Displaying publications 61 - 80 of 203 in total

Abstract:
Sort:
  1. Saeed AAH, Harun NY, Sufian S, Bilad MR, Zakaria ZY, Jagaba AH, et al.
    Int J Environ Res Public Health, 2021 Jul 27;18(15).
    PMID: 34360240 DOI: 10.3390/ijerph18157949
    Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5-6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.
    Matched MeSH terms: Cadmium
  2. Ruslee SS, Zaid SSM, Bakrin IH, Goh YM, Mustapha NM
    BMC Complement Med Ther, 2020 May 29;20(1):160.
    PMID: 32471398 DOI: 10.1186/s12906-020-02960-1
    BACKGROUND: To investigate the protective effects of Tualang honey against the toxicity effects induced by cadmium (Cd) on the ovary.

    METHODS: A total of 32 female Sprague Dawley rats were taken and randomly divided into four groups (n = 8). Throughout the experimental period of 6 weeks, negative control-NC (vehicle deionized water), positive control-CD (Cd at 5 mg/kg), Tualang honey followed by Cd exposure-TH (Tualang honey at 200 mg/kg and Cd at 5 mg/kg) and Tualang honey control-THC (Tualang honey at 200 mg/kg) groups, were administered orally on a daily basis.

    RESULTS: Rats exposed to Cd were significantly higher in ovarian weight, number of antral and atretic follicles as compared to the NC group. The disruptive effects of Cd on ovarian follicles were associated with a disruption in gonadotropin hormones and decreases in follicular stimulating hormone (FSH) and luteinizing hormone (LH). Moreover, a significant formation of oxidative stress in ovarian Cd-exposed rats has been proven by increasing the level of lipid peroxidation products (malondialdehyde) and decreasing the levels of enzymatic antioxidant (catalase). Interestingly, a daily supplementation of high antioxidant agents such as Tualang honey in these animals, caused significant improvements in the histological changes. Additionally, less atretic follicles were observed, restoring the normal level of LH and FSH (P 

    Matched MeSH terms: Cadmium Poisoning/drug therapy*
  3. Rizwan Z, Zakaria A, Mohd Ghazali MS, Jafari A, Din FU, Zamiri R
    Int J Mol Sci, 2011;12(2):1293-305.
    PMID: 21541059 DOI: 10.3390/ijms12021293
    Two different concentrations of CdCl(2) and (NH(2))(2)CS were used to prepare CdS thin films, to be deposited on glass substrate by chemical bath deposition (CBD) technique. CdCl(2) (0.000312 M and 0.000625 M) was employed as a source of Cd(2+) while (NH(2))(2)CS (0.00125 M and 0.000625 M) for S(2-) at a constant bath temperature of 70 °C. Adhesion of the deposited films was found to be very good for all the solution concentrations of both reagents. The films were air-annealed at a temperature between 200 °C to 360 °C for one hour. The minimum thickness was observed to be 33.6 nm for film annealed at 320 °C. XRD analyses reveal that the films were cubic along with peaks of hexagonal phase for all film samples. The crystallite size of the films decreased from 41.4 nm to 7.4 nm with the increase of annealing temperature for the CdCl(2) (0.000312 M). Optical energy band gap (E(g)), Urbach energy (E(u)) and absorption coefficient (α) have been calculated from the transmission spectral data. These parameters have been discussed as a function of annealing temperature and solution concentration. The best transmission (about 97%) was obtained for the air-annealed films at higher temperature at CdCl(2) (0.000312 M).
    Matched MeSH terms: Cadmium Compounds/chemistry*
  4. Rivai IF, Koyama H, Suzuki S
    Bull Environ Contam Toxicol, 1990 Jun;44(6):910-6.
    PMID: 2354269
    Matched MeSH terms: Cadmium/analysis*
  5. Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH
    Ecotoxicol Environ Saf, 2021 Mar 15;211:111905.
    PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905
    The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
    Matched MeSH terms: Cadmium/analysis
  6. Rasheed F, Zafar Z, Waseem ZA, Rafay M, Abdullah M, Salam MMA, et al.
    Int J Phytoremediation, 2020;22(3):287-294.
    PMID: 31468990 DOI: 10.1080/15226514.2019.1658711
    Conocarpus lancifolius is a fast-growing and drought tolerant tree species with phytoremediation potential in arid environments. The present study was conducted to evaluate the phytoaccumulation potential under wastewater treatment. The experiment was performed in a greenhouse where 3-month-old seedlings were irrigated with industrial wastewater and growth, biomass and physiological parameters were measured. Concentrations of zinc (Zn), lead (Pb), and cadmium (Cd) in leaves, shoots, and roots along with translocation and tolerance index were also determined. The results showed that under wastewater treatment total biomass increased from 24.2 to 31.5 g, net CO2 assimilation rate increased from 9.93 to 13.3 μmol m-2 s-1, and water use efficiency increased from 1.7 to 2.42. Similarly, heavy metals (Zn, Pb, and Cd) accumulation in stem, leaves, and roots increased significantly under wastewater treatment where the highest concentration of Zn, Pb and Cd was found in roots followed by leaves and stem, respectively. Tolerance index was found >1, and translocation factor of all heavy metals was found >1. The study revealed that phytoaccumulation potential of C. lancifolius was mainly driven by improved net CO2 assimilation rate and water use efficiency.
    Matched MeSH terms: Cadmium
  7. Ramli NAS, Roslan NA, Abdullah F, Bilal B, Ghazali R, Abd Razak RA, et al.
    PMID: 37682685 DOI: 10.1080/19440049.2023.2255290
    Esters of 2- and 3-monochloropropanediol (2-MCPDE, 3-MCPDE) and glycidol (GE) are regarded as process contaminants that are found in refined vegetable oils and oil-based foods. Since glycerol is produced during fat splitting, saponification and biodiesel production, it is important to have methods for determining contaminants that might be formed during these processes. Due to the use of glycerol as a food additive, data on the presence of compounds of toxicological concern, including 3-MCPD, are of interest. This study focuses on modifying the indirect analysis of 2-MCPDE, 3-MCPDE and GE using GC-MS based on the AOCS Official Method Cd 29a-13, validating the modified method, and quantifying 2-MCPDE, 3-MCPDE and GE in glycerol. The AOCS Cd 29a-13 method was modified at the initial stage of sample preparation in which the targeted esters were extracted from glycerol by vortex-assisted extraction before sample analysis. This modification was performed based on the polarity of all compounds involved. The calibration functions for all analytes were fitted to linear regression with R2 above 0.99. Limits of detection (LOD) 0.02, 0.01 and 0.02 mg kg-1 were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Spiked glycerol with 3-MCPDE and 2-MCPDE (0.25, 0.51 and 1.01 mg kg-1) and GE (0.58, 1.16 and 2.32 mg kg-1) were used for recovery and precision measurements. Recoveries of 100-108%, 101-103%, and 93-99% were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Acceptable precision levels with relative standard deviations ranged from 3.3% to 8.3% were obtained for repeatability and intermediate precision. The validated method was successfully applied for the analysis of the target compounds in refined glycerol from commercial plants, which showed that 2-MCPDE, 3-MCPDE and GE levels in the analysed samples were below the detection limit.
    Matched MeSH terms: Cadmium/analysis
  8. Ramachandran S, Patel TR, Colbo MH
    Ecotoxicol Environ Saf, 1997 Mar;36(2):183-8.
    PMID: 9126437
    Three species of tropical estuarine invertebrates were exposed to copper sulfate and cadmium chloride to investigate their potential as test specimens for sediment toxicity assays in the South-east Asian regions. The larvae of the reef sea urchin (Diadema setosum), the oyster (Crassostrea iradalei), and the mud crab (Scylla seratta Forskall) were used in the 48-hr assays with copper and cadmium as reference toxicants. In addition the sea urchin were tested for end point measurements at different stages of the larval development and a 60-min sperm bioassay. The study revealed that the sea urchin first cleavage, which is an assay end point and which takes place about 1 hr after fertilization, was the most sensitive stage for both toxicants, with copper being more toxic than cadmium. Sensitivity comparisons between the three invertebrate larvae revealed the mud crab zoea larvae to be most sensitive for cadmium with an LC50 value of 0.078 microgram/ml, while the sea urchin was more sensitive for copper, with EC50 values of 0.01 microgram/ml at the first cleavage stage and 0.04 microgram/ml at the pluteus larva stage. All the invertebrates tested gave responses that made them suitable test organisms for metal bioassays in the tropical estuarine environment.
    Matched MeSH terms: Cadmium/toxicity*
  9. Rajan, Nithiya Shanmuga, Bhat,Rajeev, Karim, A.A.
    MyJurnal
    Unripe and ripe kundang fruits (Bouea macrophylla Griffith) is either consumed fresh or is cooked in Malaysia. In this study composition of unripe and ripe fruits (proximate, amino acids profile, minerals and heavy metal contents) were evaluated. Results obtained showed unripe kundang fruit to possess higher moisture, ash, crude lipid, crude fiber and crude protein contents than the ripe fruits. With regard to amino acid contents, unripe fruits had higher content of essential amino acids. The unripe and ripe fruits were found to be rich in essential minerals with potassium (K) to be in abundance. Heavy metals such as cadmium, nickel, mercury, lead and arsenic, were detected in trace amounts (< 5.0 mg/kg) in both unripe and ripe fruits. Through this investigation, it is concluded that both unripe and ripe fruits to posses’ adequate amount of nutritionally important compounds beneficial to human health and can be explored for commercial purposes.
    Matched MeSH terms: Cadmium
  10. Rahman WSKA, Ahmad J, Halim SNA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Sep 01;73(Pt 9):1363-1367.
    PMID: 28932475 DOI: 10.1107/S2056989017011677
    The full mol-ecule of the binuclear title compound, [Cd2Cl2(C6H8O4)(C6H8N2)2(H2O)2], is generated by the application of a centre of inversion located at the middle of the central CH2-CH2 bond of the adipate dianion; the latter chelates a CdII atom at each end. Along with two carboxyl-ate-O atoms, the CdII ion is coordinated by the two N atoms of the chelating benzene-1,2-di-amine ligand, a Cl- anion and an aqua ligand to define a distorted octa-hedral CdClN2O3 coordination geometry with the monodentate ligands being mutually cis. The disparity in the Cd-N bond lengths is related to the relative trans effect exerted by the Cd-O bonds formed by the carboxyl-ate-O and aqua-O atoms. The packing features water-O-H⋯O(carboxyl-ate) and benzene-1,2-di-amine-N-H⋯Cl hydrogen bonds, leading to layers that stack along the a-axis direction. The lack of directional inter-actions between the layers is confirmed by a Hirshfeld surface analysis.
    Matched MeSH terms: Cadmium
  11. Rabeea Munawar, Ehsan Ullah Mughal, Muhammad Waseem Mumtaz, Muhammad Zubair, Jamshaid Ashraf, Zofishan Yousaf, et al.
    Sains Malaysiana, 2018;47:27-34.
    The prime objective of the present research work was to evaluate the efficiency of bio-machine for the removal of Cadmium (Cd) from aquatic systems. Aspergillus niger fungus was used as bio-machine to remove Cd from aquatic systems. Twenty three different strains (IIB-1 to IIB-23) were isolated from industrial effluents and the Langmuir and Freundlich models were applied to the best Cadmium removal strain IIB-23 in order to obtain the adsorption parameters. Different parameters such as pH, temperature, contact time, initial metal concentratio, and biomass dosage on the biosorption of Cd were studied. The percent removal of Cd initially increased with an increase in pH ranging from 5.5-6.5 and then decreased by increasing pH from 7.0-7.5. An optimized pH used for Cd removal from aquatic systems was found to be 6.5. Additionally, an optimum amount of biomass was 1.33 g for the maximum removal of Cd from the aqueous solutions with initial metal concentration of 75 mg/L. The results obtained thus indicated that Langmuir model is the best suited for the removal of Cd from aquatic systems.
    Matched MeSH terms: Cadmium
  12. Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13315-13324.
    PMID: 32020456 DOI: 10.1007/s11356-020-07695-7
    The need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu2+, Pb2+ and Cd2+. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were deployed for the analysis of ternary analytes. CV was set at a potential range of - 0.8 to + 0.2 V at a scan rate of 100 mV/s, and DPV at a potential range of - 0.8 to + 0.1 V, scan rate of 50 mV/s, pulse rate of 0.2 V and pulse width of 50 ms. DPV technique was applied through the modified electrode for sensitive and selective determination of Cu2+, Pb2+ and Cd2+ at a concentration range of 0.01 to 0.27 ppm for Cu2+, Pb2+ and Cd2+. Tolerance for the highest possible concentration of foreign substances such as Mg2+, K+, Na+, NO3-, and SO42- was observed with a relative error less than ± 3%. The sensitivity of the modified electrode was at 0.17, 0.42 and 0.18 ppm for Cd2+, Pb2+ and Cu2+, respectively, while the limits of detection (LOD) achieved for cadmium, lead and copper were 0.0028, 0.0042 and 0.014 ppm, respectively. The quality of the modified electrode for sensing Cu2+, Pb2+ and Cd2+ at trace levels is in accordance with the World Health Organization (WHO) and Environmental Protection Agency (EPA) water regulation standard. The modified SPCE provides a cost-effective, dependable and stable means of detecting heavy metal ions (Cu2+, Pb2+ and Cd2+) in an aqueous solution. Graphical abstract .
    Matched MeSH terms: Cadmium
  13. Praveena SM
    Arch Environ Contam Toxicol, 2018 Oct;75(3):415-423.
    PMID: 29802419 DOI: 10.1007/s00244-018-0537-7
    This study was designed to determine the particle size distribution and develop road dust index combining source and transport factors involving road dust for dust pollution quantification in Rawang. Principal component analysis (PCA) was applied to identify possible sources of potentially toxic elements and spot major pollution areas in Rawang. The health risks (carcinogenic and noncarcinogenic) to adults and children were assessed using the hazard index and total lifetime cancer Risk, respectively. A total of 75 road dust samples were collected and particle sizes (1000, 500, 250, 160, 125 and 63 µm) were determined. Concentrations of potentially toxic elements (Cu, Cd, Co, Cr, Pb, Ni, Zn and As) in particle size of 63 µm were analyzed. The results demonstrated that the highest grain size of 250 µm has contributed almost more than 25% of atmospheric particulate pollution. The highest potentially toxic element concentration was Pb (593.3 mg/kg), whereas the lowest was Co (5.6 mg/kg). Road dust index output indicated that pollution risk fell into moderate levels in eastern and northern areas of Rawang. Similarly, PCA results revealed that potentially toxic elements (Cu, Cd, Pb, Zn, Ni and Cr) were linked with anthropogenic sources (urbanization process, industrial and commercial growth, urban traffic congestion) in northern and southern parts of Rawang. Cobalt and As concentrations were explained mainly from natural sources. Noncarcinogenic risk by hazard index value more than 1.0 was indicated for adults and children. Similarly, carcinogenic risk by total lifetime cancer risk value also showed carcinogenic risks among adults and children.
    Matched MeSH terms: Cadmium
  14. Palihakkara CR, Dassanayake S, Jayawardena C, Senanayake IP
    J Health Pollut, 2018 Mar;8(17):14-19.
    PMID: 30524845 DOI: 10.5696/2156-9614-8.17.14
    Background: Acid mine drainage (AMD) is a major environmental impact associated with the mining industry. Elevated acidic conditions resulting from the discharge of AMD into the surrounding environment can cause heavy metals to dissolve and transport through water streams and accumulate in the aquatic environment, posing a risk to the health of living organisms. There have been several novel approaches in the remediation of AMD involving passive treatment techniques. The constructed treatment wetland approach is a passive remediation option that has proven to be a cost effective and long-lasting solution in abating toxic pollutant concentrations.

    Objectives: The present study investigates the applicability of water hyacinth (Eichhornia crassipes), a tropical aquatic plant with reported heavy metal hyper-accumulation in microcosm floating wetland treatment systems designed to remediate AMD with copper (Cu) and cadmium (Cd) concentrations exceeding threshold limits.

    Methods: Twelve water hyacinth samples were prepared with varying concentrations of Cu (1 mg/L, 2 mg/L, 4 mg/L) and Cd (0.005 mg/L, 0.01 mg/L, 0.02 mg/L). Water samples of 5 ml each were collected from each sample at 24-hour intervals for analysis with an atomic absorption spectrometer.

    Results: Plant growth varied according to Cu and Cd concentrations and no plants survived for more than 14 days. There was a significant discrepancy in the rate at which the Cd concentrations abated. The rate of reduction was rapid for higher concentrations and after 24 hours a substantial reduction was achieved. There was a reduction in Cu concentration after the first 24-hour period, and after the next 24-hour period the concentrations were again elevated in the samples at initial concentrations of 2 mg/L and A4 mg/L. 4 mg/L Cu concentration was shown to be toxic to the plants, as they had low accumulations and rapid dying was evident.

    Conclusions: Water hyacinth has the capability to reduce both Cu and Cd concentrations, except at an initial concentration of 4 mg/L of Cu, which was toxic to the plants.

    Competing Interests: The authors declare no competing financial interests.

    Matched MeSH terms: Cadmium
  15. Palash MAU, Islam MS, Bayero AS, Taqui SN, Koki IB
    Environ Toxicol Pharmacol, 2020 Nov;80:103440.
    PMID: 32585422 DOI: 10.1016/j.etap.2020.103440
    This study is focused on the determination of trace metals (Cr, Cu, Zn, As, Pb, and Cd) concentrations of nine different indigenous fish species of Meghna River in Bangladesh to know the possible risk in human consumption. Fishes' wet muscles samples were analyzed to evaluate the level of trace metal concentrations. The concentrations (mg kg-1 w/w) of the six selected trace metals were in the order Zn (1.42 ± 0.12) > Cr (1.31 ± 0.08) > Cu (0.92 ± 0.09) > Pb (0.54 ± 0.07) > Cd (0.51 ± 0.07) > As (0.47 ± 0.02). The results revealed that all the selected trace metals were below the maximum permissible limits recommended by the reference standards. The fish species may pose no risk with respect to the Estimated Daily Intake (EDI). Target hazard quotient (THQ) values for Cr, Cu, Zn, Pb, and Cd in all the fish species were <1.0, except for As which is dominantly organic in fishes. Both adults and children are vulnerable to carcinogenic health threat due to Cd exposure.
    Matched MeSH terms: Cadmium
  16. Ozturk M, Sakcali S, Celik A
    Sains Malaysiana, 2013;42:1371-1376.
    Diplotaxis tenuifolia is a medicinally important perennial plant species, distributed widely alongside the roads in Turkey. The samples were collected from 54 sites, including highways, sideways, industrial areas, urban centres and rural environs. Both the plant and soil samples were analysed to determine the concentrations of different metals using AAS. The results showed that in the soil samples copper and lead were highest near highway 45.533 and 2.865 mg/kg, respectively; but lowest values of copper were determined around industrial areas (3.514 mg/kg), latter however showed higher concentrations of cadmium (0.726 mg/kg) and iron (82.766 mg/kg). The lead as well as iron were the lowest around sideways 1.917 mg/kg and 54.073 mg/kg, respectively, whereas chromium concentrations in the soils were highest near sideways (18.397 mg/kg) and lowest around industrial areas (0.182 mg/kg). The sideways showed very low nickel concentrations (0.271 mg/kg), as compared to the rural areas which had higher nickel concentrations (0.726 mg/kg). No cadmium was detected in the urban soil samples. In the plants copper and chromium were higher in the urban areas 50.130 and 0.238 mg/kg, respectively. The former was lowest around sideways (32.377 mg/kg) and latter around highways (0.114 mg/kg). Both nickel and cadmium were higher in the samples from industrial areas 0.238 and 0.016 mg/kg, respectively. Their values around the highways were lowest 0.182 and 0.005 mg/kg. The samples from urban sites revealed highest values of lead (3.474 mg/kg) and iron (61.304 mg/kg), but the values of lead were lowest around sideways (2.420 mg/kg) and those of iron in the vicinity of industrial areas (20.600 mg/kg). All these findings depict that there is some aerial deposition of these metals on the leaves. A significant correlation is seen between the plants and the soils.
    Matched MeSH terms: Cadmium
  17. Othman MS, Khonsue W, Kitana J, Thirakhupt K, Robson M, Borjan M, et al.
    Bull Environ Contam Toxicol, 2012 Aug;89(2):225-8.
    PMID: 22722596 DOI: 10.1007/s00128-012-0708-6
    Glutathione-S-Transferase (GST) and metallothionein are important biomarker endpoints in studying the effect of Cd exposure. The purpose of this research was to study the correlation between hepatic GST and metallothionein with hepatic Cd in wild Fejervarya limnocharis exposed to environmental Cd. Results showed that frogs from contaminated sites had significantly higher hepatic metallothionein (3.58 mg/kg wet weight) and GST activity (0.259 μmol/min/mg total protein) than those from the reference site (2.36 mg/kg wet weight and 0.157 μmol/min/mg total protein respectively). There was a significantly positive correlation between hepatic Cd and GST activity (r = 0.802, p = 0.009) but not between hepatic Cd and metallothionein (r = 0.548, p = 0.139). The results concluded that while frogs from the contaminated site had higher GST and metallothionein, only GST showed significant positive correlation with hepatic Cd levels, indicating that hepatic GST activity may be used as a biomarker endpoint.
    Matched MeSH terms: Cadmium/toxicity*
  18. Osman NA, Ujang FA, Roslan AM, Ibrahim MF, Hassan MA
    Sci Rep, 2020 04 20;10(1):6613.
    PMID: 32313095 DOI: 10.1038/s41598-020-62815-0
    Phytoremediation is one of the environmental-friendly and cost-effective systems for the treatment of wastewater, including industrial wastewater such as palm oil mill effluent final discharge (POME FD). However, the effects of the wastewater on the phytoremediator plants, in term of growth performance, lignocellulosic composition, and the presence of nutrients and heavy metals in the plants are not yet well studied. In the present work, we demonstrated that POME FD increased the growth of P. purpureum. The height increment of P. purpureum supplied with POME FD (treatment) was 61.72% as compared to those supplied with rain water (control) which was 14.42%. For lignocellulosic composition, the cellulose percentages were 38.77 ± 0.29% (treatment) and 34.16 ± 1.01% (control), and the difference was significant. These results indicated that POME FD could be a source of plant nutrients, which P. purpureum can absorb for growth. It was also found that the heavy metals (Al, As, Cd, Co, Cr, Ni and Pb) inside the plant were below the standard limit of the World Health Organization (WHO). Since POME FD was shown to have no adverse effects on P. purpureum, further research regarding the potential application of P. purpureum following phytoremediation of POME FD such as biofuel production is warranted to evaluate its potential use to fit into the waste-to-wealth agenda.
    Matched MeSH terms: Cadmium
  19. Olatunji MA, Khandaker MU, Amin YM, Mahmud HN
    PLoS One, 2016;11(10):e0164119.
    PMID: 27706232 DOI: 10.1371/journal.pone.0164119
    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor's materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents.
    Matched MeSH terms: Cadmium; Cadmium Radioisotopes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links