Displaying publications 61 - 80 of 873 in total

Abstract:
Sort:
  1. Ngah WS, Fatinathan S
    J Environ Manage, 2010 Mar-Apr;91(4):958-69.
    PMID: 20044203 DOI: 10.1016/j.jenvman.2009.12.003
    Chitosan-tripolyphosphate (CTPP) beads were synthesized, characterized and were used for the adsorption of Pb(II) and Cu(II) ions from aqueous solution. The effects of initial pH, agitation period, adsorbent dosage, different initial concentrations of heavy metal ions and temperature were studied. The experimental data were correlated with the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The maximum adsorption capacities of Pb(II) and Cu(II) ions in a single metal system based on the Langmuir isotherm model were 57.33 and 26.06 mg/g, respectively. However, the beads showed higher selectivity towards Cu(II) over Pb(II) ions in the binary metal system. Various thermodynamic parameters such as enthalpy (DeltaH degrees), Gibbs free energy (DeltaG degrees) and entropy (DeltaS degrees) changes were computed and the results showed that the adsorption of both heavy metal ions onto CTPP beads was spontaneous and endothermic in nature. The kinetic data were evaluated based on the pseudo-first and -second order kinetic and intraparticle diffusion models. Infrared spectra were used to elucidate the mechanism of Pb(II) and Cu(II) ions adsorption onto CTPP beads.
    Matched MeSH terms: Adsorption
  2. Hameed BH, Salman JM, Ahmad AL
    J Hazard Mater, 2009 Apr 15;163(1):121-6.
    PMID: 18667269 DOI: 10.1016/j.jhazmat.2008.06.069
    In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R(2)>or=0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions.
    Matched MeSH terms: Adsorption
  3. Mozaffari Majd M, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M
    Sci Total Environ, 2022 Mar 15;812:151334.
    PMID: 34748826 DOI: 10.1016/j.scitotenv.2021.151334
    Among numerous methods developed in purification and separation industries, the adsorption process has received considerable attention due to its inexpensive, facile, and eco-friendly nature. The importance of the adsorption process causes extraordinary endeavors for modeling the adsorption isotherms during the years; thus, myriads of research have been conducted and many reviews have been published. In this paper, we have attempted to gather the most widely used adsorption isotherms and their related definitions, along with examples of correlated work of the recent decade. In the present review, 37 adsorption isotherms with about 400 references have been collected from the research published in the period of 2010-2020. The adsorption isotherms utilized are alphabetically organized for ease of access. The parameters of each isotherm, as well as the applicable definitions, are presented in the table, in addition to being discussed in the text. Another table is provided for the practical use of researchers, featuring the usage of the related isotherms in peer-reviewed studies.
    Matched MeSH terms: Adsorption*
  4. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2009 May 30;164(2-3):473-82.
    PMID: 18818013 DOI: 10.1016/j.jhazmat.2008.08.025
    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.
    Matched MeSH terms: Adsorption
  5. Kutty SRM, Almahbashi NMY, Nazrin AAM, Malek MA, Noor A, Baloo L, et al.
    Heliyon, 2019 Oct;5(10):e02439.
    PMID: 31667371 DOI: 10.1016/j.heliyon.2019.e02439
    Treated palm oil mill effluents (POME) is of great concern as it still has colour from its dissolved organics which may pollute receiving water bodies. In this study, the removal of colour from treated palm oil mill effluent were investigated through adsorption studies using carbon derived from wastewater sludge (WSC). Sludge from activated sludge plants were dried and processed to produce WSC. In this study, three different bed depths of WSC were used: 5 cm, 10 cm, and 15 cm. For each bed depth, the flowrate was varied at three different values: 100 mL/hr, 50 mL/hr and 25 mL/hr. It was found that at bed depth of 5 cm, the breakthrough curves were occurred at 360 min, 150 min and 15 min for flowrates of 25, 50 and 100 mL/hr respectively. It was observed that at a particular depth the exhaustion time for column reduced as flow rate increases. Kinetic models, Adams-Bohart and Yoon-Nelson were used to analyze the performance of the adsorption. It was found that rate constant for Adams Bohart model decreased with the increase in bed depth. Adsorption capacity obtained from Adams-Bohart model ranged from 2676.19 mg/L up to 8938.78 mg/L. The maximum adsorption capacity increases with smaller bed depth. For Yoon-Nelson model, the rate constant decreases with increase in bed depth. The required time for 50% breakthrough obtained from the models ranged from 17.01 to 104.17 minutes for all three bed depths. The reduction of colour was found to be effective at all bed depths. The experimental data was best described by both models as with higher values of correlation coefficient (R2).
    Matched MeSH terms: Adsorption
  6. Lawal AA, Hassan MA, Ahmad Farid MA, Tengku Yasim-Anuar TA, Samsudin MH, Mohd Yusoff MZ, et al.
    Environ Pollut, 2021 Jan 15;269:116197.
    PMID: 33316496 DOI: 10.1016/j.envpol.2020.116197
    In order to meet the growing demand for adsorbents to treat wastewater effectively, there has been increased interest in using sustainable biomass feedstocks. In this present study, the dermal tissue of oil palm frond was pyrolyzed with superheated steam at 500 °C to produce nanoporous biochar as bioadsorbent. The effect of operating conditions was investigated to understand the adsorption mechanism and to enhance the adsorption of phenol and tannic acid. The biochar had a microporous structure with a Brunauer-Emmett-Teller surface area of 422 m2/g containing low polar groups. The adsorption capacity of 62.89 mg/g for phenol and 67.41 mg/g for tannic acid were obtained using 3 g/L biochar dosage after 8 h of treatment at solution pH of 6.5 and temperature of 45 °C. The Freundlich model had the best fit to the isotherm data of phenol (R2 of 0.9863), while the Langmuir model best elucidated the isotherm data of tannic acid (R2 of 0.9632). These indicated that the biochar-phenol interface was associated with a heterogeneous multilayer sorption mechanism, while the biochar-tannic acid interface had a nonspecific monolayer sorption mechanism. The residual concentration of 26.3 mg/L phenol and 23.1 mg/L tannic acid was achieved when treated from 260 mg/L three times consecutively with 1 g/L biochar dosage, compared to a reduction to 72.3 mg/L phenol and 69.9 mg/L tannic acid using 3 g/L biochar dosage in a single treatment. The biochar exhibited effective adsorption of phenol and tannic acid, making it possible to treat effluents that contain varieties of phenolic compounds.
    Matched MeSH terms: Adsorption
  7. Tran HN, Nguyen DT, Le GT, Tomul F, Lima EC, Woo SH, et al.
    J Hazard Mater, 2019 07 05;373:258-270.
    PMID: 30925385 DOI: 10.1016/j.jhazmat.2019.03.018
    An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl-, NO3-, SO42-, and CO32-) provide a high anion exchange capacity (53-520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer-Emmett-Teller specific surface area of LDH (1.80-179 m2/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Qomax) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Qomax values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° <0) and endothermically (ΔH° >0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater.
    Matched MeSH terms: Adsorption
  8. Njoku VO, Islam MA, Asif M, Hameed BH
    J Environ Manage, 2015 May 1;154:138-44.
    PMID: 25721981 DOI: 10.1016/j.jenvman.2015.02.002
    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption capacity increased with temperature. The adsorption data was well described by Langmuir isotherm followed by removal capacity of 261.2 mg/g at 30 °C. The results from this work showed that LEFBAC can be used as outstanding material for anionic herbicide uptake from wastewater.
    Matched MeSH terms: Adsorption
  9. Chang YS, Au PI, Mubarak NM, Khalid M, Jagadish P, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(26):33270-33296.
    PMID: 32529626 DOI: 10.1007/s11356-020-09423-7
    Two superior adsorbents, namely bentonite and graphene oxide (GO), were hybridised to study the removal of copper and nickel ions from synthetic and industrial wastewater. The as-synthesised GO, bentonite/GO and bentonite were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and N2 adsorption-desorption analysis. The factors influencing the adsorption behaviours including contact time, initial solution pH, ionic strength, initial concentration of metal ions, temperature and adsorbent dosage were systematically investigated by batch equilibrium method. The adsorption equilibrium for copper and nickel onto bentonite was attained in 90 min while equilibrium was reached in 60 min on bentonite/GO. The adsorption of copper and nickel was pH-dependent in the range from pH 2 to pH 7 and from pH 2 to pH 8. Pseudo-first-order kinetic model excellently described the adsorption of copper and nickel onto bentonite and bentonite/GO. The equilibrium adsorption data was well described by the Langmuir isotherm model and the maximum adsorption capacity was 248.9 mg/g, 558.4 mg/g, 215.8 mg/g and 402.5 mg/g for bentonite-copper, bentonite/GO-copper, bentonite-nickel and bentonite/GO-nickel adsorption systems, respectively. The bentonite/GO composite exhibited a higher adsorption capacity of both cations from synthetic wastewater than pure bentonite owning to the synergistic effect between bentonite and GO. In all adsorption studies, copper was more efficiently removed than nickel due to its higher tendency to form bond with adsorbent surfaces. The adsorption of copper and nickel on bentonite/GO was mainly due to cation exchange, intermolecular and electrostatic interactions and physisorption dominated the adsorption processes. The practical application of bentonite/GO on adsorption of copper was investigated using real wastewater and its removal efficiency was beyond 98%. The excellent adsorption performances of composites for the copper and nickel removal from wastewater demonstrated its significant potential for pollution mitigations.
    Matched MeSH terms: Adsorption
  10. Taha MR, Mobasser S
    PLoS One, 2015;10(12):e0144071.
    PMID: 26659225 DOI: 10.1371/journal.pone.0144071
    This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-alumina used were 0.25%, 0.50%, 0.75%, 1%, 2% and 10%. The adsorption of PCBs solution onto the MWNT, nano-clay and nano-alumina was characterized by an initial rapid adsorption which eventually became constant within 22, 20, and 17 hours, respectively. The adsorption of DDT solution onto the MWNT, nano-clay and nano-alumina was also characterized by an initial rapid adsorption which gradually became constant within 22, 22 and 16 hours, respectively. Results of this study indicated that MWNT was a better adsorbent material compared to nano-clay and nano-alumina for both contaminants in this study. While at 10% of MWNT 88.9% and 77% of DDT and PCB were removed by MWNT, respectively. The effect of pH and temperature were also investigated.
    Matched MeSH terms: Adsorption
  11. Oyekanmi AA, Ahmad A, Hossain K, Rafatullah M
    PLoS One, 2019;14(5):e0216878.
    PMID: 31091269 DOI: 10.1371/journal.pone.0216878
    The adsorption of rhodamine B (RhB) using acid modified banana peels has been examined. Chemical characteristics of the adsorbents were observed in order to determine active functional groups. The major functional groups on the surface were OH, C = O, C = C and C-O-C. Interactions between operational parameters were studied using the central composite design (CCD) of response surface methodology (RSM). The predictions of the model output indicated that operational factors influenced responses at a confidence level of 95% (P<0.05). The optimum conditions for adsorption were pH 2 at a 0.2 g/L dose within 60 minutes of contact time. Isotherm studies were carried out using the optimized process variables. The data revealed that RhB adsorption fitted the Langmuir isotherm equation while the reduction of COD followed the Freundlich isotherm. Kinetic experiments fitted the pseudo second order model for RhB removal and COD reduction. The adsorption mechanism was not the only rate controlling step. Diffusion through the boundary layer described the pattern of adsorption.
    Matched MeSH terms: Adsorption
  12. Altowayti WAH, Othman N, Al-Gheethi A, Dzahir NHBM, Asharuddin SM, Alshalif AF, et al.
    Molecules, 2021 Oct 13;26(20).
    PMID: 34684757 DOI: 10.3390/molecules26206176
    Sustainable wastewater treatment is one of the biggest issues of the 21st century. Metals such as Zn2+ have been released into the environment due to rapid industrial development. In this study, dried watermelon rind (D-WMR) is used as a low-cost adsorption material to assess natural adsorbents' ability to remove Zn2+ from synthetic wastewater. D-WMR was characterized using scanning electron microscope (SEM) and X-ray fluorescence (XRF). According to the results of the analysis, the D-WMR has two colours, white and black, and a significant concentration of mesoporous silica (83.70%). Moreover, after three hours of contact time in a synthetic solution with 400 mg/L Zn2+ concentration at pH 8 and 30 to 40 °C, the highest adsorption capacity of Zn2+ onto 1.5 g D-WMR adsorbent dose with 150 μm particle size was 25 mg/g. The experimental equilibrium data of Zn2+ onto D-WMR was utilized to compare nonlinear and linear isotherm and kinetics models for parameter determination. The best models for fitting equilibrium data were nonlinear Langmuir and pseudo-second models with lower error functions. Consequently, the potential use of D-WMR as a natural adsorbent for Zn2+ removal was highlighted, and error analysis indicated that nonlinear models best explain the adsorption data.
    Matched MeSH terms: Adsorption
  13. Nur Aqilah Zainal, Shariff Ibrahim, Borhannuddin Arifin
    MyJurnal
    An agricultural waste, the cocoa pod husk was chemically modified using a dehydrating agent, zinc chloride (ZnCl2), carbonised and used for the remediation of acid dyes in an aqueous solution. The targeted acid dyes are: (i) Acid Violet 17 (AV17); (ii) Acid Yellow 36 (AY36); and (iii) Acid Blue 29 (AB29). The physicochemical properties of the zinc chloride-modified cocoa pod husk-based carbon (ZCPHC) were characterised by ash content, bulk density, pH slurry, pHpzc and Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray (EDX) analysis. The bulk density and ash content of the prepared carbon is 0.55 g cm-1 and 7.0% respectively. The photograph of SEM shows distinct changes at the ZCPHC carbon surface as it has large pores formed due to ZnCl2 modification. The adsorption tests were performed in a batch adsorption system using an aqueous solution of the understudy acid dyes. The influence of pH and dose of an adsorbent on the acid dye uptake was investigated and discussed. The adsorption was in favour at acidic condition with maximum removal observed at pH 2. The removal efficiency of the aqueous acid dye solution increased with the increase in adsorbent dosage. The kinetic experiment showed equilibrium time is less than 40 minutes and the kinetic data for all three understudy acid dyes fitted well with the pseudo-second-order model with a correlation coefficient (R2) values above 0.98.
    Matched MeSH terms: Adsorption
  14. Sherlala AIA, Raman AAA, Bello MM, Buthiyappan A
    J Environ Manage, 2019 Sep 15;246:547-556.
    PMID: 31202019 DOI: 10.1016/j.jenvman.2019.05.117
    Chitosan-magnetic-graphene oxide (CMGO) nanocomposite was prepared for arsenic adsorption. The nanocomposite was characterized through BET, FTIR, FESEM, EDX, and VSM analyses. These characterizations confirmed the formation of CMGO nanocomposites with high specific surface area (152.38 m2/g) and excellent saturation magnetization (49.30 emu/g). Batch adsorption experiments were conducted to evaluate the performance of the nanocomposite in the adsorption of arsenic from aqueous solution. The effects of operational parameters, adsorption kinetic, equilibrium isotherm and thermodynamics were evaluated. The removal efficiency of arsenic increased with increasing adsorbent dosage and contact time. However, the effect of pH followed a different pattern, with the removal efficiency increasing from acidic to neutral pH, and then decreasing at alkaline conditions. The highest adsorption capacity (45 mg/g) and removal efficiency (61%) were obtained at pH 7.3. The adsorption kinetic followed a pseudo-second-order kinetic model. The analysis of adsorption isotherm shows that the adsorption data fitted well to Langmuir isotherm model, indicating a homogeneous process. Thermodynamic analysis shows that the adsorption of As(III) is exothermic and spontaneous. The superparamagnetic properties of the nanocomposite enabled the separation and recovery of the nanoparticles using an external magnetic field. Thus, the developed nanocomposite has a potential for arsenic remediation.
    Matched MeSH terms: Adsorption
  15. Khasri A, Ahmad MA
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31508-31519.
    PMID: 30203351 DOI: 10.1007/s11356-018-3046-3
    The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
    Matched MeSH terms: Adsorption
  16. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2008 Jun 15;154(1-3):337-46.
    PMID: 18035483
    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Adsorption
  17. Bhatia S, Abdullah AZ, Wong CT
    J Hazard Mater, 2009 Apr 15;163(1):73-81.
    PMID: 18649998 DOI: 10.1016/j.jhazmat.2008.06.055
    Adsorption behaviours of butyl acetate in air have been studied over silver-loaded Y (Si/Al=40) and ZSM-5 (Si/Al=140) zeolites. The silver metal was loaded into the zeolites by ion exchange (IE) and impregnation (IM) methods. The adsorption study was mainly conducted at a gas hourly space velocity (GHSV) of 13,000 h(-1) with the organic concentration of 1000 ppm while the desorption step was carried out at a GHSV of 5000 h(-1). The impregnated silver-loaded adsorbents showed lower uptake capacity and shorter breakthrough time by about 10 min, attributed to changes in the pore characteristics and available surface for adsorption. Silver exchanged Y (AgY(IE)) with lower hydrophobicity showed higher uptake capacity of up to 35%, longer adsorbent service time and easier desorption compared to AgZSM-5(IE). The presence of water vapour in the feed suppressed the butyl acetate adsorption of AgY(IE) by 42% due to the competitive adsorption of water on the surface and the effect was more pronounced at lower GHSV. Conversely, the adsorption capacity of AgZSM-5(IE) was minimally affected, attributed to the higher hydrophobicity of the material. A mathematical model is proposed to simulate the adsorption behaviour of butyl acetate over AgY(IE) and AgZSM-5(IE). The model parameters were successfully evaluated and used to accurately predict the breakthrough curves under various process conditions with root square mean errors of between 0.05 and 0.07.
    Matched MeSH terms: Adsorption
  18. Rafatullah M, Sulaiman O, Hashim R, Ahmad A
    J Hazard Mater, 2009 Oct 30;170(2-3):969-77.
    PMID: 19520510 DOI: 10.1016/j.jhazmat.2009.05.066
    The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1-200mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R(2) values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.
    Matched MeSH terms: Adsorption
  19. Ahmad AA, Hameed BH, Aziz N
    J Hazard Mater, 2007 Mar 6;141(1):70-6.
    PMID: 16887263
    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.
    Matched MeSH terms: Adsorption
  20. Shariful MI, Sharif SB, Lee JJL, Habiba U, Ang BC, Amalina MA
    Carbohydr Polym, 2017 Feb 10;157:57-64.
    PMID: 27987964 DOI: 10.1016/j.carbpol.2016.09.063
    In this study, chitosan/poly (ethylene oxide) nanofibres were fabricated at different chitosan:PEO weight ratio by electrospinning process. The effects of chitosan/PEO composition onto adsorption capability for Cu(II), Zn(II) and Pb(II) ions were studied. Formation of beadless fibres were achieved at 60:40 chitosan:PEO ratio. Average fiber diameter, maximum tensile strength and the specific surface area of the beadless fibres were found to be 115±31nm, 1.58MPa and 218m2/g, respectively. Chitosan/PEO composition that produced beadless fibres tend to possess higher hydrophilicity and maximum specific surface area. These characteristics lead the beadless fibres to the maximum adsorption capability. Adsorption equilibrium data were analysed by Langmuir and Freundlich isotherm. Freundlich isotherm showed the better fit with the experimental data and proved the existence of the monolayer adsorption conditions. The maximum adsorption capacity of the beadless fibres for Cu(II), Zn(II) and Pb(II) ions were found to be 120, 117 and 108mgg-1, respectively.
    Matched MeSH terms: Adsorption
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links