Displaying publications 41 - 60 of 100 in total

Abstract:
Sort:
  1. Zulkawi N, Ng KH, Zamberi NR, Yeap SK, Satharasinghe DA, Tan SW, et al.
    Drug Des Devel Ther, 2018;12:1373-1383.
    PMID: 29872261 DOI: 10.2147/DDDT.S157803
    Background: Fermented food has been widely consumed as health food to ameliorate or prevent several chronic diseases including diabetes. Xeniji™, a fermented food paste (FFP), has been previously reported with various bioactivities, which may be caused by the presence of several metabolites including polyphenolic acids, flavonoids, and vitamins. In this study, the anti-hyperglycemic and anti-inflammatory effects of FFP were assessed.

    Methods: In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment.

    Results: Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level.

    Conclusion: FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  2. Roslan J, Giribabu N, Karim K, Salleh N
    Biomed Pharmacother, 2017 Feb;86:570-582.
    PMID: 28027533 DOI: 10.1016/j.biopha.2016.12.044
    Quercetin is known to possess beneficial effects in ameliorating diabetic complications, however the mechanisms underlying cardioprotective effect of this compound in diabetes is not fully revealed. In this study, quercetin effect on oxidative stress, inflammation and apoptosis in the heart in diabetes were investigated. Normal and streptozotocin-nicotinamide induced adult male diabetic rats received quercetin (10, 25 and 50mg/kg/bw) orally for 28days were anesthetized and hemodynamic parameters i.e. systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured. Blood was collected for analyses of fasting glucose (FBG), insulin and cardiac injury marker levels (troponin-C, CK-MB and LDH). Following sacrificed, heart was harvested and histopathological changes were observed. Heart was subjected for analyses of oxidative stress marker i.e. lipid peroxidation and activity and expression levels of anti-oxidative enzymes i.e. SOD, CAT and GPx. Levels of inflammation in the heart were determined by measuring nuclear factor (p65-NF-κB), tumor necrosis factor (TNF-α), interleukins (IL)-1β and IL-6 levels by using enzyme-linked immunoassay (ELISA). Distribution and expression levels of TNF-α and Ikk-β (inflammatory markers), caspase-3, caspase-9, Blc-2 and Bax (apoptosis markers) in the heart were identified by immunohistochemistry and Western blotting respectively.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  3. Hidayat AFA, Chan CK, Mohamad J, Kadir HA
    J Ethnopharmacol, 2018 Nov 15;226:120-131.
    PMID: 30118836 DOI: 10.1016/j.jep.2018.08.020
    ETHNOPHARMACOLOGICAL IMPORTANCE: Leptospermum flavescens has been used traditionally in Malaysia to treat various ailments such as constipation, hypertension, diabetes and cancer.

    AIM OF STUDY: To investigate the potential protective effects of L. flavescens in pancreatic β cells through inhibition of apoptosis and autophagy cell death mechanisms in in vitro and in vivo models.

    MATERIALS AND METHODS: L. flavescens leaves were extracted using solvent in increasing polarities: hexane, ethyl acetate, methanol and water. All extracts were tested for INS-1 β cells viability stimulated by streptozotocin (STZ). The extract which promotes the highest cell protective activity was further evaluated for insulin secretion, apoptosis and autophagy signaling pathways. Then, the acute toxicity of extract was carried out in SD rats according to OECD 423 guideline. The active extract was tested in diabetic rats where the pancreatic β islets were evaluated for insulin, apoptosis and autophagy protein.

    RESULTS: The methanolic extract of L. flavescens (MELF) was found to increase INS-1 β cells viability and insulin secretion against STZ. In addition, MELF has been shown to inhibit INS-1 β cells apoptosis and autophagy activity. Notably, there was no toxicity observed in SD rats when administered with MELF. Furthermore, MELF exhibited anti-hyperglycemic activity in diabetic rats where apoptosis and autophagy protein expression was found to be suppressed in pancreatic β islets.

    CONCLUSION: MELF was found to protect pancreatic β cells function from STZ-induced apoptosis and autophagy in in vitro and in vivo.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  4. Ogar I, Egbung GE, Nna VU, Iwara IA, Itam E
    Biomed Pharmacother, 2018 Nov;107:1268-1276.
    PMID: 30257341 DOI: 10.1016/j.biopha.2018.08.115
    Uncontrolled hyperglycaemia and oxidative stress have been implicated in the pathophysiology of diabetes mellitus. Hyptis verticillata is reportedly explored traditionally for its therapeutic benefits. Resulting from the paucity of information on the anti-hyperglycaemic potential of this plant, the present study assessed the anti-hyperglycaemic activity of H. verticillata leaf extract. Fifty-four albino Wistar rats were divided into two main groups consisting of diabetic and non-diabetic rats. The diabetic and non-diabetic rats were either treated with oral doses of metformin (500 mg/kg b.w.), quercetin (10 mg/kg b.w.), ethanol extract of H. verticillata leaf (low dose: 250 mg/kg b.w.) or H. verticillata (high dose: 500 mg/kg b.w.) for 28 days. Results showed significantly decreased body weight, increased fasting blood glucose (FBG) and glycated haemoglobin (HbA1c) levels, decreased pancreatic islet area and β-cell number in the diabetic untreated group, relative to normal control. H. verticillata - treated diabetic rats showed decreased FBG and HbA1c, increased body weight, pancreatic islet area and β-cell number, comparable to the effects of metformin. GCMS analysis of H. verticillata showed the presence of ten bioactive volatile compounds, with squalene which possess strong antioxidant, hypoglycaemic and hypotriglyceridemic effects, as the most abundant. We therefore conclude that H. verticillata has anti-hyperglycaemic properties.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  5. Nna VU, Bakar ABA, Mohamed M
    Life Sci, 2018 Oct 15;211:40-50.
    PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018
    AIMS: Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects.

    MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle.

    KEY FINDINGS: Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats.

    SIGNIFICANCE: Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  6. Thent ZC, Lin TS, Das S, Zakaria Z
    PMID: 23983373
    Cardiovascular complications are one of the major causes of death in diabetes mellitus. Piper sarmentosum (P.s) is an herb that possesses antihyperglycaemic effects. The main aim of the study was to observe the histological changes in the heart and the proximal aorta of streptozotocin-induced diabetic rats following P.s administration. Twenty-four male Sprague-Dawley rats (n=24) were equally randomized into four groups: control group supplemented with normal saline (C); control group supplemented with P.s (CTx) ; diabetic group supplemented with normal saline (D) and, diabetic group supplemented with P.s (DTx). Diabetes was induced by STZ (50mg/kg body weight) intramuscularly. P.s extract (0.125g/kg) was administered orally for 28 days, following four weeks of STZ induction. The cardiac and aortic tissues were collected and processed under different stains: Haematoxylin and Eosin (H & E), Verhoeff-Van Gieson (VVG), Masson's Trichome (MT) and Periodic Acid- Schiff (PAS). There were abnormal cardiomyocytes nuclei, disarray of myofibres and increase in connective tissue deposits in cardiac tissues of the diabetic untreated group. The thickness of tunica media and ratio of tunica intima to media were found to be significantly increased in the aorta of diabetic untreated group (P < 0.05) compared to the control group. There were degenerative changes in the proximal aorta in diabetic untreated groups. All the histological damages of cardiac and aortic tissues were found to be lesser in the diabetic treated groups. Supplementation with P.s extract prevented the oxidative damage arising from diabetes mellitus, and reduced its complications.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  7. Husen R, Pihie AH, Nallappan M
    J Ethnopharmacol, 2004 Dec;95(2-3):205-8.
    PMID: 15507337 DOI: 10.1016/j.jep.2004.07.004
    Screening of aqueous extract of Phyllantus niruri (PL), Zingiber zerumbet (ZG), Eurycoma longifolia (TA-a and TA-b) and Andrographis paniculata (AP) to determine their blood glucose lowering effect were conducted in normoglycaemic and Streptozotocin-induced hyperglycaemic rats. Significant reduction in blood glucose level at 52.90% was shown when hyperglycaemic rats were treated with 50 mg/kg body weight (BW) aqueous extract of AP. This effect is enhanced when freeze-dried material was used, where 6.25 mg/kg BW gave 61.81% reduction in blood glucose level. In the administration of TA-a and TA-b, positive results in hyperglyacaemic rats were only obtained when 150 mg/kg BW of the aqueous extract was used. No significant reduction in blood glucose level were shown in hyperglycaemic rats treated with PL and ZG at all concentrations used (50, 100 and 150 mg/kg BW). In normoglycaemic rats, no significant reduction was noted when all the same extracts were used.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  8. Ajay M, Mustafa MR
    Vascul. Pharmacol., 2006 Aug;45(2):127-33.
    PMID: 16807125 DOI: 10.1016/j.vph.2006.05.001
    Impaired vascular reactivity is a hallmark of several cardiovascular diseases that include hypertension and diabetes. This study compared the changes in vascular reactivity in age-matched experimental hypertension and diabetes, and, subsequently, tested whether these changes could be affected directly by ascorbic acid (10 microM). Endothelium-derived nitric oxide (NO) modulation of ascorbic acid effects was also investigated. All the experiments were performed in the presence of a cyclooxygenase inhibitor, indomethacin (10 microM). Results showed that the endothelium-dependent and -independent relaxations induced by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were blunted to a similar extent in isolated aortic rings from age-matched spontaneously hypertensive (SHR) (R(max): ACh = 72.83+/-1.86%, SNP = 96.6+/-1.90%) and diabetic (Rmax: ACh = 64.09+/-5.14%, SNP = 95.84+/-1.41%) rats compared with aortic rings of normal rats (Rmax: ACh = 89%, SNP = 104.0+/-1.0%). The alpha1-receptor-mediated contractions induced by phenylephrine (PE) were augmented in diabetic (Cmax = 148.8+/-9.0%) rat aortic rings compared to both normal (Cmax = 127+/-6.9%) and SHR (Cmax = 118+/-4.5%) aortic rings. Ascorbic acid pretreatment was without any significant effects on the vascular responses to ACh, SNP and PE in aortic rings from normal rats. Ascorbic acid significantly improved ACh-induced relaxations in SHR (Rmax = 89.09+/-2.82%) aortic rings to a level similar to that observed in normal aortic rings, but this enhancement in ACh-induced relaxations was only partial in diabetic aortic rings. Ascorbic acid lacked any effects on SNP-induced relaxations in both SHR and diabetic aortic rings. Ascorbic acid markedly attenuated contractions induced by PE in aortic rings from both SHR (Cmax = 92.9+/-6.68%) and diabetic (Cmax = 116.9+/-9.4%) rats. Additionally, following inhibition of nitric oxide synthesis with l-NAME, ascorbic acid attenuated PE-induced contractions in all aortic ring types studied. These results suggest that (1) vascular hyper-responsiveness to alpha(1)-receptor agonists in diabetic arteries is independent of endothelial nitric oxide dysfunction; (2) ascorbic acid directly modulates contractile responses of hypertensive and diabetic rat aortas, likely through mechanisms in part independent of preservation of endothelium-derived nitric oxide.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  9. Azemi AK, Mokhtar SS, Sharif SET, Rasool AHG
    Pharm Biol, 2021 Dec;59(1):1432-1440.
    PMID: 34693870 DOI: 10.1080/13880209.2021.1990357
    CONTEXT: Atherosclerosis predisposes individuals to adverse cardiovascular events. Clinacanthus nutans L. (Acanthaceae) is a traditional remedy used for diabetes and inflammatory conditions.

    OBJECTIVES: To investigate the anti-atherosclerotic activity of a C. nutans leaf methanol extract (CNME) in a type 2 diabetic (T2D) rat model induced by a high-fat diet (HFD) and low-dose streptozotocin.

    MATERIALS AND METHODS: Sixty male Sprague-Dawley rats were divided into five groups: non-diabetic fed a standard diet (C), C + CNME (500 mg/kg, orally), diabetic fed an HFD (DM), DM + CNME (500 mg/kg), and DM + Metformin (DM + Met; 300 mg/kg). Treatment with oral CNME and metformin was administered for 4 weeks. Fasting blood glucose (FBG), serum lipid profile, atherogenic index (AI), aortic tissue superoxide dismutase levels (SOD), malondialdehyde (MDA), and tumour necrosis factor-alpha (TNF-α) were measured. The rats' aortas were stained for histological analysis and intima-media thickness (IMT), a marker of subclinical atherosclerosis.

    RESULTS: The CNME-treated diabetic rats had reduced serum total cholesterol (43.74%; p = 0.0031), triglycerides (80.91%; p = 0.0003), low-density lipoprotein cholesterol (56.64%; p = 0.0008), AI (51.32%; p 

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  10. Abu Bakar Sajak A, Mediani A, Maulidiani, Mohd Dom NS, Machap C, Hamid M, et al.
    Phytomedicine, 2017 Dec 01;36:201-209.
    PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011
    BACKGROUND: Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown.

    PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.

    METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.

    RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.

    CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  11. Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S
    Int J Biol Sci, 2011 Mar 14;7(2):244-52.
    PMID: 21448302 DOI: 10.7150/ijbs.7.244
    Diabetes mellitus is associated with deterioration of glycemic control and progressive metabolic derangements. This study investigated the effect of honey as an adjunct to glibenclamide or metformin on glycemic control in streptozotocin-induced diabetic rats. Diabetes was induced in rats by streptozotocin. The diabetic rats were randomized into six groups and administered distilled water, honey, glibenclamide, glibenclamide and honey, metformin or metformin and honey. The animals were treated orally once daily for four weeks. The diabetic control rats showed hypoinsulinemia (0.27 ± 0.01 ng/ml), hyperglycemia (22.4 ± 1.0 mmol/L) and increased fructosamine (360.0 ± 15.6 µmol/L). Honey significantly increased insulin (0.41 ± 0.06 ng/ml), decreased hyperglycemia (12.3 ± 3.1 mmol/L) and fructosamine (304.5 ± 10.1 µmol/L). Although glibenclamide or metformin alone significantly (p < 0.05) reduced hyperglycemia, glibenclamide or metformin combined with honey produced significantly much lower blood glucose (8.8 ± 2.9 or 9.9 ± 3.3 mmol/L, respectively) compared to glibenclamide or metformin alone (13.9 ± 3.4 or 13.2 ± 2.9 mmol/L, respectively). Similarly, glibenclamide or metformin combined with honey produced significantly (p < 0.05) lower fructosamine levels (301.3 ± 19.5 or 285.8 ± 22.6 µmol/L, respectively) whereas glibenclamide or metformin alone did not decrease fructosamine (330.0 ± 29.9 or 314.6 ± 17.9 µmol/L, respectively). Besides, these drugs or their combination with honey increased insulin levels. Glibenclamide or metformin combined with honey also significantly reduced the elevated levels of creatinine, bilirubin, triglycerides, and VLDL cholesterol. These results indicate that combination of glibenclamide or metformin with honey improves glycemic control, and provides additional metabolic benefits, not achieved with either glibenclamide or metformin alone.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  12. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, et al.
    Drug Deliv Transl Res, 2020 Feb;10(1):216-226.
    PMID: 31637677 DOI: 10.1007/s13346-019-00675-6
    Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  13. Rahman MA, Uddin MN, Babteen NA, Alnajeebi AM, Zakaria ZA, Aboelenin SM
    Biomed Res Int, 2021;2021:6978450.
    PMID: 34725640 DOI: 10.1155/2021/6978450
    BACKGROUND: Hatikana is a traditional medicinal plant used to treat inflammation, urolithiasis, goiter, cancer, wounds and sores, gastrointestinal, tumor, tetanus, arthritis, hepatic damage, neurodegeneration, and other ailments. The goal of this study is to investigate the antidiabetic properties of Hatikana extract (HKEx) and to construct the effects of its natural constituents on the genes and biochemical indices that are connected with them.

    METHODS: HKEx was evaluated using GC-MS and undertaken for a three-week intervention in fructose-fed STZ-induced Wistar albino rats at the doses of HKEx50, HKEx100, and HKEx200 mg/kg bw. Following intervention, blood serum was examined for biochemical markers, and liver tissue was investigated for the mRNA expression of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD1) by RTPCR analysis. Most abundant compounds (oleanolic acid, 7α, 28-olean diol, and stigmasterol) from GC-MS were chosen for the network pharmacological assay to verify function-specific gene-compound interactions using STITCH, STRING, GSEA, and Cytoscape plugin cytoHubba.

    RESULTS: In vivo results showed a significant (P < 0.05) decrease of blood sugar, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine kinase (CK-MB), and lactate dehydrogenase (LDH) and increase of liver glycogen, glucose load, and serum insulin. Out of three antioxidative genes, catalase (CAT) and superoxide dismutase (SOD1) were found to be few fold increased. Oleanolic acid and stigmasterol were noticed to strongly interact with 27 target proteins. Oleanolic acid interacted with the proteins AKR1B10, CASP3, CASP8, CYP1A2, CYP1A2, HMGB1, NAMPT, NFE2L2, NQO1, PPARA, PTGIR, TOP1, TOP2A, UGT2B10, and UGT2B11 and stigmasterol with ABCA1, ABCG5, ABCG8, CTSE, HMGCR, IL10, CXCL8, NR1H2, NR1H3, SLCO1B1, SREBF2, and TNF. Protein-protein interaction (PPI) analysis revealed the involvement of 25 target proteins out of twenty seven. Cytoscape plugin cytoHubba identified TNF, CXCL8, CASP3, PPARA, SREBF2, and IL10 as top hub genes. Pathway analysis identified 31 KEGG metabolic, signaling, and immunogenic pathways associated with diabetes. Notable degree of PPI enrichment showed that SOD1 and CAT are responsible for controlling signaling networks and enriched pathways.

    CONCLUSION: The findings show that antioxidative genes have regulatory potential, allowing the HKEx to be employed as a possible antidiabetic source pending further validation.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  14. Farsi E, Ahmad M, Hor SY, Ahamed MB, Yam MF, Asmawi MZ, et al.
    BMC Complement Altern Med, 2014 Jul 04;14:220.
    PMID: 24993916 DOI: 10.1186/1472-6882-14-220
    BACKGROUND: Recently, there has been increasing interest in Ficus deltoidea Jack. (Moraceae) due to its chemical composition and the potential health benefits. The present study was undertaken to investigate the effect of extracts of F. deltoidea leaves on diabetes.

    METHODS: The petroleum ether, chloroform and methanol extracts of F. deltoidea were prepared and subjected to standardization using preliminary phytochemical and HPLC analysis. Dose selection was made on the basis of acute oral toxicity study (50-5000 mg/kg b. w.) as per OECD guidelines. Diabetes mellitus was induced with streptozotocin and rats found diabetic were orally administered with the extract (250, 500 and 1000 mg/kg) for 14 days. Levels of blood glucose and insulin were measured in control as well as diabetic rats on 0, 7 and 14th day. In addition, glucose metabolism regulating gene expression was assessed using RT-PCR.

    RESULTS: HPLC analysis revealed that the methanol extract is enriched with C-glycosylflavones particularly, vitexin and isovitexin. In oral glucose tolerance test, oral administration of the methanol extract increased the glucose tolerance. The methanol extract showed significant (P 

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  15. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N
    Eur J Nutr, 2017 Mar;56(2):591-601.
    PMID: 26593435 DOI: 10.1007/s00394-015-1103-y
    PURPOSE: The present study was undertaken to explore the possible anti-diabetic mechanism(s) of Emblica officinalis (EO) and its active constituent, ellagic acid (EA), in vitro and in vivo.

    METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.

    RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.

    CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  16. Atangwho IJ, Yin KB, Umar MI, Ahmad M, Asmawi MZ
    PMID: 25358757 DOI: 10.1186/1472-6882-14-426
    This study evaluated the impact of Vernonia amygdalina (VA) on the transcription of key enzymes involved in cellular modulation of glucose in streptozotocin-induced diabetic rats in a bid to understand the possible anti-diabetic mechanism of VA.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy
  17. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Hussaini J, Khor GH
    ScientificWorldJournal, 2014;2014:908098.
    PMID: 25485304 DOI: 10.1155/2014/908098
    To estimate the impact of ellagic acid (EA) towards healing tooth socket in diabetic animals, after tooth extraction.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  18. Balakumar P, Varatharajan R, Nyo YH, Renushia R, Raaginey D, Oh AN, et al.
    Pharmacol Res, 2014 Dec;90:36-47.
    PMID: 25263930 DOI: 10.1016/j.phrs.2014.08.008
    Low-doses of fenofibrate and dipyridamole have pleiotropic renoprotective actions in diabetic rats. This study investigated their combined effect relative to their individual treatments and lisinopril in rats with diabetic nephropathy. Streptozotocin (55mg/kg, i.p., once)-administered diabetic rats were allowed for 10 weeks to develop nephropathy. Diabetic rats after 10 weeks developed nephropathy with discernible renal structural and functional changes as assessed in terms of increase in kidney weight to body weight ratio (KW/BW), and elevations of serum creatinine, urea and uric acid, which accompanied with elevated serum triglycerides and decreased high-density lipoproteins. Hematoxylin-eosin, periodic acid Schiff and Masson trichrome staining confirmed renal pathological changes in diabetic rats that included glomerular capsular wall distortion, mesangial cell expansion, glomerular microvascular condensation, tubular damage and degeneration and fibrosis. Low-dose fenofibrate (30mg/kg, p.o., 4 weeks) and low-dose dipyridamole (20mg/kg, p.o., 4 weeks) treatment either alone or in combination considerably reduced renal structural and functional abnormalities in diabetic rats, but without affecting the elevated glucose level. Fenofibrate, but not dipyridamole, significantly prevented the lipid alteration and importantly the uric acid elevation in diabetic rats. Lisinopril (5mg/kg, p.o., 4 weeks, reference compound), prevented the hyperglycemia, lipid alteration and development of diabetic nephropathy. Lipid alteration and uric acid elevation, besides hyperglycemia, could play key roles in the development of nephropathy. Low-doses of fenofibrate and dipyridamole treatment either alone or in combination markedly prevented the diabetes-induced nephropathy. Their combination was as effective as to their individual treatment, but not superior in preventing the development of diabetic nephropathy.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  19. Arya A, Looi CY, Cheah SC, Mustafa MR, Mohd MA
    J Ethnopharmacol, 2012 Oct 31;144(1):22-32.
    PMID: 22954496 DOI: 10.1016/j.jep.2012.08.014
    Seeds of Centratherum anthelminticum (Asteraceae) have been popularly used in Ayurvedic medicine to treat diabetes and skin disorders. Folk medicine from Rayalaseema (Andhra Pradesh, India) reported wide spread usage in diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  20. Sasidharan S, Sumathi V, Jegathambigai NR, Latha LY
    Nat Prod Res, 2011 Dec;25(20):1982-7.
    PMID: 21707251 DOI: 10.1080/14786419.2010.523703
    Diabetes mellitus is a global disease that is increasing in an alarming rate. The present study was undertaken to study the antidiabetic effect of the ethanol extracts of Carica papaya and Pandanus amaryfollius on streptozotocin-induced diabetic mice. The results of the present study indicated that there was no significant difference in the body weight of the treated groups when compared to diabetic control. Whereas, there was significant (P 
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links