Displaying publications 61 - 80 of 192 in total

Abstract:
Sort:
  1. Mohd Fudzi L, Zainal Z, Lim HN, Chang SK, Holi AM, Sarif Mohd Ali M
    Materials (Basel), 2018 Apr 29;11(5).
    PMID: 29710822 DOI: 10.3390/ma11050704
    Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².
    Matched MeSH terms: Calibration
  2. Shakib MN, Moghavvemi M, Mahadi WN
    PLoS One, 2016;11(12):e0168013.
    PMID: 27992466 DOI: 10.1371/journal.pone.0168013
    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).
    Matched MeSH terms: Calibration
  3. Sulieman A, Mahmoud MZ, Serhan O, Alonazi B, Alkhorayef M, Alzimami K, et al.
    Appl Radiat Isot, 2018 Nov;141:261-265.
    PMID: 30054177 DOI: 10.1016/j.apradiso.2018.07.011
    Patient effective doses and the associated radiation risks arising from particular computed tomography (CT) imaging procedures are assessed. The objectives of this research are to measure radiation doses for patients and to quantify the radiogenic risks from CT brain and chest procedures. Patient data were collected from five calibrated CT modality machines in Saudi Arabia. The results are from a study of a total of 60 patients examined during CT procedures using the calibrated CT units. For CT brain and chest, the mean patient effective doses were 1.9 mSv (with a range of 0.6-2.5 mSv) and 7.4 mSv (with a range of 0.5-34.8 mSv) respectively. The radiogenic risk to patients ranged from between 10-5 and 10-4 per procedure. With 65% of the CT procedure cases diagnosed as normal, this prompts re-evaluation of the referral criteria. The establishment of diagnostic reference levels (DRL) and implementation of radiation dose optimisation measures would further help reduce doses to optimal values.
    Matched MeSH terms: Calibration
  4. Lee PS, Gan HM, Clements GR, Wilson JJ
    Genome, 2016 May 11.
    PMID: 27696907
    Mammal diversity assessments based on DNA derived from invertebrates have been suggested as alternatives to assessments based on traditional methods; however, no study has field-tested both approaches simultaneously. In Peninsular Malaysia, we calibrated the performance of mammal DNA derived from blowflies (Diptera: Calliphoridae) against traditional methods used to detect species. We first compared five methods (cage trapping, mist netting, hair trapping, scat collection, and blowfly-derived DNA) in a forest reserve with no recent reports of megafauna. Blowfly-derived DNA and mist netting detected the joint highest number of species (n = 6). Only one species was detected by multiple methods. Compared to the other methods, blowfly-derived DNA detected both volant and non-volant species. In another forest reserve, rich in megafauna, we calibrated blowfly-derived DNA against camera traps. Blowfly-derived DNA detected more species (n = 11) than camera traps (n = 9), with only one species detected by both methods. The rarefaction curve indicated that blowfly-derived DNA would continue to detect more species with greater sampling effort. With further calibration, blowfly-derived DNA may join the list of traditional field methods. Areas for further investigation include blowfly feeding and dispersal biology, primer biases, and the assembly of a comprehensive and taxonomically-consistent DNA barcode reference library.
    Matched MeSH terms: Calibration
  5. Lim H, Mat Jafri M, Abdullah K, Sultan Alsultan
    Sains Malaysiana, 2012;41:841-846.
    This study was conducted to retrieve the land surface temperature (LST) from Landsat ETM+ data for Al Qassim, Saudi Arabia. The proposed technique employed a mono window LST algorithm for retrieving surface temperature from Landsat ETM+. The land surface emissivity and solar angle values were needed in order to apply these in the proposed algorithm. The surface emissivity values were computed based on the NDVI values. The LST values derived from ATCOR2_T in the PCI Geomatica image processing software was used for algorithm calibration. The results showed a high correlation
    coefficient (R) and low root-mean-square error (RMS) between the LST values retrieved from the proposed algorithm and ATCOR2_T. This study indicated that the proposed algorithm is capable of retrieving accurate LST values and the derived information can be used in the environmental impact assessment for Al Qassim area.
    Matched MeSH terms: Calibration
  6. Ali H. Ahmed Suliman, Webster Gumindoga, Ayob Katimon, Intan Zaurah Mat Darus
    Sains Malaysiana, 2014;43:1379-1388.
    This paper presents the application of TOPMODEL in the Pinang catchment of Malaysia for stream flow simulation. An attempt has been made to use remote-sensing data (ASTER DEM of 30 m resolution) as a primary input for TOPMODEL in order to simulate the stream flow pattern of this tropical catchment. A calibration period was executed based on 2007-2008 hydro-meteorological dataset which gave a satisfactory Nash-Sutcliffe model (NS) model efficiency of 0.749 and a relative volume error (RVE) of -19.2. The recession curve parameter (m) and soil transmissivity at saturation zone (To), were established as the most sensitive parameters through a sensitivity analysis processes. Hydro-meteorological datasets for the period between 2009 and 2010 were used to validate the model which resulted in satisfactory efficiencies of 0.774 (NS) and -19.84 (RVE), respectively. This study demonstrated the ability ASTER DEM acquired from remote sensing to generate the required TOPMODEL parameters for stream flow simulation which gives insights into better management of available water resources.
    Matched MeSH terms: Calibration
  7. Goh KM, Maulidiani M, Rudiyanto R, Wong YH, Ang MY, Yew WM, et al.
    Talanta, 2019 Jun 01;198:215-223.
    PMID: 30876552 DOI: 10.1016/j.talanta.2019.01.111
    The technique of Fourier transform infrared spectroscopy is widely used to generate spectral data for use in the detection of food contaminants. Monochloropropanediol (MCPD) is a refining process-induced contaminant that is found in palm-based fats and oils. In this study, a chemometric approach was used to evaluate the relationship between the FTIR spectra and the total MCPD content of a palm-based cooking oil. A total of 156 samples were used to develop partial least squares regression (PLSR), artificial neural network (nnet), average artificial neural network (avNNET), random forest (RF) and cubist models. In addition, a consensus approach was used to generate fusion result consisted from all the model mentioned above. All the models were evaluated based on validation performed using training and testing datasets. In addition, the box plot of coefficient of determination (R2), root mean square error (RMSE), slopes and intercepts by 100 times randomization was also compared. Evaluation of performance based on the testing R2 and RMSE suggested that the cubist model predicted total MCPD content with the highest accuracy, followed by the RF, avNNET, nnet and PLSR models. The overfitting tendency was assessed based on differences in R2 and RMSE in the training and testing calibrations. The observations showed that the cubist and avNNET models possessed a certain degree of overfitting. However, the accuracy of these models in predicting the total MCPD content was high. Results of the consensus model showed that it slightly improved the accuracy of prediction as well as significantly reduced its uncertainty. The important variables derived from the cubist and RF models suggested that the wavenumbers corresponding to the MCPDs originated from the -CH=CH2 or CH=CH (990-900 cm-1) and C-Cl stretch (800-700 cm-1) regions of the FTIR spectrum data. In short, chemometrics in combination with FTIR analysis especially for the consensus model represent a potential and flexible technique for estimating the total MCPD content of refined vegetable oils.
    Matched MeSH terms: Calibration
  8. Seluakumaran K, Shaharudin MN
    Int J Audiol, 2022 Oct;61(10):850-858.
    PMID: 34455907 DOI: 10.1080/14992027.2021.1969455
    OBJECTIVE: To undertake calibration and preliminary validation of a custom-designed computer-based screening audiometer connected to consumer insert phone-earmuff combination for adult pure tone audiometry.

    DESIGN: Part 1 involved electroacoustic measurement and biological calibration of a laptop-earphone pair used for the computer-based audiometry (CBA). Part 2 compared CBA thresholds obtained without a sound booth with those measured using the gold-standard clinical audiometry.

    STUDY SAMPLE: 17 young normal-hearing volunteers (Part 1) and 43 normal and hearing loss subjects (Part 2) recruited from an audiology clinic via convenience sampling.

    RESULTS: The transducer-device combination produced outputs suitable for measuring thresholds down to 0 dB HL. Threshold pairs obtained from the CBA and clinical audiometry were highly correlated (Spearman's correlation coefficient, ρ = 0.92, p 25 dB HL.

    CONCLUSIONS: The use of a computer-based audiometer application with consumer insert phone-earmuff combination can offer a cost-effective solution for boothless screening audiometry.

    Matched MeSH terms: Calibration
  9. Easmin S, Sarker MZI, Ghafoor K, Ferdosh S, Jaffri J, Ali ME, et al.
    J Food Drug Anal, 2017 Apr;25(2):306-315.
    PMID: 28911672 DOI: 10.1016/j.jfda.2016.09.007
    Phaleria macrocarpa, known as "Mahkota Dewa", is a widely used medicinal plant in Malaysia. This study focused on the characterization of α-glucosidase inhibitory activity of P. macrocarpa extracts using Fourier transform infrared spectroscopy (FTIR)-based metabolomics. P. macrocarpa and its extracts contain thousands of compounds having synergistic effect. Generally, their variability exists, and there are many active components in meager amounts. Thus, the conventional measurement methods of a single component for the quality control are time consuming, laborious, expensive, and unreliable. It is of great interest to develop a rapid prediction method for herbal quality control to investigate the α-glucosidase inhibitory activity of P. macrocarpa by multicomponent analyses. In this study, a rapid and simple analytical method was developed using FTIR spectroscopy-based fingerprinting. A total of 36 extracts of different ethanol concentrations were prepared and tested on inhibitory potential and fingerprinted using FTIR spectroscopy, coupled with chemometrics of orthogonal partial least square (OPLS) at the 4000-400 cm-1 frequency region and resolution of 4 cm-1. The OPLS model generated the highest regression coefficient with R2Y = 0.98 and Q2Y = 0.70, lowest root mean square error estimation = 17.17, and root mean square error of cross validation = 57.29. A five-component (1+4+0) predictive model was build up to correlate FTIR spectra with activity, and the responsible functional groups, such as -CH, -NH, -COOH, and -OH, were identified for the bioactivity. A successful multivariate model was constructed using FTIR-attenuated total reflection as a simple and rapid technique to predict the inhibitory activity.
    Matched MeSH terms: Calibration
  10. Kallarakkal TG, Zaini ZM, Ghani WMN, Karen-Ng LP, Siriwardena BSMS, Cheong SC, et al.
    J Oral Pathol Med, 2024 Jan;53(1):53-60.
    PMID: 38081145 DOI: 10.1111/jop.13501
    INTRODUCTION: A major pitfall of many of the established oral epithelial dysplasia (OED) grading criteria is their lack of reproducibility and accuracy to predict malignant transformation. The main objective of this study was to determine whether calibration of practicing oral pathologists on OED grading could improve the reproducibility of the WHO 2017 and the binary OED grading systems.

    METHODS: A nationwide online exercise was carried out to determine the influence of calibration on the reproducibility of the WHO 2017 and the binary OED grading systems.

    RESULTS: A significant improvement was observed in the inter-observer agreement for the WHO 2017 OED grading system (K 0.196 vs. 0.448; Kw 0.357 vs. 0.562) after the calibration exercise. The significant difference (p = 0.027) in the level of agreement between those with five or more years and less than 5 years of experience was no more observed (p = 0.426) after the calibration exercise. The percent agreement for binary grading was significantly higher (91.8%) for buccal mucosal lesions as compared to lesions on the tongue after the calibration exercise.

    CONCLUSION: This study validates the significance of calibration in improving the reproducibility of OED grading. The nationwide exercise resulted in a statistically significant improvement in the inter-observer agreement for the WHO 2017 OED grading system among a large number of oral pathologists. It is highly recommended that similar exercises should be organized periodically by professional bodies responsible for continuing education among oral pathologists to improve the reliability of OED grading for optimal treatment of oral potentially malignant disorders.

    Matched MeSH terms: Calibration
  11. Parkash O, Yean CY, Shueb RH
    Diagnostics (Basel), 2014;4(4):165-80.
    PMID: 26852684 DOI: 10.3390/diagnostics4040165
    An electrochemical immunosensor modified with the streptavidin/biotin system on screen printed carbon electrodes (SPCEs) for the detection of the dengue NS1 antigen was developed in this study. Monoclonal anti-NS1 capture antibody was immobilized on streptavidin-modified SPCEs to increase the sensitivity of the assay. Subsequently, a direct sandwich enzyme linked immunosorbent assay (ELISA) format was developed and optimized. An anti-NS1 detection antibody conjugated with horseradish peroxidase enzyme (HRP) and 3,3,5,5'-tetramethybezidine dihydrochloride (TMB/H₂O₂) was used as an enzyme mediator. Electrochemical detection was conducted using the chronoamperometric technique, and electrochemical responses were generated at -200 mV reduction potential. The calibration curve of the immunosensor showed a linear response between 0.5 µg/mL and 2 µg/mL and a detection limit of 0.03 µg/mL. Incorporation of a streptavidin/biotin system resulted in a well-oriented antibody immobilization of the capture antibody and consequently enhanced the sensitivity of the assay. In conclusion, this immunosensor is a promising technology for the rapid and convenient detection of acute dengue infection in real serum samples.
    Matched MeSH terms: Calibration
  12. Tay BY
    Int J Cosmet Sci, 2013 Feb;35(1):57-63.
    PMID: 22994145 DOI: 10.1111/ics.12004
    A simple and rapid gas chromatography (GC) method with flame ionization detector was developed for detection of isopropyl para-toluenesulphonate (IPTS) in palm-based isopropyl palmitate (IPP) and isopropyl myristate (IPM). The method involved spiking the IPP/IPM samples with IPTS and directly injecting the spiked samples into GC without undergoing clean-up steps. The calibration curves for IPTS showed good linearity with coefficient correlation of 0.9999 for six-point calibration from 0.5 to 50 μg mL(-1) and 0.9996 for six-point calibration from 0.5 to 200 μg mL(-1) . IPTS recoveries from IPP were 98.6-103.5% with relative standard deviation (RSD) of 0.40-2.80%, whereas recoveries from IPM were 97.0-107.2% with RSD of 0.42-4.21%. The identity of IPTS recovered from the isopropyl esters was confirmed by a GC-mass spectrometer detector. The method was successfully applied to the analyses of IPTS in commercial samples. It was found that there were IPTS in the range of 34.8-1303.0 μg g(-1) in the palm-based esters for some of the samples analysed.
    Matched MeSH terms: Calibration
  13. Makahleh A, Saad B
    Anal Chim Acta, 2011 May 23;694(1-2):90-4.
    PMID: 21565307 DOI: 10.1016/j.aca.2011.03.033
    A single line flow injection analysis (FIA) method that incorporated a preconcentrator column packed with C(18) particles and capacitively coupled contactless conductivity detector (C(4)D) was developed for the determination of free fatty acid (FFA) in vegetable oils. The carrier stream was methanol/1.5 mM sodium acetate (pH 8) 80:20 (v/v) at a flow rate of 1.0 mL min(-1). Calibration curve was well correlated (r(2)=0.9995) within the range of 1-200 mg L(-1) FFA (expressed as palmitic acid). Sampling rate of 40-60 h(-1) was achieved. Good agreement was found between the standard non-aqueous titrimetry method and the proposed method when applied to the determination of FFA in palm (crude, olein, and refined, bleached and deodorised) and other vegetable (soybean, rice bran, walnut, corn and olive) oils. The proposed method offers distinct advantages over the official method, especially in terms of simplicity, high sampling rate, economy of solvents and sample, offering considerable promise as a low cost automated system that needs minimum human intervention over long periods of time.
    Matched MeSH terms: Calibration
  14. Khairunnisak M, Azizah AH, Jinap S, Nurul Izzah A
    PMID: 19680916 DOI: 10.1080/02652030802596860
    A study to quantify the free glutamic acid content of six processed foods, 44 dishes and 26 condiments available in Malaysia was performed using high-performance liquid chromatography with a fluorescence detector (HPLC-FRD). Recovery tests were carried out with spiked samples at levels from 6 to 31 mg g(-1). High recovery in different matrices was achieved ranging from 88% +/- 13% to 102% +/- 5.12%, with an average of 97% +/- 8.92%. Results from the study revealed that the average free glutamic acid content ranged from 0.34 +/- 0.20 to 4.63 +/- 0.41 mg g(-1) in processed foods, while in prepared dishes it was as low as 0.24 +/- 0.15 mg g(-1) in roti canai (puffed bread served with curry or dhal) to 8.16 +/- 1.99 mg g(-1) in dim sum (a small casing of dough, usually filled with minced meat, seafood, and vegetables, either steamed or fried). Relatively, the content of free glutamic acid was found to be higher in condiments at 0.28 +/- 0 mg g(-1) in mayonnaise to 170.90 +/- 6.40 mg g(-1) in chicken stock powder.
    Matched MeSH terms: Calibration
  15. Rohman A, Man YC, Sismindari
    Pak J Pharm Sci, 2009 Oct;22(4):415-20.
    PMID: 19783522
    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.
    Matched MeSH terms: Calibration
  16. Wong FC, Ahmad M, Heng LY, Peng LB
    Talanta, 2006 Jun 15;69(4):888-93.
    PMID: 18970653 DOI: 10.1016/j.talanta.2005.11.034
    An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R(2)=0.98, n=3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90mM AChCl (R(2)=0.984, n=6). The response time of the biosensor is 12min. Based on the optimum incubation time of 15min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7mg/L of dichlorvos (17-85% inhibition, R(2)=0.991, n=9). The detection limit for dichlorvos was 0.5mg/L. The results of the analysis of 1.7-6.0mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.
    Matched MeSH terms: Calibration
  17. Ali A, Logeswaran R
    J Digit Imaging, 2007 Dec;20(4):352-66.
    PMID: 17372781
    This article proposes a set-up for a 3-dimensional ultrasound system using visual probe localization on the conventional 2-dimensional ultrasound machines readily available in most hospitals. A calibrated digital camera is used for probe-tracking (localization) purposes, whereas ultrasound probe calibration is implemented using a purpose-built phantom. The calibration steps and results are detailed here. The overall system is proven effective in clinical trials through scanning of human organs. Results obtained show successful, accurate 3-dimensional representations using this simple cost-effective set-up.
    Matched MeSH terms: Calibration
  18. Kamaruddin N, Wahab A
    PMID: 23366315 DOI: 10.1109/EMBC.2012.6346354
    People typically associate health with only physical health. However, health is also interconnected to mental and emotional health. People who are emotionally healthy are in control of their behaviors and experience better quality of life. Hence, understanding human behavior is very important in ensuring the complete understanding of one's holistic health. In this paper, we attempt to map human behavior state (HBS) profiles onto recalibrated speech affective space model (rSASM). Such an approach is derived from hypotheses that: 1) Behavior is influenced by emotion, 2) Emotion can be quantified through speech, 3) Emotion is dynamic and changes over time and 4) the emotion conveyance is conditioned by culture. Empirical results illustrated that the proposed approach can complement other types of behavior analysis in such a way that it offers more explanatory components from the perspective of emotion primitives (valence and arousal). Four different driving HBS; namely: distracted, laughing, sleepy and normal are profiled onto the rSASM to visualize the correlation between HBS and emotion. This approach can be incorporated in the future behavior analysis to envisage better performance.
    Matched MeSH terms: Calibration
  19. Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, et al.
    J Clin Densitom, 2016 Apr-Jun;19(2):127-40.
    PMID: 27020004 DOI: 10.1016/j.jocd.2016.03.003
    Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly dependent on the quality of the scan acquisition, analysis, and interpretation. Clinicians are best equipped to manage patients when BMD measurements are correct and interpretation follows well-established standards. Poor-quality acquisition, analysis, or interpretation of DXA data may mislead referring clinicians, resulting in unnecessary diagnostic evaluations, failure to evaluate when needed, inappropriate treatment, or failure to provide medical treatment, with potentially ineffective, harmful, or costly consequences. Misallocation of limited healthcare resources and poor treatment decisions can be minimized, and patient care optimized, through meticulous attention to DXA instrument calibration, data acquisition and analysis, interpretation, and reporting. This document from the International Society for Clinical Densitometry describes quality standards for BMD testing at DXA facilities worldwide to provide guidance for DXA supervisors, technologists, interpreters, and clinicians. High-quality DXA testing is necessary for correct diagnostic classification and optimal fracture risk assessment, and is essential for BMD monitoring.
    Matched MeSH terms: Calibration
  20. Moh MH, Tang TS, Tan GH
    J Chromatogr Sci, 2001 Dec;39(12):508-12.
    PMID: 11767238
    A simple and sensitive high-performance liquid chromatographic method for the determination of Therminol 66 thermal heating fluid in glycerin and fatty acids is developed. Sample solutions dissolved in methanol-tetrahydrofuran (50:50, v/v) are injected directly into a reversed-phase C18 column and eluted with a methanol and water mixture (88:12, v/v). The concentration of the thermal heating fluid is monitored by fluorescence detection at 257 nm (excitation) and 320 nm (emission). The calibration graph obtained from various concentrations of the thermal heating fluid in the methanol and tetrahydrofuran mixture is linear (correlation coefficient = 0.999), and the limit of detection is 0.01 microg/mL. Spiked glycerin containing 0.1 to 1.0 microg/g of the thermal heating fluid also gives good linearity with a mean recovery of 95.3%. The mean intra- and interassay precision are 1.80-6.51% and 5.71-9.03%, respectively, at the 0.1-microg/g level. The method is simple and does not require any pretreatment step, thus it is ideal for quality assurance purposes.
    Matched MeSH terms: Calibration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links