl reaction mixture exhibits a wide range of cytotoxic effects.

    Matched MeSH terms: Chlorhexidine/pharmacology*; Sodium Hypochlorite/pharmacology*
  12. Das S, Laskar MA, Sarker SD, Choudhury MD, Choudhury PR, Mitra A, et al.
    Phytochem Anal, 2017 Jul;28(4):324-331.
    PMID: 28168765 DOI: 10.1002/pca.2679
    INTRODUCTION: Prenylated and pyrano-flavonoids of the genus Artocarpus J. R. Forster & G. Forster are well known for their acetylcholinesterase (AChE) inhibitory, anti-cholinergic, anti-inflammatory, anti-microbial, anti-oxidant, anti-proliferative and tyrosinase inhibitory activities. Some of these compounds have also been shown to be effective against Alzheimer's disease.

    OBJECTIVE: The aim of the in silico study was to establish protocols to predict the most effective flavonoid from prenylated and pyrano-flavonoid classes for AChE inhibition linking to the potential treatment of Alzheimer's disease.

    METHODOLOGY: Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking and quantitative structure-activity relationship (QSAR) were performed in silico. In vitro activity was evaluated by bioactivity staining based on the Ellman's method.

    RESULTS: In the Lipinski filter and ADME/Tox screening, all test compounds produced positive results, but in the target fishing, only one flavonoid could successfully target AChE. Molecular docking was performed on this flavonoid, and this compound gained the score as -13.5762. From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were generated from the parent compound and docking was performed. The derivative compound 20 was the best scorer, i.e. -31.6392 and IC50 was predicted as 6.025 nM.

    CONCLUSION: Results indicated that flavonoids could be efficient inhibitors of AChE and thus, could be useful in the management of Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*; Flavonoids/pharmacology*
  13. Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE
    Drug Metab Bioanal Lett, 2022;15(1):51-63.
    PMID: 35049443 DOI: 10.2174/1872312815666220113125232
    BACKGROUND: Genetic polymorphism of cytochrome P450 (CYP) contributes to variability in drug metabolism, clearance, and response. This study aimed to investigate the functional and molecular basis for altered ligand binding and catalysis in CYP2D6*14A and CYP2D6*14B, two unique alleles common in the Asian population.

    METHODS: CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants.

    RESULTS: Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies.

    CONCLUSION: In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.

    Matched MeSH terms: Fluoxetine/pharmacology; Paroxetine/pharmacology
  14. Lai JW, Maah MJ, Tan KW, Sarip R, Lim YAL, Ganguly R, et al.
    Malar J, 2022 Dec 17;21(1):386.
    PMID: 36528584 DOI: 10.1186/s12936-022-04406-0
    BACKGROUND: Malaria remains one of the most virulent and deadliest parasitic disease in the world, particularly in Africa and Southeast Asia. Widespread occurrence of artemisinin-resistant Plasmodium falciparum strains from the Greater Mekong Subregion is alarming. This hinders the national economies, as well as being a major drawback in the effective control and elimination of malaria worldwide. Clearly, an effective anti-malarial drug is urgently needed.

    METHODS: The dinuclear and mononuclear copper(II) and zinc(II) complexes were synthesized in ethanolic solution and characterized by various physical measurements (FTIR, CHN elemental analysis, solubility, ESI-MS, UV-Visible, conductivity and magnetic moment, and NMR). X-ray crystal structure of the dicopper(II) complex was determined. The in vitro haemolytic activities of these metal complexes were evaluated spectroscopically on B+ blood while the anti-malarial potency was performed in vitro on blood stage drug-sensitive Plasmodium falciparum 3D7 (Pf3D7) and artemisinin-resistant Plasmodium falciparum IPC5202 (Pf5202) with fluorescence dye. Mode of action of metal complexes were conducted to determine the formation of reactive oxygen species using PNDA and DCFH-DA dyes, JC-1 depolarization of mitochondrial membrane potential, malarial 20S proteasome inhibition with parasite lysate, and morphological studies using Giemsa and Hoechst stains.

    RESULTS: Copper(II) complexes showed anti-malarial potency against both Pf3D7 and Pf5202 in sub-micromolar to micromolar range. The zinc(II) complexes were effective against Pf3D7 with excellent therapeutic index but encountered total resistance against Pf5202. Among the four, the dinuclear copper(II) complex was the most potent against both strains. The zinc(II) complexes caused no haemolysis of RBC while copper(II) complexes induced increased haemolysis with increasing concentration. Further mechanistic studies of both copper(II) complexes on both Pf3D7 and Pf5202 strains showed induction of ROS, 20S malarial proteasome inhibition, loss of mitochondrial membrane potential and morphological features indicative of apoptosis.

    CONCLUSION: The dinuclear [Cu(phen)-4,4'-bipy-Cu(phen)](NO3)4 is highly potent and can overcome the total drug-resistance of Pf5202 towards chloroquine and artemisinin. The other three copper(II) and zinc(II) complexes were only effective towards the drug-sensitive Pf3D7, with the latter causing no haemolysis of RBC. Their mode of action involves multiple targets.

    Matched MeSH terms: Copper/pharmacology; Zinc/pharmacology
  15. Alam S, Dhar A, Hasan M, Richi FT, Emon NU, Aziz MA, et al.
    Molecules, 2022 Dec 08;27(24).
    PMID: 36557843 DOI: 10.3390/molecules27248709
    Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.
    Matched MeSH terms: Plant Extracts/pharmacology; Phytochemicals/pharmacology
  16. Adam FA, Mohd N, Rani H, Mohd Yusof MYP, Baharin B
    J Ethnopharmacol, 2023 Feb 10;302(Pt A):115863.
    PMID: 36283639 DOI: 10.1016/j.jep.2022.115863
    ETHNOPHARMACOLOGICAL RELEVANCE: Salvadora persica L., also known as miswak, is an indigenous plant most prevalent in the Middle Eastern, some Asian, and African countries. It has medicinal and prophylactics function for numerous illnesses, including periodontal disease. Various trials, apart from World Health Organization encouragement have contributed to the production and use of S. persica in extract form in the formulation of mouthwash. This systematic review and meta-analysis aimed to compare the clinical effect of Salvadora persica-extract mouthwash and chlorhexidine gluconate mouthwash for anti-plaque and anti-gingivitis functions.

    METHODS: Using the PRISMA 2020 Protocol, a systematic search of the publications was undertaken from the MEDLINE, CENTRAL, Science Direct, PubMed, and Google Scholars for randomized control trials published through 31st January 2022 to determine the effectiveness of Salvadora persica-extract mouthwash relative to chlorhexidine gluconate as anti-plaque and anti-gingivitis properties.

    RESULTS: A total of 1809 titles and abstracts were screened. Of these, twenty-two studies met the inclusion criteria for the systematic review while only sixteen were selected for meta-analysis. The overall effects of standardized mean difference and 95% CI were 0.89 [95% CI 0.09 to 1.69] with a χ2 statistic of 2.54, 15 degrees of freedom (p 

    Matched MeSH terms: Chlorhexidine/pharmacology; Plant Extracts/pharmacology
  17. Hasan M, Mokhtar AS, Mahmud K, Berahim Z, Rosli AM, Hamdan H, et al.
    Sci Rep, 2022 Nov 15;12(1):19602.
    PMID: 36379972 DOI: 10.1038/s41598-022-24144-2
    WeedLock is a broad-spectrum plant-based bioherbicide that is currently on the market as a ready-to-use formulation. In this study, we investigated the physiological and biochemical effects of WeedLock (672.75 L ha-1) on Ageratum conyzoides L., Eleusine indica (L.) Gaertn, Zea mays L., and Amaranthus gangeticus L. at four different time points. WeedLock caused significant reductions in chlorophyll pigment content and disrupted photosynthetic processes in all test plants. The greatest inhibition in photosynthesis was recorded in A. conyzoides at 24 h post-treatment with a 74.88% inhibition. Plants treated with WeedLock showed increased malondialdehyde (MDA) and proline production, which is indicative of phytotoxic stress. Remarkably, MDA contents of all treated plants increased by more than 100% in comparison to untreated. The activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was elevated following treatment with WeedLock. Significant increases were observed in the SOD activity of A. conyzoides ranging from 69.66 to 118.24% from 6 to 72 h post-treatment. Our findings confirm that WeedLock disrupts the normal physiological and biochemical processes in plants following exposure and that its mode of action is associated with ROS (reactive oxygen species) production, similar to that of PPO (protoporphyrinogen oxidase) inhibitors, although specific site-of-action of this novel bioherbicide warrants further investigation.
    Matched MeSH terms: Antioxidants/pharmacology; Chlorophyll/pharmacology
  18. Nagaraja S, Ahmed SS, D R B, Goudanavar P, M RK, Fattepur S, et al.
    Molecules, 2022 Jul 06;27(14).
    PMID: 35889209 DOI: 10.3390/molecules27144336
    Diabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of Psidium guajava (PGE) for investigating its antidiabetic activity. Psidium guajava silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters. The in vivo study was conducted using PGE and PGAg NPs in Streptozotocin (STZ)-induced diabetic rats to assess their antidiabetic properties. STZ of 55 mg/kg was injected to induce diabetes. The PGE, PGAg NPs at a dose of 200 and 400 mg/kg and standard drug Metformin (100 mg/kg) were administered daily to diabetic rats for 21 days through the oral route. Blood glucose level, body weight changes, lipid profiles, and histopathology of the rats' liver and pancreas were examined. In the diabetic rats, PGE and PGAg NPs produced a drastic decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. The histopathological findings revealed the improvements in pancreas and liver cells due to the repercussion of PGE and PGAg NPs. A compelling effect was observed in all doses of PGE and PGAg NPs; however, PGAg NPs exhibited a more promising result. Thus, from the results, it is concluded that the synthesized PGAg NPs has potent antidiabetic activity due to its enhanced surface area and smaller particle size of nanoparticles.
    Matched MeSH terms: Hypoglycemic Agents/pharmacology; Plant Extracts/pharmacology
  19. Mohd Rani F, Lean SS, A Rahman NI, Ismail S, Alattraqchi AG, Amonov M, et al.
    J Glob Antimicrob Resist, 2022 Dec;31:104-109.
    PMID: 36049733 DOI: 10.1016/j.jgar.2022.08.019
    OBJECTIVES: To analyse the genome sequences of four archival Acinetobacter nosocomialis clinical isolates (designated AC13, AC15, AC21 and AC25) obtained from Terengganu, Malaysia in 2011 to determine their genetic relatedness and basis of antimicrobial resistance.

    METHODS: Antimicrobial susceptibility profiles of the A. nosocomialis isolates were determined by disk diffusion. Genome sequencing was performed using the Illumina NextSeq platform.

    RESULTS: The four A. nosocomialis isolates were cefotaxime resistant whereas three isolates (namely, AC13, AC15 and AC25) were tetracycline resistant. The carriage of the blaADC-255-encoded cephalosporinase gene is likely responsible for cefotaxime resistance in all four isolates. Phylogenetic analysis indicated that the three tetracycline-resistant isolates were closely related, with an average nucleotide identity of 99.9%, suggestive of nosocomial spread, whereas AC21 had an average nucleotide identity of 97.9% when compared to these three isolates. The tetracycline-resistant isolates harboured two plasmids: a 13476 bp Rep3-family plasmid of the GR17 group designated pAC13-1, which encodes the tetA(39) tetracycline-resistance gene, and pAC13-2, a 4872 bp cryptic PriCT-1-family plasmid of a new Acinetobacter plasmid group, GR60. The tetA(39) gene was in a 2 001 bp fragment flanked by XerC/XerD recombination sites characteristic of a mobile pdif module. Both plasmids also harboured mobilisation/transfer-related genes.

    CONCLUSIONS: Genome sequencing of A. nosocomialis isolates led to the discovery of two novel plasmids, one of which encodes the tetA(39) tetracycline-resistant gene in a mobile pdif module. The high degree of genetic relatedness among the three tetracycline-resistant A. nosocomialis isolates is indicative of nosocomial transmission.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Tetracycline/pharmacology
  20. Khanum R, Chung PY, Clarke SC, Chin BY
    Can J Microbiol, 2023 Feb 01;69(2):117-122.
    PMID: 36265186 DOI: 10.1139/cjm-2022-0135
    Lactoferrin is an innate glycoprotein with broad antibacterial and antibiofilm properties. The autonomous antibiofilm activity of lactoferrin against Gram-positive bacteria is postulated to involve the cell wall and biofilm components. Thus, the prevention of biomass formation and eradication of preformed biofilms by lactoferrin was investigated using a methicillin-resistant Staphylococcus epidermidis (MRSE) strain. Additionally, the ability of lactoferrin to modulate the expression of the biofilm-associated protein gene (bap) was studied. The bap gene regulates the production of biofilm-associated proteins responsible for bacterial adhesion and aggregation. In the in vitro biofilm assays, lactoferrin prevented biofilm formation and eradicated established biofilms for up to 24 and 72 h, respectively. Extensive eradication of MRSE biofilm biomass was accompanied by the significant upregulation of bap gene expression. These data suggest the interaction of lactoferrin with the biofilm components and cell wall of MRSE, including the biofilm-associated protein.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Lactoferrin/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links