Displaying publications 41 - 60 of 283 in total

Abstract:
Sort:
  1. Voo CLY, Yeo DET, Chong KP, Rodrigues KF
    Microbiol Resour Announc, 2020 Jan 02;9(1).
    PMID: 31896636 DOI: 10.1128/MRA.01240-19
    Basal stem rot (BSR) disease on Elaeis guineens is known to be caused by members of the pathogenic fungal genus Ganoderma, especially the species Ganoderma boninense This species affects oil palm plantation in Sabah, Malaysia. The genome sequence (52.28 Mbp) will add to the representation of this genus, especially in regard to BSR disease.
    Matched MeSH terms: Fungi
  2. Ho YW, Khoo IY, Tan SG, Abdullah N, Jalaludin S, Kudo H
    Microbiology (Reading), 1994 Jun;140 ( Pt 6):1495-504.
    PMID: 8081508
    Isozymes of 23 cultures of the anaerobic rumen fungi and seven cultures of aerobic chytridiomycete fungi were analysed by PAGE. A total of 14 isozyme loci were successfully typed by PAGE. They were peptidase A & C-1, peptidase A & C-2, peptidase D-1, peptidase D-2, malate dehydrogenase-1, malate dehydrogenase-2, esterase-1, esterase-2, malic enzyme-1, malic enzyme-2, isocitrate dehydrogenase, shikimate dehydrogenase, phosphoglucomutase and 6-phosphogluconate dehydrogenase. Isozyme analysis can be used for studying the genetic relationships among the different anaerobic rumen fungi and the aerobic chytridiomycete fungi and the isozyme characteristics can serve as additional taxonomic criteria in the classification of the anaerobic rumen fungi. A dendrogram based on the isozyme data demonstrated that the anaerobic rumen fungi formed a cluster, indicating a monophyletic group, distinctly separated from the aerobic chytridiomycete fungi. Piromyces communis and P. minutus showed a close relationship but P. spiralis showed a more distant relationship to both P. communis and P. minutus. Piromyces as a whole was more related to Caecomyces than to Neocallimastix. Orpinomyces was also found to be more related to Piromyces and Caecomyces than to Neocallimastix. Orpinomyces intercalaris C 70 from cattle showed large genetic variation from O. joyonii, indicating that it is a different species.
    Matched MeSH terms: Fungi/classification*; Fungi/enzymology; Fungi/genetics
  3. Schilthuizen M, Perreau M, Njunjić I
    Zookeys, 2018.
    PMID: 30100790 DOI: 10.3897/zookeys.777.23212
    The available knowledge of the round fungus beetle subfamily Cholevinae (Leiodidae) from the island of Borneo is reviewed, and the results of newly studied material presented. The currently known 30 species (of which 14 are newly described herein) represent the genera Micronemadus (one species), Catops (one species), Baryodirus (one species), Ptomaphaginus (14 species), and Ptomaphaminus (13 species). The following new species are described: Micronemadussondaicus Schilthuizen & Perreau, sp. n., Ptomaphaginusgrandis Schilthuizen & Perreau, sp. n., P.louis Schilthuizen & Perreau, sp. n., P.muluensis Schilthuizen & Perreau, sp. n., and P.isabellarossellini Schilthuizen, Njunjić & Perreau, sp. n., and Ptomaphaminuskinabatanganensis Njunjić, Schilthuizen & Perreau, sp. n., P.testaceus Schilthuizen & Perreau, sp. n., P.nanus Schilthuizen & Perreau, sp. n., P.marshalli Schilthuizen & Perreau, sp. n., P.hanskii Schilthuizen & Perreau, sp. n., P.sarawacensis Schilthuizen & Perreau, sp. n., P.layangensis Schilthuizen & Perreau, sp. n., P.microphallus Schilthuizen & Perreau, sp. n., and P.alabensis Schilthuizen & Perreau, sp. n. It is expected that the cholevine biodiversity of Borneo is still far from completely known. Nonetheless, provisional identification keys to all species known so far are presented.
    Matched MeSH terms: Fungi
  4. Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S
    Environ Res, 2022 03;204(Pt A):111963.
    PMID: 34450157 DOI: 10.1016/j.envres.2021.111963
    The demand for the green synthesis of nanoparticles has gained prominence over the conventional chemical and physical syntheses, which often entails toxic chemicals, energy consumption and ultimately lead to negative environmental impact. In the green synthesis approach, naturally available bio-compounds found in plants and fungi can be effective and have been proven to be alternative reducing agents. Fungi or mushrooms are particularly interesting due to their high content of bioactive compounds, which can serve as excellent reducing agents in the synthesis of nanoparticles. Apart from the economic and environmental benefits, such as ease of availability, low synthesis/production cost, safe and no toxicity, the nanoparticles synthesized from this green method have unique physical and chemical properties. Stabilisation of the nanoparticles in an aqueous solution is exceedingly high, even after prolonged storage with unperturbed size uniformity. Biological properties were significantly improved with higher biocompatibility, anti-microbial, anti-oxidant and anti-cancer properties. These remarkable properties allow further exploration in their applications both in the medical and agricultural fields. This review aims to explore the mushroom-mediated biosynthesis of nanomaterials, specifically the mechanism and bio-compounds involved in the synthesis and their interactions for the stabilisation of nanoparticles. Various metal and non-metal nanoparticles have been discussed along with their synthesis techniques and parameters, making them ideal for specific industrial, agricultural, and medical applications. Only recent developments have been explored in this review.
    Matched MeSH terms: Fungi
  5. Hussin AA, Hidayah Ahmad NA, Mohd Asri NF, Nik Malek NAN, Mohd Amin MF, Kamaroddin MF
    Bioresour Technol, 2023 Apr;373:128743.
    PMID: 36791974 DOI: 10.1016/j.biortech.2023.128743
    In this study, the cultivation and harvesting of Arthrospira platensis biomass were proposed via simple, safe, and efficient techniques for direct consumption. Cultivation of microalgae in a covered macrobubble column under outdoor conditions resulted in significant differences (p 
    Matched MeSH terms: Fungi
  6. Paterson RRM, Buddie A
    Environ Sci Pollut Res Int, 2019 05;26(13):13676.
    PMID: 30357675 DOI: 10.1007/s11356-018-3544-3
    Matched MeSH terms: Fungi
  7. Velayutham M, Priya PS, Sarkar P, Murugan R, Almutairi BO, Arokiyaraj S, et al.
    Molecules, 2023 Sep 21;28(18).
    PMID: 37764521 DOI: 10.3390/molecules28186746
    Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.
    Matched MeSH terms: Fungi
  8. Azuddin NF, Mohamad Noor Azmy MS, Zakaria L
    Sci Rep, 2023 Mar 14;13(1):4239.
    PMID: 36918601 DOI: 10.1038/s41598-023-31291-7
    Lawn grass (Axonopus compressus) is a widely distributed grass species from the family Poaceae that is ubiquitous in Malaysia. We isolated endophytic fungi from the leaves of A. compressus and molecularly identified them as Fusarium parceramosum, Colletotrichum siamense, C. gigasporum, C. endophyticum, Curvularia lunata, Stagonospora bicolor, Calonectria gracilis, and Albifimbria verrucari. These fungal endophytes are considered host generalists, as they have been isolated from other plants and have also been reported to be latent plant pathogens. We tested the pathogenicity of selected endophytic fungal isolates on A. compressus leaves, chili (Capsicum annum), and tomato (Solanum lycopersicum), and found that they were pathogenic to wounded A. compressus leaves with low to moderate virulence, and several were pathogenic to wounded and unwounded chili and tomato fruits. This indicated that the endophytes could infect both vegetable fruits with low to very high virulence. Pathogenicity tests demonstrated that endophytic fungi from the leaves of A. compressus can become pathogenic and infect the host and other plant species. The findings also indicated that leaves of A. compressus may harbor pathogens with latent ability that can become active due to changes in environmental conditions, thereby disrupting the balance between host-endophyte antagonism.
    Matched MeSH terms: Fungi
  9. Zhou J, Chen L, Foo HL, Cao Z, Lin Q
    Food Chem, 2024 Nov 15;458:140293.
    PMID: 38970959 DOI: 10.1016/j.foodchem.2024.140293
    The present study aimed to determine microbial community, short-chain fatty acids (SCFAs), and volatilome of Bulang pickled tea during fermentation. Sequencing of 16S rRNA and ITS revealed that Bualng pickled tea was dominated by Lactobacillus plantarum, unclassified Enterobacteriaceae, unclassified Debaryomyces, Candida metapsilosis, Cladosporium sphaerospermum, and unclassified Aspergillus. The overall contents of SCFAs increased, with acetic acid showing the highest content. A total of 398 differential volatile metabolites were detected using differential metabolomics analysis. Out of these different volatile compounds, ten key volatile compounds including (Z)-4-heptenal, 1-(2-thienyl)-ethanone, 5-methyl-(E)-2-hepten-4-one, 2-ethoxy-3-methylpyrazine, p-cresol, 2-methoxy-phenol, ethy-4-methylvalerate, 3-ethyl-phenol, p-menthene-8-thiol, and 2-s-butyl-3-methoxypyrazinewere were screened based on odor activity value (OAV). The Spearman correlation analysis showed a high correlation of SCFAs and volatile compounds with microorganisms, especially L. plantarum and C. sphaerospermum. This study provided a theoretical basis for elucidating the flavor quality formation mechanism of Bulang pickled tea.
    Matched MeSH terms: Fungi/classification; Fungi/genetics; Fungi/metabolism
  10. Harun A
    Malays J Med Sci, 2014 Nov-Dec;21(6):1-2.
    PMID: 25897275
    The emergence of fungal species as opportunistic pathogens has warranted further studies on their pathogenicity, epidemiology, and transmissibility. Fungal genotyping has been employed to study the genetic relatedness within the organism, in order to obtain answers to epidemiological questions (such as in outbreak confirmation) as well as to provide basis for the improvement for patients care. Various fungal genotyping methods have been previously published, which can be chosen depending on the intended use and the capability of individual laboratory.
    Matched MeSH terms: Fungi
  11. Jeyaprakasam NK, Razak MF, Ahmad NA, Santhanam J
    Mycopathologia, 2016 Jun;181(5-6):397-403.
    PMID: 26847667 DOI: 10.1007/s11046-016-9984-8
    Although non-sporulating molds (NSM) are frequently isolated from patients and have been recognized as agents of pulmonary disease, their clinical significance in cutaneous specimens is relatively unknown. Therefore, this study aimed to identify NSM and to determine the keratinolytic activity of isolates from cutaneous sites. NSM isolates from clinical specimens such as skin, nail, and body fluids were identified based on their ribosomal DNA sequences. Of 17 NSM isolates (7 Ascomycota, 10 Basidiomycota), eleven were identified to species level while five were identified to the genus level. These include Schizophyllum commune, a known human pathogen, Phoma multirostrata, a plant pathogen, and Perenniporia tephropora, a saprophyte. To determine fungal pathogenicity, keratinolytic activity, a major virulence factor, was evaluated ex vivo using human nail samples by measuring dye release from keratin azure, for NSM along with pathogens (Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis and Fusarium spp.) and nonpathogenic (endophyte) fungi for comparison. This study showed that pathogenic fungi had the highest keratinolytic activity (7.13 ± 0.552 keratinase units) while the nonpathogenic endophytes had the lowest activity (2.37 ± 0.262 keratinase units). Keratinolytic activity of two Ascomycota NSM (Guignardia mangiferae and Hypoxylon sp.) and one Basidiomycota NSM (Fomitopsis cf. meliae) was equivalent to that of pathogenic fungi, while Xylaria feejeensis showed significantly higher activity (p 
    Matched MeSH terms: Fungi/enzymology; Fungi/genetics; Fungi/isolation & purification*; Fungi/pathogenicity*
  12. Wei J, Ren W, Wang L, Liu M, Tian X, Ding G, et al.
    J Sci Food Agric, 2020 Dec;100(15):5627-5636.
    PMID: 32712996 DOI: 10.1002/jsfa.10690
    BACKGROUND: Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal.

    RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus.

    CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Fungi/classification; Fungi/genetics; Fungi/isolation & purification*; Fungi/metabolism
  13. Tahir AA, Mohd Barnoh NF, Yusof N, Mohd Said NN, Utsumi M, Yen AM, et al.
    Microbes Environ, 2019 Jun 27;34(2):161-168.
    PMID: 31019143 DOI: 10.1264/jsme2.ME18117
    Oil palm empty fruit bunches (OPEFB) are the most abundant, inexpensive, and environmentally friendly lignocellulosic biomass in Malaysia. Investigations on the microbial diversity of decaying OPEFB may reveal microbes with complex enzymes that have the potential to enhance the conversion of lignocellulose into second-generation biofuels as well as the production of other value-added products. In the present study, fungal and bacterial diversities in decaying OPEFB were identified using Illumina MiSeq sequencing of the V3 region of the 16S rRNA gene and V4 region of the 18S rRNA gene. Fungal diversity in decaying OPEFB was dominated by the phylum Ascomycota (14.43%), while most of the bacterial sequences retrieved belonged to Proteobacteria (76.71%). Three bacterial strains isolated from decaying OPEFB, designated as S18, S20, and S36, appeared to grow with extracted OPEFB-lignin and Kraft lignin (KL) as the sole carbon source. 16S rRNA gene sequencing identified the 3 isolates as Paenibacillus sp.. The molecular weight distribution of KL before and after degradation showed significant depolymerization when treated with bacterial strains S18, S20, and S36. The presence of low-molecular-weight lignin-related compounds, such as vanillin and 2-methoxyphenol derivatives, which were detected by a GC-MS analysis, confirmed the KL-degrading activities of isolated Paenibacillus strains.
    Matched MeSH terms: Fungi/classification; Fungi/genetics; Fungi/isolation & purification; Fungi/metabolism
  14. Chen SH, Yien Ting AS
    J Environ Manage, 2015 Mar 01;150:274-280.
    PMID: 25527986 DOI: 10.1016/j.jenvman.2014.09.014
    Triphenylmethane dyes (TPM) are recalcitrant colorants brought into the environment. In this study, a lesser-known white rot fungus Coriolopsis sp. (1c3), isolated from compost of Empty Fruit Bunch (EFB) of oil palm, was explored for its decolorization potential of TPM dyes. The isolate 1c3 demonstrated good decolorization efficiencies in the treatment of Crystal Violet (CV; 100 mg l(-1)), Methyl Violet (MV; 100 mg l(-1)) and Cotton Blue (CB; 50 mg(-1)), with 94%, 97% and 91%, within 7, 7 and 1 day(s), respectively. Malachite Green (MG; 100 mg l(-1)) was the most recalcitrant dye, with 52% decolorization after 9 days. Dye removal by 1c3 was presumably via biosorption, whereby the process was determined to be influenced by fungal biomass, initial dye concentrations and oxygen requirements. Biodegradation was also a likely mechanism responsible for dye removal by 1c3, occurred as indicated by the reduction of dye spectra peaks. Detection of laccase, lignin peroxidase and NADH-DCIP reductase activities further substantiate the possible occurrence of biodegradation of TPM dyes by 1c3.
    Matched MeSH terms: Fungi/metabolism*
  15. Shah SA, Tan HL, Sultan S, Faridz MA, Shah MA, Nurfazilah S, et al.
    Int J Mol Sci, 2014;15(7):12027-60.
    PMID: 25003642 DOI: 10.3390/ijms150712027
    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids.
    Matched MeSH terms: Fungi/metabolism
  16. Sithasanan N, Chong LA, Ariffin H
    Med J Malaysia, 2007 Aug;62(3):247-8.
    PMID: 18246918 MyJurnal
    Phaeohyphomycosis consists of a group of mycotic infections characterized by the presence of dematiaceous (dark walled) septate hyphae. Splenic abscess and spontaneous rupture is an infrequent complication in children with haematological malignancies and can be life threatening. To the best of our knowledge this is the first report of a case of splenic rupture following the development of multiple abscesses secondary to infestation by this rare fungal species.
    Matched MeSH terms: Fungi/pathogenicity*
  17. Senthilkumar S
    Med J Malaysia, 2004 May;59 Suppl B:218-9.
    PMID: 15468896
    Matched MeSH terms: Fungi/physiology*
  18. Barakat A, Ghabbour HA, Al-Majid AM, Soliman SM, Ali M, Mabkhot YN, et al.
    Molecules, 2015;20(7):13240-63.
    PMID: 26197312 DOI: 10.3390/molecules200713240
    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.
    Matched MeSH terms: Fungi/growth & development*
  19. Abdullah N, Nawawi A, Othman I
    Mycopathologia, 1998;143(1):53-8.
    PMID: 10205885
    In a survey of starch-based foods sampled from retail outlets in Malaysia, fungal colonies were mostly detected in wheat flour (100%), followed by rice flour (74%), glutinous rice grains (72%), ordinary rice grains (60%), glutinous rice flour (48%) and corn flour (26%). All positive samples of ordinary rice and glutinous rice grains had total fungal counts below 10(3) cfu/g sample, while among the positive rice flour, glutinous rice flour and corn flour samples, the highest total fungal count was more than 10(3) but less than 10(4) cfu/g sample respectively. However, in wheat flour samples total fungal count ranged from 10(2) cfu/g sample to slightly more than 10(4) cfu/g sample. Aflatoxigenic colonies were mostly detected in wheat flour (20%), followed by ordinary rice grains (4%), glutinous rice grains (4%) and glutinous rice flour (2%). No aflatoxigenic colonies were isolated from rice flour and corn flour samples. Screening of aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2 using reversed-phase HPLC were carried out on 84 samples of ordinary rice grains and 83 samples of wheat flour. Two point four percent (2.4%) of ordinary rice grains were positive for aflatoxin G1 and 3.6% were positive for aflatoxin G2. All the positive samples were collected from private homes at concentrations ranging from 3.69-77.50 micrograms/kg. One point two percent (1.2%) of wheat flour samples were positive for aflatoxin B1 at a concentration of 25.62 micrograms/kg, 4.8% were positive for aflatoxin B2 at concentrations ranging from 11.25-252.50 micrograms/kg, 3.6% were positive for aflatoxin G1 at concentrations ranging from 25.00-289.38 micrograms/kg and 13.25% were positive for aflatoxin G2 at concentrations ranging from 16.25-436.25 micrograms/kg. Similarly, positive wheat flour samples were mostly collected from private homes.
    Matched MeSH terms: Fungi/isolation & purification
  20. Mashitah, Zulfadhly Z, Bhatia S
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):429-33.
    PMID: 10595444
    The equilibrium sorption capacity of a macro-fungi, Pycnoporus sanguineus biomass was studied using a single-metal system comprising copper ions. The rate and extent for the removal of copper were subjected to environmental parameters such as pH, biomass loading, temperature, and contact time. Results showed that the uptake of copper increased as the pH increased. However, as the biomass loading increased, the amount of metal uptake decreased. Instead, temperature does not have a significant effect on the metal uptake, especially between 30 to 40 degrees C. A maximum adsorption of copper ions was also observed within 15 minutes of reaction time for the entire sample tested. Furthermore, pre-treatment with sodium bicarbonate and boiling water significantly improved the sorption capacity of copper by Pycnoporus sanguineus.
    Matched MeSH terms: Fungi/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links