Displaying publications 41 - 60 of 898 in total

Abstract:
Sort:
  1. Sogan N, Kala S, Kapoor N, Nagpal BN, Ramlal A, Nautiyal A
    World J Microbiol Biotechnol, 2023 Apr 01;39(6):142.
    PMID: 37004584 DOI: 10.1007/s11274-023-03570-y
    Mosquitoes are infectious vectors for a wide range of pathogens and parasites thereby transmitting several diseases including malaria, dengue, Zika, Japanese encephalitis and chikungunya which pose a major public health concern. Mostly synthetic insecticides are usually applied as a primary control strategy to manage vector-borne diseases. However excessive and non-judicious usage of such chemically derived insecticides has led to serious environmental and health issues owing to their biomagnification ability and increased toxicity towards non-target organisms. In this context, many such bioactive compounds originating from entomopathogenic microbes serve as an alternative strategy and environmentally benign tool for vector control. In the present paper, the entomopathogenic fungus, Lecanicillium lecanii (LL) was processed to make the granules. Developed 4% LL granules have been characterized using the technique of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The developed formulation was also subjected to an accelerated temperature study at 40 °C and was found to be stable for 3 months. Further, GCMS of the L. lecanii was also performed to screen the potential biomolecules present. The developed formulation was found to be lethal against Anopheles culicifacies with an LC50 value of 11.836 µg/mL. The findings from SEM and histopathology also substantiated the mortality effects. Further, the SEM EDX (energy dispersive X-ray) studies revealed that the treated larvae have lower nitrogen content which is correlated to a lower level of chitin whereas the control ones has higher chitin content and healthy membranes. The developed LL granule formulation exhibited high toxicity against Anopheles mosquitoes. The granule formulations can be used as an effective biocontrol strategy against malaria-causing mosquitoes.
    Matched MeSH terms: Plant Extracts/chemistry
  2. Hipolith MM, Khor BK, Hirasawa Y, Murugaiyah V, Lee CY, Morita H, et al.
    Fitoterapia, 2023 Apr;166:105468.
    PMID: 36931528 DOI: 10.1016/j.fitote.2023.105468
    Benign prostate hyperplasia (BPH) is an enlargement of the prostate gland, because of hormonal changes in aging males which contribute significantly to excessive proliferation over apoptosis of prostatic cells. The anti-proliferative and induced apoptotic activities of Eurycoma longifolia quassinoids on cancer cell lines could be promising therapeutic targets on BPH. Hitherto, no report of the quassinoids against BPH problem was available. In this study, a systematic phytochemical fractionation of the root extract, TAF2 was performed, which led to the discovery of nine previously described C20 quassinoids (1-9). Two undescribed C20 (10 and 12) and one undescribed (11) C19 quassinoids were identified by detailed NMR and HR-ESI-MS data analysis. Their absolute configurations were assigned by ECD spectral analysis. The quassinoids (1-12) were tested for inhibitory activity against the proliferation of human BPH-1 and human skin Hs27 fibroblast cells cultured in vitro. 1, 2 and 3 at 10 μM significantly reduced BPH-1 cell viability and were cytotoxic to Hs27 fibroblast cells. 2 was selected for further study of anti-BPH activity against testosterone induced BPH rats. At 5 mg/kg, 2 reduced the rat prostatic weight and prostatic index, consistent with the decrease in papillary acini number and epithelial thickness of the prostate tissues. These quassinoids may be potential anti-BPH compounds that require further studies.
    Matched MeSH terms: Plant Extracts/chemistry
  3. Anwar S, Saleem H, Khurshid U, Ansari SY, Alghamdi S, Al-Khulaidi AWA, et al.
    Nat Prod Res, 2023 Mar;37(6):1023-1029.
    PMID: 35815778 DOI: 10.1080/14786419.2022.2097230
    In the present research, oleuropein (OLE) contents from two Saudi Arabian wild olive trees (Olea europaea L.) leaves (O1 and O2), were collected from two nearby geographical sites differing in altitudes, and were determined via UHPLC-MS analysis. Moreover, total bioactive contents, antioxidant, and cytotoxicity (against MCF-7 and MDA-MB-231 cells) potential were also evaluated. The sample (O2) was found to contain significantly (p 
    Matched MeSH terms: Plant Extracts/chemistry
  4. Alrabie A, Al-Rabie NA, Al Saeedy M, Al Adhreai A, Al-Qadsy I, Farooqui M
    Nat Prod Res, 2023 Mar;37(6):1016-1022.
    PMID: 35801965 DOI: 10.1080/14786419.2022.2097227
    Liquid Chromatography-Mass Spectrometry (LC-MS) analysis of methanol extract of Martynia annua seed revealed the presence of haploperozide and austricine. For safety, heavy metals content investigation of plant powder using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) technique showed that the toxic metals (Pb: 2.07 mg/kg; Cd: 0.07 mg/kg; and As: 0.18 mg/kg) concentrations were found to be below the permissible limit. The extract demonstrated significant antibacterial activity against E. coli (MIC value 125 g/mL). Furthermore, it was effective in inhibiting both α-glucosidase and α-amylase enzymes with a high percentage and IC50 values were 42.28 ± 0.39 µg/mL and 34.11 ± 0.31 µg/mL, respectively. These findings were supported by a molecular docking study, some of the phytochemicals showed higher docking score values than references. However, Martynia annua seeds are safe to consume because they contain low levels of toxic heavy metals and possess antibacterial and anti-diabetic properties.
    Matched MeSH terms: Plant Extracts/chemistry
  5. Eff ARY, Huri HZ, Radji M, Mun'im A, Suyatna FD, Eden Y
    BMC Complement Med Ther, 2023 Feb 20;23(1):56.
    PMID: 36803524 DOI: 10.1186/s12906-023-03889-x
    BACKGROUND: Mahkota Dewa [Phaleria macrocarpa (Scheff) Boerl.] fruit in vitro and in- vivo can decrease and prevent elevation of the blood pressure, lower plasma glucose levels, possess an antioxidant effect, and recover liver and kidney damage in rats. This study aimed to determine the structure and inhibitory activity of angiotensin-converting enzyme inhibitors (ACE) from the Mahkota Dewa fruit.

    METHODS: The fruit powder was macerated using methanol and then partitioned by hexane, ethyl acetate, n-butanol, and water. The fractions were chromatographed on the column chromatography and incorporated with TLC and recrystallization to give pure compounds. The structures of isolated compounds were determined by UV-Visible, FT-IR, MS, proton (1H-NMR), carbon (13C-NMR), and 2D-NMR techniques encompassing HMQC and HMBC spectra. The compounds were evaluated for their ACE inhibitory activity, and the strongest compound was determined by the kinetics enzyme inhibition.

    RESULTS: Based on the spectral data, the isolated compounds were determined as 6,4-dihydroxy-4-methoxybenzophenone-2-O-β-D-glucopyranoside (1), 4,4'-dihydroxy-6-methoxybenzophenone-2-O-β-D-glucopyranoside (2) and mangiferin (3). IC50 values of the isolated compounds 1, 2 and 3 were 0.055, 0.07, and 0.025 mM, respectively.

    CONCLUSION: The three compounds have ACE inhibitor and mangiferin demonstrated the best ACE inhibitory activity with competitive inhibition on ACE with the type of inhibition kinetics is competitive inhibition.

    Matched MeSH terms: Plant Extracts/chemistry
  6. El Yadini A, Elouafy Y, Amiri-Ardekani E, Shafiee M, Firouzi A, Sasani N, et al.
    Molecules, 2023 Feb 10;28(4).
    PMID: 36838696 DOI: 10.3390/molecules28041708
    Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), known locally as "R'tam", is a spontaneous and annual herb that belongs to the Fabaceae family. It is native to the Mediterranean regions, specifically in the desert areas and across the Middle Atlas in Morocco. This plant has been extensively used in folk medicine and it is rich in bioactive compounds, including polyphenols, flavonoids, and alkaloids. Current research efforts are focusing on the development of novel natural drugs as alternatives to various organic and non-organic chemical products from Retama monosperma. In addition, extract, and isolated compounds obtained from different parts of the chosen plant have been described to exhibit multiple biological and pharmacological properties such as antioxidant, anti-aging, anti-inflammatory, antihypertensive, anti-helminthic, disinfectant, diuretic, and hypoglycemic effects. The plant-derived extract also acts as an antimicrobial agent, which is highly efficient in the treatment of bacterial, viral, and fungal infections. Its antiproliferative effects are associated with some mechanisms, such as the inhibition of cell cycle arrest and apoptosis. In light of these assessments, we critically highlight the beneficial effects of the flowers, stems, seeds extracts, and isolated compounds from R. monosperma (L.) Boiss in human health care, industrial, and other applications, as well as the possible ways to be employed as a potential natural source for future drug discovery.
    Matched MeSH terms: Plant Extracts/chemistry
  7. Zakaria F, Akhtar MT, Wan Norhamidah WI, Noraini AB, Muhamad A, Shohaimi S, et al.
    PMID: 36336330 DOI: 10.1016/j.cbpc.2022.109501
    Depression is a common mental disorder that can adversely affect psychosocial function and quality of life. However, the exact aetiology and pathogenesis of depression are still unclear. Stress plays a major role in the pathogenesis of depression. The use of currently prescribed antidepressants has many side effects. Centella asiatica (C. asiatica) has shown promising antidepressant activity in rodent models. Here, we developed a reserpine-induced zebrafish stress-like model and performed behavioural analysis, cortisol measurement and 1H-Nuclear Magnetic Resonance (1H NMR) spectroscopy-based metabolomics analysis to test the anti-stress activity of ethanolic extract of C. asiatica (RECA). A significant increase in total distance travelled (F(8,8) = 8.905, p = 0.0054) and a reduction in freezing duration (F(9, 9) = 10.38, p = 0.0018) were found in the open field test (OFT). Asiaticoside, one of tested C.asiatica's triterpenoid gives a significant increase in contact duration (F(5,5) = 142.3, (p = 0.0330) at 2.5 mg/kg). Eight biomarkers were found, i.e. ß-hydroxyisovaleric acid, leucine, threonine, scylloinositol, lactate, betaine, valine, choline and l-fucose, to be responsible for the class separation between stress and RECA-treated groups. Metabolic pathway alteration in zebrafish brain upon treatment with RECA was identified as valine, leucine and isoleucine biosynthesis, while alanine, aspartate, glutamate and glycerophospholipid metabolism was involved after fluoxetine treatment.
    Matched MeSH terms: Plant Extracts/chemistry
  8. Yakubu Y, Ahmad MT, Chong CM, Ismail IS, Shaari K
    J Fish Biol, 2023 Feb;102(2):358-372.
    PMID: 36333916 DOI: 10.1111/jfb.15266
    Despite the use of Terminalia catappa (TC) leaf by traditional fish farmers around the world to improve the health status of cultured fish, there is a paucity of information on comprehensive metabolite profile and the maximum safe dose of the plant. This study aims at profiling the methanol leaf extract of T. catappa, quantifying total phenolic content (TPC) as well as the total flavonoid content (TFC) and evaluating its acute toxicity on blood, plasma biochemical parameters and histopathology of some vital organs in red hybrid tilapia (Oreochromis sp.). The experimental fish were acclimatised for 2 weeks and divided into six groups. Group (1) served as a control group and was administered 0.2 ml,g-1 of phosphate buffer saline (PBS). Groups 2-6 were orally administered T. catappa leaf extracts (0.2 ml.50 g-1 ) in the following sequence; 31.25, 62.5, 125, 250 and 500 mg.kg-1 body weight. The metabolites identified in T. catappa using liquid chromatography-tandem mass electrospray ionisation spectrometry (LC-ESI-MS/MS) revealed the presence of organic acids, hydrolysable tannins, phenolic acids and flavonoids. Phenolic quantification revealed reasonable quantity of phenolic compounds (217.48 μg GAEmg-1 for TPC and 91.90 μg. QCEmg-1 for TFC). Furthermore, there was no significant difference in all the tested doses in terms of blood parameters and plasma biochemical analysis except for the packed cell volume (PCV) at 500 mg.kg-1 when compared to the control. Significant histopathological changes were observed in groups administered with the extract at 125, 250 and 500 mg.kg-1 doses. To a very large extent it is therefore safe to administer the extract at 31.25 and 62.5 mg.kg-1 in tilapia.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Cho KH, Tan SP, Tan HY, Liew SY, Nafiah MA
    Planta Med, 2023 Jan;89(1):79-85.
    PMID: 35288885 DOI: 10.1055/a-1797-0548
    A phytochemical study has been carried out on CH2Cl2 extract of Alphonsea cylindrica leaves, resulting in the isolation of three new morphinan alkaloids. They are kinomenine (1: ), N-methylkinomenine (2: ), and hydroxymethylkinomenine (3: ). The structures of these compounds were elucidated by extensive spectroscopic analysis (1D and 2D NMR, IR, UV, HRESIMS) and comparison with the data reported in literature for similar alkaloids. Kinomenine (1: ) and N-methylkinomenine (2: ) showed weak inhibition against S. aureus (MIC values of 1: and 2:  = 500 µg/mL; pIC50 values in 95% C. I. of: 1:  = 2.9 to 3.0; 2:  = 2.9 to 3.1), while kinomenine (1: ) also showed weak inhibition against E. coli (MIC values of 1:  = 500 µg/mL; pIC50 value in 95% C. I. of: 1:  = 2.9) by broth microdilution method. The results obtained can be used as future referencefor the discovery of morphinans and the potential of A. cylindrica as an antibacterial source.
    Matched MeSH terms: Plant Extracts/chemistry
  10. Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, et al.
    PLoS One, 2023;18(3):e0283147.
    PMID: 36943850 DOI: 10.1371/journal.pone.0283147
    The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
    Matched MeSH terms: Plant Extracts/chemistry
  11. Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, et al.
    Crit Rev Food Sci Nutr, 2023;63(22):5546-5576.
    PMID: 34955042 DOI: 10.1080/10408398.2021.2021138
    Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
    Matched MeSH terms: Plant Extracts/chemistry
  12. Bourais I, Elmarrkechy S, Taha D, Badaoui B, Mourabit Y, Salhi N, et al.
    Molecules, 2022 Dec 16;27(24).
    PMID: 36558122 DOI: 10.3390/molecules27248989
    Leaves, husk, kernels, and bark methanolic extracts of Juglans regia L. were tested for their in vitro antidiabetic, anti-inflammatory, and antioxidant activities. For these purposes, α-amylase and α-glucosidase were used as the main enzymes to evaluate antidiabetic activities. Moreover, lipoxidase and tyrosinase activities were tested to estimate anti-inflammatory properties. Antioxidant properties of Juglans regia L., extracts were determined using three different assays. Leaves extract has an important radical scavenging activity and a-amylase inhibition. Similarly, husk extracts showed high total phenolic content (306.36 ± 4.74 mg gallic acid equivalent/g dry extract) with an important α-amylase inhibition (IC50 = 75.42 ± 0.99 µg/mL). Kernels exhibit significant tyrosinase (IC50 = 51.38 ± 0.81 µg/mL) correlated with antioxidant activities (p < 0.05). Husk and bark extracts also showed strong anti-lipoxidase activities with IC50 equal to 29.48 ± 0.28 and 28.58 ± 0.35 µg/mL, respectively. HPLC-DAD-ESI-MS/MS analysis highlights the phenolic profile of methanolic extracts of Juglans regia L. plant parts. The identified polyphenols were known for their antioxidant, antidiabetic (dicaffeoyl-quinic acid glycoside in kernels), and anti-inflammatory (3,4-dihydroxybenzoic acid in leaves) activities. Further investigations are needed to determine molecular mechanisms involved in these effects as well as to study the properties of the main identified compounds.
    Matched MeSH terms: Plant Extracts/chemistry
  13. Kasim N, Afzan A, Mediani A, Low KH, Ali AM, Mat N, et al.
    Phytochem Anal, 2022 Dec;33(8):1235-1245.
    PMID: 36192845 DOI: 10.1002/pca.3175
    INTRODUCTION: Ficus deltoidea Jack (Moraceae) is a plant used in Malaysia to treat various ailments, including diabetes. The presence of several varieties raises essential questions regarding which is the potential bioactive variety and what are the bioactive metabolites.

    OBJECTIVES: Here, we explored the phytochemical diversity of the seven varieties from Peninsular Malaysia using Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses and correlated it with the α-glucosidase inhibitory activity.

    METHODOLOGY: The Nuclear Overhauser Effect Spectroscopy (NOESY) One-Dimensional (1D)-NMR and LC-MS data were processed, annotated, and correlated with in vitro α-glucosidase inhibitory using multivariate data analysis.

    RESULTS: The α-glucosidase results demonstrated that different varieties have varying inhibitory effects, with the highest inhibition rate being F. deltoidea var. trengganuensis and var. kunstleri. Furthermore, diverse habitats and plant ages could also influence the inhibitory rate. The heat map from NMR and LC-MS profiles showed unique patterns according to varying levels of α-glucosidase inhibition rate. The Partial Least Squares (PLS) model constructed from both NMR and LC-MS further confirmed the correlation between the α-glucosidase inhibition rate of F. deltoidea varieties and its metabolite profiles. The Variable Influence on Projection (VIP) and correlation coefficient (p(corr)) values values were used to determine the highly relevant metabolites for explaining the anticipated inhibitory action.

    CONCLUSION: NMR and LC-MS annotations allow the identification of flavan-3-ols and proanthocyanidins as the key bioactive factors. Our current results demonstrated the value of multivariate data analysis to predict the quality of herbal materials from both biological and chemical aspects.

    Matched MeSH terms: Plant Extracts/chemistry
  14. Monirul Islam M, Hemmanahalli Ramesh V, Durga Bhavani P, Goudanavar PS, Naveen NR, Ramesh B, et al.
    Drug Deliv, 2022 Dec;29(1):3370-3383.
    PMID: 36404771 DOI: 10.1080/10717544.2022.2144963
    Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.
    Matched MeSH terms: Plant Extracts/chemistry
  15. Jamal HAA, Husaini A, Sing NN, Roslan HA, Zulkharnain A, Akinkunmi WA
    Braz J Microbiol, 2022 Dec;53(4):1857-1870.
    PMID: 36109458 DOI: 10.1007/s42770-022-00827-w
    This research evaluates the bioactivity of twelve endophytic fungi successfully isolated and characterised from Gynura procumbens. The fungal extracts displayed inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Salmonella typhi with the MIC and MBC of 5000 µg/mL. High antioxidant activity using DPPH free radical scavenging assay with inhibition of 86.6% and IC50 value of 104.25 ± 18.51 µg/mL were exhibited by ethyl acetate extract of Macrophomina phaseolina SN6. In contrast, the highest scavenging activity percentage of methanolic extract was exhibited by Mycoleptodiscus indicus SN4 (50.0%). Besides that, the highest ferric reducing antioxidant power (FRAP) value of ethyl acetate and methanolic extract was recorded from M. phaseolina SN6 (239.9 mg Fe (II)/g) and M. indicus SN4 (44.7 mg Fe (II)/g), respectively. Total phenolic content (TPC) and total flavonoid content (TFC) of ethyl acetate and methanolic fungal extracts were determined using Folin-Ciocalteu and aluminium chloride, respectively. The highest TPC for ethyl acetate and methanolic extracts were exhibited by Colletotrichum gloeosporioides SN11 (87.0 mg GAE/g) and M. indicus SN4 (35.0 mg GAE/g), whereas the highest TFC of ethyl acetate and methanolic extracts were showed by M. phaseolina SN6 (122.8 mg QCE/g) and M. indicus SN4 (60.4 mg QCE/g), respectively. Bioactive metabolites of isoelemicin (50.8%), terpinen-4-ol (21.5%), eucalyptol (24.3%), oleic acid (19.8%) and β-pinene (10.9%) were detected. Owing to the higher content of phytochemicals represented in the ethyl acetate extract of M. phaseolina, SN6 is therefore identified to be a superior candidate in exhibiting strong antioxidant and antimicrobial properties be fit for further pharmaceutical studies.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Idris MKH, Hasham R, Ismail HF
    Daru, 2022 Dec;30(2):253-272.
    PMID: 35922691 DOI: 10.1007/s40199-021-00414-8
    BACKGROUND: Metabolic syndrome (MetS) is a risk factor for prostate cancer (PCa) progression. Thus, this life-threatening disease demands a proactive treatment strategy. Andrographis paniculata (AP) is a promising candidate with various medicinal properties. However, the bioactivity of AP is influenced by its processing conditions especially the extraction solvent.

    OBJECTIVE: In the present study, bioassay-guided screening technique was employed to identify the best AP extract in the management of MetS, PCa, and MetS-PCa co-disease in vitro.

    METHODS: Five AP extracts by different solvent systems; APE1 (aqueous), APE2 (absolute methanol), APE3 (absolute ethanol), APE4 (40% methanol), and APE5 (60% ethanol) were screened through their phytochemical profile, in-vitro anti-cancer, anti-obese, and anti-hyperglycemic properties. The best extract was further tested for its potential in MetS-induced PCa progression.

    RESULTS: APE2 contained the highest andrographolide (1.34 ± 0.05 mg/mL) and total phenolic content (8.85 ± 0.63 GAE/gDW). However, APE3 has the highest flavonoid content (11.52 ± 0.80 RE/gDW). APE2 was also a good scavenger of DPPH radicals (EC50 = 397.0 µg/mL). In cell-based assays, among all extracts, APE2 exhibited the highest antiproliferative activity (IC50 = 57.5 ± 11.8 µg/mL) on DU145 cancer cell line as well as on its migration activity. In in-vitro anti-obese study, all extracts significantly reduced lipid formation in 3T3-L1 cells. The highest insulin-sensitizing and -mimicking actions were exerted by both APE2 and APE3. Taken together, APE2 showed collectively good activity in the inhibition of PCa progression and MetS manifestation in vitro, compared to other extracts. Therefore, APE2 was further investigated for its potential to intervene DU145 progression induced with leptin (10-100 ng/mL) and adipocyte conditioned media (CM) (10% v/v). Interestingly, APE2 significantly diminished the progression of the cancer cell that has been pre-treated with leptin and CM through cell cycle arrest at S phase and induction of cell death.

    CONCLUSION: In conclusion, AP extracts rich with andrographolide has the potential to be used as an alternative to ameliorate PCa progression induced by factors highly expressed in MetS.

    Matched MeSH terms: Plant Extracts/chemistry
  17. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, et al.
    Molecules, 2022 Nov 30;27(23).
    PMID: 36500458 DOI: 10.3390/molecules27238369
    Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.
    Matched MeSH terms: Plant Extracts/chemistry
  18. Ismail NZ, Md Saad S, Adebayo IA, Md Toha Z, Abas R, Mohamad Zain NN, et al.
    Environ Sci Pollut Res Int, 2022 Nov;29(54):81685-81702.
    PMID: 35737268 DOI: 10.1007/s11356-022-20858-y
    Clinacanthus nutans dichloromethane fraction (CN-Dcm) extract has previously been proven to suppress breast cancer (MCF7) cell proliferation. Despite this, the extrinsic and intrinsic apoptosis mechanisms involved in C. nutans extract-treated MCF7 cells are still unknown. This study was intended to subfractionate CN-Dcm extract using column chromatography and analyse the treated MCF7 cells using the CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay, Annexin V/propidium iodide (PI) assay, western blot, and reverse transcription-qualitative polymerase chain reaction (RT-qPCR). Out of nine subfraction extracts (SF1 to SF9), SF2 extract strongly inhibited MCF7 cells with the lowest IC50 value (23.51 ± 1.00 µg/mL) and substantially induced apoptosis in the MCF7 cells. In treated MCF7 cells, SF2 extract significantly upregulated the expression of P53, BAX, BID, caspase-8, caspase-9, and caspase-3, while downregulating the expression of BCL2. The presence of potential bioactive chemical compounds in the SF2 extract was identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Thus, the SF2 extract has the potential to induce apoptosis in MCF7 cells through intrinsic and extrinsic pathways.
    Matched MeSH terms: Plant Extracts/chemistry
  19. Widyawati T, Yusoff NA, Bello I, Asmawi MZ, Ahmad M
    Molecules, 2022 Oct 12;27(20).
    PMID: 36296407 DOI: 10.3390/molecules27206814
    (1) Background: An earlier study on the hypoglycemic activity of S. polyanthum (Wight.) leaf methanol extract identified squalene as the major chemical compound. The present study was conducted to assess the hypoglycemic effect of fractions and subfractions of the methanol extract of S. polyanthum compared to the squalene using a bioassay-guided in vivo study. (2) Methods: The methanol extract was fractionated using the liquid−liquid fractionation method. Streptozotocin-induced type 1 diabetic rat was used to study the hypoglycemic effect. (3) Results: The findings showed that chloroform fraction significantly (p < 0.05) lowered blood glucose levels of diabetic rats as compared to the control. Further fractionation of chloroform fraction yielded subfraction-1 and -2, whereby subfraction-1 exhibited a higher blood-glucose-lowering effect. The lipid profile test showed that the total cholesterol level of subfraction-1 and squalene-treated groups decreased significantly (p < 0.05). An immunohistochemistry study revealed that none of the treatments regenerated pancreatic β-cells. Gas chromatography−mass spectrophotometer analysis identified the presence of squalene in the active methanol extract, chloroform fraction, and subfraction-1. In silico analysis revealed a higher affinity of squalene against protein receptors that control lipid metabolism than metformin. (4) Conclusions: Data obtained from the present work suggested the crude methanol extract exerted the highest hypoglycemic effect compared to fraction, subfraction, and squalene, confirming synergistic effect may be responsible for the hypoglycemic activity of S. polyanthum.
    Matched MeSH terms: Plant Extracts/chemistry
  20. Suroowan S, Llorent-Martínez EJ, Zengin G, Dall'Acqua S, Sut S, Buskaran K, et al.
    Molecules, 2022 Sep 10;27(18).
    PMID: 36144622 DOI: 10.3390/molecules27185886
    Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.
    Matched MeSH terms: Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links