Displaying publications 41 - 60 of 248 in total

Abstract:
Sort:
  1. Ch'ng WC, Abd-Aziz N, Ong MH, Stanbridge EJ, Shafee N
    Cell Oncol (Dordr), 2015 Aug;38(4):279-88.
    PMID: 25930675 DOI: 10.1007/s13402-015-0229-5
    Newcastle disease virus (NDV) is an oncolytic virus that is known to have a higher preference to cancer cells than to normal cells. It has been proposed that this higher preference may be due to defects in the interferon (IFN) responses of cancer cells. The exact mechanism underlying this process, however, remains to be resolved. In the present study, we examined the antiviral response towards NDV infection of clear cell renal cell carcinoma (ccRCC) cells. ccRCC is associated with mutations of the von Hippel-Lindau tumor suppressor gene VHL, whose protein product is important for eliciting cellular responses to changes in oxygen levels. The most common first line treatment strategy of ccRCC includes IFN. Unfortunately, most ccRCC cases are diagnosed at a late stage and often are resistant to IFN-based therapies. Alternative treatment approaches, including virotherapy using oncolytic viruses, are currently being investigated. The present study was designed to investigate the mechanistic pathways underlying the response of ccRCC cells to oncolytic NDV infection.
    Matched MeSH terms: Signal Transduction/drug effects
  2. Cheah SC, Lai SL, Lee ST, Hadi AH, Mustafa MR
    Molecules, 2013 Jul 24;18(8):8764-78.
    PMID: 23887718 DOI: 10.3390/molecules18088764
    In the present study, we investigated the effects of panduratin A (PA), isolated from Boesenbergia rotunda, on apoptosis and chemoinvasion in A549 human non-small cell lung cancer cells. Activation of the executioner procaspase-3 by PA was found to be dose-dependent. Caspase-3 activity was significantly elevated at the 5 µg/mL level of PA treatment and progressed to a maximal level. However, no significant elevated level was detected on procaspase-8. These findings suggest that PA activated caspase-3 but not caspase-8. Numerous nuclei of PA treated A549 cells stained brightly by anti-cleaved PARP antibody through High Content Screening. This result further confirmed that PA induced apoptotic cell death was mediated through activation of caspase-3 and eventually led to PARP cleavage. Treatment of A549 cells with PA resulted in a strong inhibition of NF-κB activation, which was consistent with a decrease in nuclear levels of NF-κB/p65 and NF-κB/p50 and the elevation of p53 and p21. Besides that, we also showed that PA significantly inhibited the invasion of A549 cells in a dose-dependent manner through reducing the secretion of MMP-2 of A549 cells gelatin zymography assay. Our findings not only provide the effects of PA, but may also be important in the design of therapeutic protocols that involve targeting of either p53 or NF-κB.
    Matched MeSH terms: Signal Transduction/drug effects
  3. Chellappan DK, Leng KH, Jia LJ, Aziz NABA, Hoong WC, Qian YC, et al.
    Biomed Pharmacother, 2018 Jun;102:1127-1144.
    PMID: 29710531 DOI: 10.1016/j.biopha.2018.03.061
    OBJECTIVE: The study aims to analyze the effectiveness of bevacizumab in addressing the complications associated with gynecological cancers and evaluates effective treatments for various gynecological cancers.

    METHODS: The study follows a systematic review approach that has been implemented to analyze the qualitative published data from previous studies. Studies related with the trials of angiogenesis and bevacizumab were selected in the review.

    RESULTS: In general, the management of gynecological cancers include chemotherapy, surgery and radiation therapy. Results suggest bevacizumab as an effective treatment modality for cervical and several other cancers. Overall, bevacizumab showed promising results in improving the overall survival rate of gynecological cancer patients through the combination of bevacizumab with other chemotherapeutic agents.

    CONCLUSION: Bevacizumab possess less documented adverse effects when compared to other chemotherapeutic agents. The manifestation and severity of adverse effects reported varied according to the chemotherapeutic agent(s) that were used with bevacizumab in combination therapy. Overall, bevacizumab effectively improved the survival rate in patients with several gynaecological cancers.

    Matched MeSH terms: Signal Transduction/drug effects
  4. Chin KY, Pang KL
    Nutrients, 2017 Sep 26;9(10).
    PMID: 28954409 DOI: 10.3390/nu9101060
    Osteoarthritis is a major cause of morbidity among the elderly worldwide. It is a disease characterized by localized inflammation of the joint and destruction of cartilage, leading to loss of function. Impaired chondrocyte repair mechanisms, due to inflammation, oxidative stress and autophagy, play important roles in the pathogenesis of osteoarthritis. Olive and its derivatives, which possess anti-inflammatory, antioxidant and autophagy-enhancing activities, are suitable candidates for therapeutic interventions for osteoarthritis. This review aimed to summarize the current evidence on the effects of olive and its derivatives, on osteoarthritis and chondrocytes. The literature on animal and human studies has demonstrated a beneficial effect of olive and its derivatives on the progression of osteoarthritis. In vitro studies have suggested that the augmentation of autophagy (though sirtuin-1) and suppression of inflammation by olive polyphenols could contribute to the chondroprotective effects of olive polyphenols. More research and well-planned clinical trials are required to justify the use of olive-based treatment in osteoarthritis.
    Matched MeSH terms: Signal Transduction/drug effects
  5. Chiroma SM, Baharuldin MTH, Mat Taib CN, Amom Z, Jagadeesan S, Ilham Adenan M, et al.
    Int J Mol Sci, 2019 Apr 16;20(8).
    PMID: 31014012 DOI: 10.3390/ijms20081871
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder more prevalent among the elderly population. AD is characterised clinically by a progressive decline in cognitive functions and pathologically by the presence of neurofibrillary tangles (NFTs), deposition of beta-amyloid (Aβ) plaque and synaptic dysfunction in the brain. Centella asiatica (CA) is a valuable herb being used widely in African, Ayurvedic, and Chinese traditional medicine to reverse cognitive impairment and to enhance cognitive functions. This study aimed to evaluate the effectiveness of CA in preventing d-galactose/aluminium chloride (d-gal/AlCl3) induced AD-like pathologies and the underlying mechanisms of action were further investigated for the first time. Results showed that co-administration of CA to d-gal/AlCl3 induced AD-like rat models significantly increased the levels of protein phosphatase 2 (PP2A) and decreased the levels of glycogen synthase kinase-3 beta (GSK-3β). It was further observed that, CA increased the expression of mRNA of Bcl-2, while there was minimal effect on the expression of caspase 3 mRNA. The results also showed that, CA prevented morphological aberrations in the connus ammonis 3 (CA 3) sub-region of the rat's hippocampus. The results clearly demonstrated for the first time that CA could alleviate d-gal/AlCl3 induced AD-like pathologies in rats via inhibition of hyperphosphorylated tau (P-tau) bio-synthetic proteins, anti-apoptosis and maintenance of cytoarchitecture.
    Matched MeSH terms: Signal Transduction/drug effects*
  6. Chok KC, Koh RY, Ng MG, Ng PY, Chye SM
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443626 DOI: 10.3390/molecules26165038
    Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5'-adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
    Matched MeSH terms: Signal Transduction/drug effects
  7. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Junit SM
    PLoS One, 2012;7(6):e39476.
    PMID: 22724021 DOI: 10.1371/journal.pone.0039476
    The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach.
    Matched MeSH terms: Signal Transduction/drug effects
  8. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
    Matched MeSH terms: Signal Transduction/drug effects*
  9. Choy KW, Lau YS, Murugan D, Vanhoutte PM, Mustafa MR
    J. Pharmacol. Exp. Ther., 2018 03;364(3):420-432.
    PMID: 29259041 DOI: 10.1124/jpet.117.245217
    Inflammatory injury of the endothelium leads to apoptosis and endothelial dysfunction. The current study explored the effect and mechanisms of paeonol in inflammation-induced apoptosis and endothelial dysfunction induced by lipopolysaccharides (LPSs). The effects of paeonol on LPS-induced inflammatory injury were assessed by Western blotting, flow cytometry and reactive oxygen species (ROS) measurement in human umbilical vein endothelial cells (HUVECs) and C57BL/6J mice. Vascular reactivity of isolated mouse aortae was examined using wire myographs. The exposure of HUVECs to LPS increased the protein presence of Toll-like receptor 4 (TLR4), bone morphogenic protein 4 (BMP4), BMP receptor type 1A, nicotinamide adenine dinucleotide phosphate oxidase subunit 2, mitogen-activated protein kinase (MAPK), inducible nitric oxide synthase (iNOS), and cleaved caspase 3, as well as decreased it in phosphorylated endothelial nitric oxide synthase; these effects were prevented by treatment with paeonol. Similarly, cotreatment with paeonol reversed BMP4-induced apoptosis in HUVECs. Relaxation in response to the endothelium-dependent vasodilator acetylcholine were impaired in mouse aortae after exposure to LPSs; this endothelial dysfunction was reversed by cotreatment with paeonol, noggin (a BMP4 inhibitor), TAK242 (TLR4 antagonist), apocynin (an ROS scavenger), MAPK inhibitors, and AG (an iNOS inhibitor). BMP4 small interfering RNAs (siRNAs) abolished LPS-induced upregulation of BMP4 and cleaved caspase 3 protein, but not in cells treated with TLR4 siRNA and vice versa. The silencing of TLR4 and BMP4 abolished the inhibitory effects of paeonol on LPS-induced activation of cleaved caspase 3. The present results demonstrate that paeonol reduces LPS-induced endothelial dysfunction and apoptosis by inhibiting TLR4 and BMP4 signaling independently.
    Matched MeSH terms: Signal Transduction/drug effects*
  10. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, et al.
    Sci Rep, 2016 Apr 28;6:25139.
    PMID: 27122001 DOI: 10.1038/srep25139
    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p  0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake.
    Matched MeSH terms: Signal Transduction/drug effects*
  11. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Signal Transduction/drug effects
  12. Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S38-60.
    PMID: 26106143 DOI: 10.1093/carcin/bgv030
    The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
    Matched MeSH terms: Signal Transduction/drug effects*
  13. Erejuwa OO, Sulaiman SA, Wahab MS
    Molecules, 2014;19(2):2497-522.
    PMID: 24566317 DOI: 10.3390/molecules19022497
    Honey is a natural product known for its varied biological or pharmacological activities-ranging from anti-inflammatory, antioxidant, antibacterial, antihypertensive to hypoglycemic effects. This review article focuses on the role of honey in modulating the development and progression of tumors or cancers. It reviews available evidence (some of which is very recent) with regards to the antimetastatic, antiproliferative and anticancer effects of honey in various forms of cancer. These effects of honey have been thoroughly investigated in certain cancers such as breast, liver and colorectal cancer cell lines. In contrast, limited but promising data are available for other forms of cancers including prostate, bladder, endometrial, kidney, skin, cervical, oral and bone cancer cells. The article also underscores the various possible mechanisms by which honey may inhibit growth and proliferation of tumors or cancers. These include regulation of cell cycle, activation of mitochondrial pathway, induction of mitochondrial outer membrane permeabilization, induction of apoptosis, modulation of oxidative stress, amelioration of inflammation, modulation of insulin signaling and inhibition of angiogenesis. Honey is highly cytotoxic against tumor or cancer cells while it is non-cytotoxic to normal cells. The data indicate that honey can inhibit carcinogenesis by modulating the molecular processes of initiation, promotion, and progression stages. Thus, it may serve as a potential and promising anticancer agent which warrants further experimental and clinical studies.
    Matched MeSH terms: Signal Transduction/drug effects
  14. Foo JB, Yazan LS, Tor YS, Armania N, Ismail N, Imam MU, et al.
    PMID: 24947113 DOI: 10.1186/1472-6882-14-197
    Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells.
    Matched MeSH terms: Signal Transduction/drug effects*
  15. Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, et al.
    J Ethnopharmacol, 2015 May 26;166:270-8.
    PMID: 25797115 DOI: 10.1016/j.jep.2015.03.039
    Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer.
    Matched MeSH terms: Signal Transduction/drug effects
  16. Gao X, Yanan J, Santhanam RK, Wang Y, Lu Y, Zhang M, et al.
    J Food Sci, 2021 Feb;86(2):366-375.
    PMID: 33448034 DOI: 10.1111/1750-3841.15599
    Liver damage is a common liver disorder, which could induce liver cancer. Oral antioxidant is one of the effective treatments to prevent and alleviate liver damage. In this study, three flavonoids namely myricetin, isoquercitrin, and isorhamnetin were isolated and identified from Laba garlic. The isolated compounds were investigated on the protective effects against H2 O2 -induced oxidative damages in hepatic L02 cells and apoptosis inducing mechanism in hepatic cancer cells HepG2 by using MTT assay, flow cytometry and western blotting analysis. Myricetin, isoquercitrin, and isorhamnetin showed proliferation inhibition on HepG2 cells with IC50 value of 44.32 ± 0.213 µM, 49.68 ± 0.192 µM, and 54.32 ± 0.176 µM, respectively. While they showed low toxicity on normal cell lines L02. They could significantly alleviate the oxidative damage towards L02 cells (P < 0.05), via inhibiting the morphological changes in mitochondria and upholding the integrity of mitochondrial structure and function. The fluorescence intensity of L02 cells pre-treated with myricetin, isoquercitrin, and isorhamnetin (100 µM) was 89.23 ± 1.26%, 89.35 ± 1.43% and 88.97 ± 0.79%, respectively. Moreover, the flavonoids could induce apoptosis in HepG2 cells via Bcl-2/Caspase pathways, where it could up-regulate the expression of Bax and down-regulate the expression of Bcl-2, Bcl-xL, pro-Caspase-3, and pro-Caspase-9 proteins in a dose dependent manner. Overall, the results suggested that the flavonoids from Laba garlic might be a promising candidate for the treatment of various liver disorders. PRACTICAL APPLICATION: Flavonoids from Laba garlic showed selective toxicity towards HepG2 cells in comparison to L02 cells via regulating Bcl-2/caspase pathway. Additionally, the isolated flavonoids expressively barred the oxidative damage induced by H2 O2 in L02 cells. These results suggested that the flavonoids from laba garlic could be a promising agent towards the development of functional foods.
    Matched MeSH terms: Signal Transduction/drug effects
  17. Ghani SMA, Goon JA, Azman NHEN, Zakaria SNA, Hamid Z, Ngah WZW
    Clinics (Sao Paulo), 2019 03 07;74:e688.
    PMID: 30864639 DOI: 10.6061/clinics/2019/e688
    OBJECTIVES: This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults.

    METHODS: A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis.

    RESULTS: The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways.

    CONCLUSION: Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.

    Matched MeSH terms: Signal Transduction/drug effects
  18. Gill MSA, Saleem H, Ahemad N
    Curr Top Med Chem, 2020;20(12):1093-1104.
    PMID: 32091334 DOI: 10.2174/1568026620666200224100219
    Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.
    Matched MeSH terms: Signal Transduction/drug effects
  19. Gnanaraj C, Shah MD, Song TT, Iqbal M
    Biomed Pharmacother, 2017 Aug;92:1010-1022.
    PMID: 28609838 DOI: 10.1016/j.biopha.2017.06.014
    Plants have been consumed in medicinal practices for centuries. Lygodium microphyllum (Cav.) R.Br. (Lygodiaceae), also known as Old World Climbing Fern, is a medicinal plant used by local communities in Sabah for skin and dysentery ailments. This study aims to test aqueous extract of L. microphyllum leaves for hepatoprotective and immunosuppressive activity in rats. Animal studies were carried out to evaluate hepatoprotection of aqueous extract of L. microphyllum at different doses (200, 400 and 600mg/kg b.w.) against carbon tetrachloride (CCl4)-mediated liver injury and histopathological alterations. Total phenolic content in aqueous extract of L. microphyllum leaves was 206.38±9.62mg gallic acid equivalent/g. The inhibitory concentration (IC50) for free radical scavenging activity of L. microphyllum was reached at a concentration of 65μg/ml.L. microphyllum was able to prevent the increase in levels of serum alanine aminotransferase, serum aspartate aminotransferase and hepatic malondialdehyde formation in a dose-dependent manner. Immunohistochemical results evidenced the suppression of oxidative stress markers (4-hydroxynonenal, 8-hydroxydeoxyguanosine) and pro-inflammatory cytokines (Tumor Necrosis Factor-α, Interleukin-6, Prostaglandin E2). Histopathological and hepatocyte ultrastructural alterations showed protective effects by L. microphyllum against CCl4-mediated oxidative stress. Hepatoprotective mechanism of L. microphyllum can be attributed to its antioxidative effects through protection of ultrastructural organelles.
    Matched MeSH terms: Signal Transduction/drug effects
  20. Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, et al.
    Pharmacol Res, 2015 Jul;97:16-26.
    PMID: 25829335 DOI: 10.1016/j.phrs.2015.03.010
    Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.
    Matched MeSH terms: Signal Transduction/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links