METHODS: Consecutive NAFLD patients who underwent liver biopsy were enrolled in this study and had two sets each of pSWE and TE examinations by a nurse and a doctor on the same day of liver biopsy procedure. The medians of the four sets of pSWE and TE were used for evaluation of diagnostic accuracy using area under receiver operating characteristic curve (AUROC). Intra-observer and inter-observer variability was analyzed using intraclass correlation coefficients.
RESULTS: Data for 100 NAFLD patients (mean age 57.1 ± 10.2 years; male 46.0%) were analyzed. The AUROC of TE for diagnosis of fibrosis stage ≥ F1, ≥ F2, ≥ F3, and F4 was 0.89, 0.83, 0.83, and 0.89, respectively. The corresponding AUROC of pSWE was 0.80, 0.72, 0.69, and 0.79, respectively. TE was significantly better than pSWE for the diagnosis of fibrosis stages ≥ F2 and ≥ F3. The intra-observer and inter-observer variability of TE and pSWE measurements by the nurse and doctor was excellent with intraclass correlation coefficient > 0.96.
CONCLUSION: Transient elastography was significantly better than pSWE for the diagnosis of fibrosis stage ≥ F2 and ≥ F3. Both TE and pSWE had excellent intra-observer and inter-observer variability when performed by healthcare personnel of different backgrounds.
AIM: To determine how to use CAP in interpreting liver stiffness measurements.
METHODS: This is a secondary analysis of data from an individual patient data meta-analysis on CAP. The main exclusion criteria for the current analysis were unknown aetiology, unreliable elastography measurement and data already used for the same research question. Aetiology-specific liver stiffness measurement cut-offs were determined and used to estimate positive and negative predictive values (PPV/NPV) with logistic regression as functions of CAP.
RESULTS: Two thousand and fifty eight patients fulfilled the inclusion criteria (37% women, 18% NAFLD/NASH, 42% HBV, 40% HCV, 51% significant fibrosis ≥ F2). Youden optimised cut-offs were only sufficient for ruling out cirrhosis (NPV of 98%). With sensitivity and specificity-optimised cut-offs, NPV for ruling out significant fibrosis was moderate (70%) and could be improved slightly through consideration of CAP. PPV for significant fibrosis and cirrhosis were 68% and 55% respectively, despite specificity-optimised cut-offs for cirrhosis.
CONCLUSIONS: Liver stiffness measurement values below aetiology-specific cut-offs are very useful for ruling out cirrhosis, and to a lesser extent for ruling out significant fibrosis. In the case of the latter, Controlled Attenuation Parameter can improve interpretation slightly. Even if cut-offs are very high, liver stiffness measurements are not very reliable for ruling in fibrosis or cirrhosis.
METHODS: The NFS was calculated and LSM obtained for consecutive adult NAFLD patients scheduled for liver biopsy. The accuracy of predicting advanced fibrosis using either modality and in combination were assessed. An algorithm combining the NFS and LSM was developed from a training cohort and subsequently tested in a validation cohort.
RESULTS: There were 101 and 46 patients in the training and validation cohort, respectively. In the training cohort, the percentages of misclassifications using the NFS alone, LSM alone, LSM alone (with grey zone), both tests for all patients and a 2-step approach using LSM only for patients with indeterminate and high NFS were 5.0, 28.7, 2.0, 2.0 and 4.0 %, respectively. The percentages of patients requiring liver biopsy were 30.7, 0, 36.6, 36.6 and 18.8 %, respectively. In the validation cohort, the percentages of misclassifications were 8.7, 28.3, 2.2, 2.2 and 8.7 %, respectively. The percentages of patients requiring liver biopsy were 28.3, 0, 41.3, 43.5 and 19.6 %, respectively.
CONCLUSIONS: The novel 2-step approach further reduced the number of patients requiring a liver biopsy whilst maintaining the accuracy to predict advanced fibrosis. The combination of NFS and LSM for all patients provided no apparent advantage over using either of the tests alone.
METHODS: Patients with solid pancreatic lesions ≤ 15 mm in size and a definite diagnosis were included. Lesion stiffness relative to the surrounding pancreatic parenchyma, as qualitatively assessed and documented at the time of EUS elastography, was retrospectively compared with the final diagnosis obtained by fine-needle aspiration/biopsy or surgical resection.
RESULTS: 218 patients were analyzed. The average size of the lesions was 11 ± 3 mm; 23 % were ductal adenocarcinoma, 52 % neuroendocrine tumors, 8 % metastases, and 17 % other entities; 66 % of the lesions were benign. On elastography, 50 % of lesions were stiffer than the surrounding pancreatic parenchyma (stiff lesions) and 50 % were less stiff or of similar stiffness (soft lesions). High stiffness of the lesion had a sensitivity of 84 % (95 % confidence interval 73 % - 91 %), specificity of 67 % (58 % - 74 %), positive predictive value (PPV) of 56 % (50 % - 62 %), and negative predictive value (NPV) of 89 % (83 % - 93 %) for the diagnosis of malignancy. For the diagnosis of pancreatic ductal adenocarcinoma, the sensitivity, specificity, PPV, and NPV were 96 % (87 % - 100 %), 64 % (56 % - 71 %), 45 % (40 % - 50 %), and 98 % (93 % - 100 %), respectively.
CONCLUSIONS: In patients with small solid pancreatic lesions, EUS elastography can rule out malignancy with a high level of certainty if the lesion appears soft. A stiff lesion can be either benign or malignant.
METHODS: This is a cross-sectional study of consecutive adult T2DM patients attending the Diabetes Clinic of a university hospital. Significant hepatic steatosis and advanced fibrosis was diagnosed based on transient elastography if the controlled attenuation parameter was ≥ 263 dB/m, and the liver stiffness measurement was ≥ 9.6 kPa using the M probe or ≥ 9.3 kPa using the XL probe, respectively. Patients with liver stiffness measurement ≥ 8 kPa were referred to the Gastroenterology and Hepatology Clinic for further assessment, including liver biopsy.
RESULTS: The data of 557 patients were analyzed (mean age 61.4 ± 10.8 years, male 40.6%). The prevalence of NAFLD and advanced fibrosis based on transient elastography was 72.4% and 21.0%, respectively. On multivariate analysis, independent factors associated with NAFLD were central obesity (OR 4.856, 95% confidence interval [CI] 2.749-8.577, P = 0.006), serum triglyceride (OR 1.585, 95% CI 1.056-2.381, P = 0.026), and alanine aminotransferase levels (OR 1.047, 95% CI 1.025-1.070, P