Displaying publications 61 - 80 of 120 in total

Abstract:
Sort:
  1. Leong WL, Lai LL, Nik Mustapha NR, Vijayananthan A, Rahmat K, Mahadeva S, et al.
    J Gastroenterol Hepatol, 2020 Jan;35(1):135-141.
    PMID: 31310032 DOI: 10.1111/jgh.14782
    BACKGROUND AND AIM: Transient elastography (TE) and point shear wave elastography (pSWE) are noninvasive methods to diagnose fibrosis stage in patients with chronic liver disease. The aim of this study is to compare the accuracy of the two methods to diagnose fibrosis stage in non-alcoholic fatty liver disease (NAFLD) and to study the intra-observer and inter-observer variability when the examinations were performed by healthcare personnel of different backgrounds.

    METHODS: Consecutive NAFLD patients who underwent liver biopsy were enrolled in this study and had two sets each of pSWE and TE examinations by a nurse and a doctor on the same day of liver biopsy procedure. The medians of the four sets of pSWE and TE were used for evaluation of diagnostic accuracy using area under receiver operating characteristic curve (AUROC). Intra-observer and inter-observer variability was analyzed using intraclass correlation coefficients.

    RESULTS: Data for 100 NAFLD patients (mean age 57.1 ± 10.2 years; male 46.0%) were analyzed. The AUROC of TE for diagnosis of fibrosis stage ≥ F1, ≥ F2, ≥ F3, and F4 was 0.89, 0.83, 0.83, and 0.89, respectively. The corresponding AUROC of pSWE was 0.80, 0.72, 0.69, and 0.79, respectively. TE was significantly better than pSWE for the diagnosis of fibrosis stages ≥ F2 and ≥ F3. The intra-observer and inter-observer variability of TE and pSWE measurements by the nurse and doctor was excellent with intraclass correlation coefficient > 0.96.

    CONCLUSION: Transient elastography was significantly better than pSWE for the diagnosis of fibrosis stage ≥ F2 and ≥ F3. Both TE and pSWE had excellent intra-observer and inter-observer variability when performed by healthcare personnel of different backgrounds.

    Matched MeSH terms: Elasticity Imaging Techniques
  2. Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV
    Sci Rep, 2017 10 02;7(1):12509.
    PMID: 28970526 DOI: 10.1038/s41598-017-12749-x
    Lipid membranes are extremely stable envelopes allowing cells to survive in various environments and to maintain desired internal composition. Membrane permeation through formation of transversal pores requires substantial external stress. Practically, pores are usually formed by application of lateral tension or transmembrane voltage. Using the same approach as was used for obtaining continuous trajectory of pore formation in the stress-less membrane in the previous article, we now consider the process of pore formation under the external stress. The waiting time to pore formation proved a non-monotonous function of the lateral tension, dropping from infinity at zero tension to a minimum at the tension of several millinewtons per meter. Transmembrane voltage, on the contrary, caused the waiting time to decrease monotonously. Analysis of pore formation trajectories for several lipid species with different spontaneous curvatures and elastic moduli under various external conditions provided instrumental insights into the mechanisms underlying some experimentally observed phenomena.
    Matched MeSH terms: Elasticity
  3. Chieng ZH, Mohyaldinn ME, Hassan AM, Bruining H
    Polymers (Basel), 2020 Jun 30;12(7).
    PMID: 32629958 DOI: 10.3390/polym12071470
    In hydraulic fracturing, fracturing fluids are used to create fractures in a hydrocarbon reservoir throughout transported proppant into the fractures. The application of many fields proves that conventional fracturing fluid has the disadvantages of residue(s), which causes serious clogging of the reservoir's formations and, thus, leads to reduce the permeability in these hydrocarbon reservoirs. The development of clean (and cost-effective) fracturing fluid is a main driver of the hydraulic fracturing process. Presently, viscoelastic surfactant (VES)-fluid is one of the most widely used fracturing fluids in the hydraulic fracturing development of unconventional reservoirs, due to its non-residue(s) characteristics. However, conventional single-chain VES-fluid has a low temperature and shear resistance. In this study, two modified VES-fluid are developed as new thickening fracturing fluids, which consist of more single-chain coupled by hydrotropes (i.e., ionic organic salts) through non-covalent interaction. This new development is achieved by the formulation of mixing long chain cationic surfactant cetyltrimethylammonium bromide (CTAB) with organic acids, which are citric acid (CA) and maleic acid (MA) at a molar ratio of (3:1) and (2:1), respectively. As an innovative approach CTAB and CA are combined to obtain a solution (i.e., CTAB-based VES-fluid) with optimal properties for fracturing and this behaviour of the CTAB-based VES-fluid is experimentally corroborated. A rheometer was used to evaluate the visco-elasticity and shear rate & temperature resistance, while sand-carrying suspension capability was investigated by measuring the settling velocity of the transported proppant in the fluid. Moreover, the gel breaking capability was investigated by determining the viscosity of broken VES-fluid after mixing with ethanol, and the degree of core damage (i.e., permeability performance) caused by VES-fluid was evaluated while using core-flooding test. The experimental results show that, at pH-value ( 6.17 ), 30 (mM) VES-fluid (i.e., CTAB-CA) possesses the highest visco-elasticity as the apparent viscosity at zero shear-rate reached nearly to 10 6 (mPa·s). Moreover, the apparent viscosity of the 30 (mM) CTAB-CA VES-fluid remains 60 (mPa·s) at (90 ∘ C) and 170 (s - 1 ) after shearing for 2-h, indicating that CTAB-CA fluid has excellent temperature and shear resistance. Furthermore, excellent sand suspension and gel breaking ability of 30 (mM) CTAB-CA VES-fluid at 90 ( ∘ C) was shown; as the sand suspension velocity is 1.67 (mm/s) and complete gel breaking was achieved within 2 h after mixing with the ethanol at the ratio of 10:1. The core flooding experiments indicate that the core damage rate caused by the CTAB-CA VES-fluid is ( 7.99 % ), which indicate that it does not cause much damage. Based on the experimental results, it is expected that CTAB-CA VES-fluid under high-temperature will make the proposed new VES-fluid an attractive thickening fracturing fluid.
    Matched MeSH terms: Elasticity
  4. Amri MR, Guan CT, Osman Al-Edrus SS, Md Yasin F, Mohamad SF
    Polymers (Basel), 2021 Apr 30;13(9).
    PMID: 33946517 DOI: 10.3390/polym13091460
    The objective of this work was to study the influence of cellulose nanofibrils (CNF) on the physical, mechanical, and thermal properties of Jatropha oil-based waterborne polyurethane (WBPU) nanocomposite films. The polyol to produce polyurethane was synthesized from crude Jatropha oil through epoxidation and ring-opening method. The chain extender, 1,6-hexanediol, was used to improve film elasticity by 0.1, 0.25, and 0.5 wt.% of CNF loading was incorporated to enhance film performance. Mechanical performance was studied using a universal test machine as specified in ASTM D638-03 Type V and was achieved by 0.18 MPa at 0.5 wt.% of CNF. Thermal gravimetric analysis (TGA) was performed to measure the temperature of degradation and the chemical crosslinking and film morphology were studied using Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The results showed that when the CNF was incorporated, it was found to enhance the nanocomposite film, in particular its mechanical and thermal properties supported by morphology. Nanocomposite film with 0.5 wt.% of CNF showed the highest improvement in terms of tensile strength, Young's modulus, and thermal degradation. Although the contact angle decreases as the CNF content increases, the effect on the water absorption of the film was found to be relatively small (<3.5%). The difference between the neat WPBU and the highest CNF loading film was not more than 1%, even after 5 days of being immersed in water.
    Matched MeSH terms: Elasticity
  5. Anuar MS, Briscoe BJ
    Int J Pharm, 2010 Mar 15;387(1-2):42-7.
    PMID: 19963050 DOI: 10.1016/j.ijpharm.2009.11.031
    The predilection of a bi-layered tablet to fail in the interface region after its initial formation in the compaction process reduces its practicality as a choice for controlled release solid drug delivery system. Hence, a fundamental appreciation of the governing mechanism that causes the weakening of the interfacial bonds within the bi-layered tablet is crucial in order to improve the overall bi-layered tablet mechanical integrity. This work has shown that the occurrence of the elastic relaxation in the interface region during the ejection stage of the compaction process decreases with the increase in the bi-layered tablet interface strength. This is believed to be due to the increase in the plastic bonding in the interface region. The tablet diametrical elastic relaxation affects the tablet height elastic relaxation, where the impediment of the tablet height expansion is observed when the interface region experiences a diametrical expansion.
    Matched MeSH terms: Elasticity
  6. Noor Aziah, A. A., Ho, L. H., Noor Shazliana, A. A., Rajeev, B.
    MyJurnal
    Quality attributes of steamed bread without green banana flour (BF) (CON), substituted with 30%
    BF (BBFI) and 30% BF + 8% gluten (BBFII) were determined. The green banana flour (BF) and the mixture of wheat flour (WF) substituted with 30% BF + 8% gluten (FBFII) was significantly highest in water holding capacity and oil holding capacities, respectively. Potassium, calcium and magnesium were significantly higher in BBFI and BBFII than CON. Significantly highest insoluble dietary fibre and total dietary fibre shown in BBFI. Steaming resulted significant reduction in resistant starch content in BBFI as compared with the dough of BBFI I. The specific volume of BBFII and CON showed significant different compared to the BBFI. The BBFII spread ratio was significantly highest and steamer spring lowest than CON. BBFII showed significantly highest in hardness and adhesiveness values but CON was significantly highest in cohesiveness, elasticity and chewiness. L and Hue values was shown highest in CON. BBFII indicated highest acceptability score than other samples.
    Matched MeSH terms: Elasticity
  7. Aziz SB, Karim WO, Brza MA, Abdulwahid RT, Saeed SR, Al-Zangana S, et al.
    Int J Mol Sci, 2019 Oct 23;20(21).
    PMID: 31652832 DOI: 10.3390/ijms20215265
    In this work, analysis of ion transport parameters of polymer blend electrolytes incorporated with magnesium trifluoromethanesulfonate (Mg(CF3SO3)2) was carried out by employing the Trukhan model. A solution cast technique was used to obtain the polymer blend electrolytes composed of chitosan (CS) and poly (2-ethyl-2-oxazoline) (POZ). From X-ray diffraction (XRD) patterns, improvement in amorphous phase for the blend samples has been observed in comparison to the pure state of CS. From impedance plot, bulk resistance (Rb) was found to decrease with increasing temperature. Based on direct current (DC) conductivity (σdc) patterns, considerations on the ion transport models of Arrhenius and Vogel-Tammann-Fulcher (VTF) were given. Analysis of the dielectric properties was carried out at different temperatures and the obtained results were linked to the ion transport mechanism. It is demonstrated in the real part of electrical modulus that chitosan-salt systems are extremely capacitive. The asymmetric peak of the imaginary part (Mi) of electric modulus indicated that there is non-Debye type of relaxation for ions. From frequency dependence of dielectric loss (ε″) and the imaginary part (Mi) of electric modulus, suitable coupling among polymer segmental and ionic motions was identified. Two techniques were used to analyze the viscoelastic relaxation dynamic of ions. The Trukhan model was used to determine the diffusion coefficient (D) by using the frequency related to peak frequencies and loss tangent maximum heights (tanδmax). The Einstein-Nernst equation was applied to determine the carrier number density (n) and mobility. The ion transport parameters, such as D, n and mobility (μ), at room temperature, were found to be 4 × 10-5 cm2/s, 3.4 × 1015 cm-3, and 1.2 × 10-4 cm2/Vs, respectively. Finally, it was shown that an increase in temperature can also cause these parameters to increase.
    Matched MeSH terms: Elasticity
  8. Muhammad Ajib bin Abd R, Nasrudin S
    HIV /AIDS is a global epidemic problem that is faced by many countries. There is a drastic increase of infection cases in children, youths, adults and elderly. Among students, there is a low level of knowledge that affects the comprehension elasticity based on the educational level which contributes to the increasing stigma among students. The focus of this study is to examine the differences of HIV/AIDS knowledge levels and students' stigma according to their levels of education. This study used HIV Knowledge Questionnaires (HIV-K-Q) version of 45 items and The Berger HIV Stigma Scale version of 40 items. 130 students from UKM and GMI participated in the study. Results showed that there were significant differences in the knowledge levels and stigma of HIV/AIDS between students' educational levels (Diploma level, Bachelor and Masters). The findings can assist educational institutions to develop the awareness of HIV/AIDS knowledge by targeting all levels of students' education. The implementation of various campaigns, talks, and interventions of reducing the stigma should be refined and planned as an annual program.
    Matched MeSH terms: Elasticity
  9. Bin Sintang MD, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, et al.
    Food Res Int, 2017 10;100(Pt 1):832-840.
    PMID: 28873756 DOI: 10.1016/j.foodres.2017.07.079
    Monoglycerides (MGs) and phytosterols (PS) are known to form firm oleogels with liquid oil. However, the oleogels are prone to undergo polymorphic transition over time that lead to crystals' aggregation thus, compromises physical properties. Thus, we combined MGs with PS to control the crystallization and modify the morphology of the combination oleogels, as both components are reported to interact together. The oleogels were prepared at different ratio combinations and characterized in their rheological, thermal, morphology, and diffraction properties. The results showed that the 8:2 MGP:PS exhibited higher storage modulus (G') than the MGP mono-component. The combination oleogels exhibited effects on the crystallization and polymorphic transition. Consequently, the effects led to change in the morphology of the combination oleogels which was visualized using optical and electron microscope. The resultant effect on the morphology is associated with crystal defect. Due to observable crystals of MGP and PS, it is speculated that the combination oleogels formed a mixed crystal system. This was confirmed with diffraction analysis in which the corresponding peaks from MGP and PS were observed in the combination oleogels. However, the 8:2 oleogel exhibited additional peak at 35.41Å. Ultimately, the 8:2 was the optimum combination observed in our study. Interestingly, this combination is inspired by nature as sterols (phytosterols) are natural component of lipid membrane whilst MGP has properties similar to phospholipids. Hence, the results of our study not only beneficial for oil structuring, but also for the fields of biophysical and pharmaceutical.
    Matched MeSH terms: Elasticity
  10. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, et al.
    Aliment Pharmacol Ther, 2018 Apr;47(7):989-1000.
    PMID: 29446106 DOI: 10.1111/apt.14529
    BACKGROUND: Liver fibrosis is often accompanied by steatosis, particularly in patients with non-alcoholic fatty liver disease (NAFLD), and its non-invasive characterisation is of utmost importance. Vibration-controlled transient elastography is the non-invasive method of choice; however, recent research suggests that steatosis may influence its diagnostic performance. Controlled Attenuation Parameter (CAP) added to transient elastography enables simultaneous assessment of steatosis and fibrosis.

    AIM: To determine how to use CAP in interpreting liver stiffness measurements.

    METHODS: This is a secondary analysis of data from an individual patient data meta-analysis on CAP. The main exclusion criteria for the current analysis were unknown aetiology, unreliable elastography measurement and data already used for the same research question. Aetiology-specific liver stiffness measurement cut-offs were determined and used to estimate positive and negative predictive values (PPV/NPV) with logistic regression as functions of CAP.

    RESULTS: Two thousand and fifty eight patients fulfilled the inclusion criteria (37% women, 18% NAFLD/NASH, 42% HBV, 40% HCV, 51% significant fibrosis ≥ F2). Youden optimised cut-offs were only sufficient for ruling out cirrhosis (NPV of 98%). With sensitivity and specificity-optimised cut-offs, NPV for ruling out significant fibrosis was moderate (70%) and could be improved slightly through consideration of CAP. PPV for significant fibrosis and cirrhosis were 68% and 55% respectively, despite specificity-optimised cut-offs for cirrhosis.

    CONCLUSIONS: Liver stiffness measurement values below aetiology-specific cut-offs are very useful for ruling out cirrhosis, and to a lesser extent for ruling out significant fibrosis. In the case of the latter, Controlled Attenuation Parameter can improve interpretation slightly. Even if cut-offs are very high, liver stiffness measurements are not very reliable for ruling in fibrosis or cirrhosis.

    Matched MeSH terms: Elasticity Imaging Techniques
  11. Sheshala R, Hong GC, Yee WP, Meka VS, Thakur RRS
    Drug Deliv Transl Res, 2019 04;9(2):534-542.
    PMID: 29484530 DOI: 10.1007/s13346-018-0491-y
    The objectives of this study were to develop biodegradable poly-lactic-co-glycolic acid (PLGA) based injectable phase inversion in situ forming system for sustained delivery of triamcinolone acetonide (TA) and to conduct physicochemical characterisation including in vitro drug release of the prepared formulations. TA (at 0.5%, 1% and 2.5% w/w loading) was dissolved in N-methyl-2-pyrrolidone (NMP) solvent and then incorporated 30% w/w PLGA (50/50 and 75/25) polymer to prepare homogenous injectable solution. The formulations were evaluated for rheological behaviour using rheometer, syringeability by texture analyser, water uptake and rate of implant formation by optical coherence tomography (OCT) microscope. Phase inversion in situ forming formulations were injected into PBS pH 7.3 to form an implant and release samples were collected and analysed for drug content using a HPLC method. All formulations exhibited good syringeability and rheological properties (viscosity: 0.19-3.06 Pa.s) by showing shear thinning behaviour which enable them to remain as free-flowing solution for ease administration. The results from OCT microscope demonstrated that thickness of the implants were increased with the increase in time and the rate of implant formation indicated the fast phase inversion. The drug release from implants was sustained over a period of 42 days. The research findings demonstrated that PLGA/NMP-based phase inversion in situ forming implants can improve compliance in patient's suffering from ocular diseases by sustaining the drug release for a prolonged period of time and thereby reducing the frequency of ocular injections.
    Matched MeSH terms: Elasticity
  12. Jhatial AA, Goh WI, Mastoi AK, Rahman AF, Kamaruddin S
    PMID: 33745050 DOI: 10.1007/s11356-021-13435-2
    The production of cement contributes to 10% of global carbon dioxide (CO2) pollution and 74 to 81% towards the total CO2 pollution by concrete. In addition to that, its low strength-to-weight ratio, high density and thermal conductivity are among the few limitations of heavy weight concrete. Therefore, this study was carried out to provide a solution to these limitations by developing innovative eco-friendly lightweight foamed concrete (LFC) of 1800 kg/m3 density incorporating 20-25% palm oil fuel ash (POFA) and 5-15% eggshell powder (ESP) by weight of total binder as supplementary cementitious material (SCM). The influence of combined utilization of POFA and ESP on the fresh state properties of eco-friendly LFC was determined using the J-ring test. To determine the mechanical properties, a total of 48 cubes and 24 cylinders were prepared for compressive strength, splitting tensile strength and modulus of elasticity each. A total of 24 panels were prepared to determine the thermal properties in terms of surface temperature and thermal conductivity. Furthermore, to assess the environmental impact and eco-friendliness of the developed LFC, the embodied carbon and eco-strength efficiency was calculated. It was determined that the utilization of POFA and ESP reduced the workability slightly but enhanced the mechanical properties of LFC (17.05 to 22.60 MPa compressive strength and 1.43 to 2.61 MPa tensile strength), thus satisfies the ACI213R requirements for structural lightweight concrete and that it can be used for structural applications. Additionally, the thermal conductivity reduced ranging from 0.55 to 0.63 W/mK compared to 0.82 W/mK achieved by control sample. Furthermore, the developed LFC showed a 16.96 to 33.55% reduction in embodied carbon and exhibited higher eco-strength efficiency between 47.82 and 76.97%. Overall, the combined utilization of POFA and ESP as SCMs not only enhanced the thermo-mechanical performance, makes the sustainable LFC as structural lightweight concrete, but also has reduced the environmental impacts caused by the disposal of POFA and ESP in landfills as well as reducing the total CO2 emissions during the production of eco-friendly LFC.
    Matched MeSH terms: Elasticity
  13. Zakaria NM, Yusoff NI, Hardwiyono S, Nayan KA, El-Shafie A
    ScientificWorldJournal, 2014;2014:594797.
    PMID: 25276854 DOI: 10.1155/2014/594797
    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.
    Matched MeSH terms: Elasticity Imaging Techniques/methods*
  14. Chan WK, Nik Mustapha NR, Mahadeva S
    J Gastroenterol Hepatol, 2014;29(7):1470-6.
    PMID: 24548002 DOI: 10.1111/jgh.12557
    Controlled attenuation parameter (CAP) has been suggested as a noninvasive method for detection and quantification of hepatic steatosis. We aim to study the diagnostic performance of CAP in nonalcoholic fatty liver disease (NAFLD) patients.
    Matched MeSH terms: Elasticity Imaging Techniques/methods*
  15. Chan WK, Nik Mustapha NR, Mahadeva S
    Hepatol Int, 2015 Oct;9(4):594-602.
    PMID: 25788185 DOI: 10.1007/s12072-014-9596-7
    BACKGROUND: The non-alcoholic fatty liver disease (NAFLD) fibrosis score (NFS) is indeterminate in a proportion of NAFLD patients. Combining the NFS with liver stiffness measurement (LSM) may improve prediction of advanced fibrosis. We aim to evaluate the NFS and LSM in predicting advanced fibrosis in NAFLD patients.

    METHODS: The NFS was calculated and LSM obtained for consecutive adult NAFLD patients scheduled for liver biopsy. The accuracy of predicting advanced fibrosis using either modality and in combination were assessed. An algorithm combining the NFS and LSM was developed from a training cohort and subsequently tested in a validation cohort.

    RESULTS: There were 101 and 46 patients in the training and validation cohort, respectively. In the training cohort, the percentages of misclassifications using the NFS alone, LSM alone, LSM alone (with grey zone), both tests for all patients and a 2-step approach using LSM only for patients with indeterminate and high NFS were 5.0, 28.7, 2.0, 2.0 and 4.0 %, respectively. The percentages of patients requiring liver biopsy were 30.7, 0, 36.6, 36.6 and 18.8 %, respectively. In the validation cohort, the percentages of misclassifications were 8.7, 28.3, 2.2, 2.2 and 8.7 %, respectively. The percentages of patients requiring liver biopsy were 28.3, 0, 41.3, 43.5 and 19.6 %, respectively.

    CONCLUSIONS: The novel 2-step approach further reduced the number of patients requiring a liver biopsy whilst maintaining the accuracy to predict advanced fibrosis. The combination of NFS and LSM for all patients provided no apparent advantage over using either of the tests alone.

    Matched MeSH terms: Elasticity; Elasticity Imaging Techniques
  16. Leong SS, Wong JHD, Md Shah MN, Vijayananthan A, Jalalonmuhali M, Ng KH
    Ultrasound Med Biol, 2019 06;45(6):1417-1426.
    PMID: 30962016 DOI: 10.1016/j.ultrasmedbio.2019.01.024
    The purpose of this study was to assess the potential of shear wave elastography (SWE) as an indicator of abnormal kidney function defined by radiolabeled glomerular filtration rate (GFR). Fifty-seven patients referred for 51Cr-ethylenediaminetetraacetic acid GFR and 99mTc-dimercaptosuccinic acid renal scintigraphy were included. Young's modulus (YM) measured with SWE and kidney length, volume, cortical thickness and parenchymal echogenicity measured with conventional ultrasound were correlated with patients' GFR and renal scintigraphy results. Spearman correlation coefficients between SWE and GFR were negative for the right (r = -0.635, p < 0.0001) and left (r = -0.817, p < 0.0001) kidneys. Positive correlations between left renal cortical thickness (r = 0.381, p = 0.04) and left kidney volume (r = 0.356, p = 0.019) with GFR were reported. SWE correctly predicted the dominant functioning kidney in 94.7% of cases. The area under the receiver operating characteristic curve for SWE (0.800) was superior to that for conventional ultrasound (0.252-0.415). The cutoff value of ≥5.52 kPa suggested a kidney function ≤60 mL/min/1.73 m2 (82.4% sensitivity and 76.2% specificity). SWE has advantages over conventional ultrasound in assessing kidney function and distinguishing the dominant functioning kidney.
    Matched MeSH terms: Elasticity Imaging Techniques/methods
  17. Ignee A, Jenssen C, Arcidiacono PG, Hocke M, Möller K, Saftoiu A, et al.
    Endoscopy, 2018 11;50(11):1071-1079.
    PMID: 29689572 DOI: 10.1055/a-0588-4941
    BACKGROUND: The prevalence of malignancy in patients with small solid pancreatic lesions is low; however, early diagnosis is crucial for successful treatment of these cases. Therefore, a method to reliably distinguish between benign and malignant small solid pancreatic lesions would be highly desirable. We investigated the role of endoscopic ultrasound (EUS) elastography in this setting.

    METHODS: Patients with solid pancreatic lesions ≤ 15 mm in size and a definite diagnosis were included. Lesion stiffness relative to the surrounding pancreatic parenchyma, as qualitatively assessed and documented at the time of EUS elastography, was retrospectively compared with the final diagnosis obtained by fine-needle aspiration/biopsy or surgical resection.

    RESULTS: 218 patients were analyzed. The average size of the lesions was 11 ± 3 mm; 23 % were ductal adenocarcinoma, 52 % neuroendocrine tumors, 8 % metastases, and 17 % other entities; 66 % of the lesions were benign. On elastography, 50 % of lesions were stiffer than the surrounding pancreatic parenchyma (stiff lesions) and 50 % were less stiff or of similar stiffness (soft lesions). High stiffness of the lesion had a sensitivity of 84 % (95 % confidence interval 73 % - 91 %), specificity of 67 % (58 % - 74 %), positive predictive value (PPV) of 56 % (50 % - 62 %), and negative predictive value (NPV) of 89 % (83 % - 93 %) for the diagnosis of malignancy. For the diagnosis of pancreatic ductal adenocarcinoma, the sensitivity, specificity, PPV, and NPV were 96 % (87 % - 100 %), 64 % (56 % - 71 %), 45 % (40 % - 50 %), and 98 % (93 % - 100 %), respectively.

    CONCLUSIONS: In patients with small solid pancreatic lesions, EUS elastography can rule out malignancy with a high level of certainty if the lesion appears soft. A stiff lesion can be either benign or malignant.

    Matched MeSH terms: Elasticity Imaging Techniques*
  18. Mahadeva S, Mahfudz AS, Vijayanathan A, Goh KL, Kulenthran A, Cheah PL
    J Dig Dis, 2013 Nov;14(11):604-10.
    PMID: 23859493 DOI: 10.1111/1751-2980.12088
    To determine the accuracy of transient elastography (TE) and factors associated with discordance between TE and liver histology in patients with non-alcoholic fatty liver disease (NAFLD).
    Matched MeSH terms: Elasticity Imaging Techniques/methods*
  19. Alhabshi SM, Rahmat K, Abdul Halim N, Aziz S, Radhika S, Gan GC, et al.
    Ultrasound Med Biol, 2013 Apr;39(4):568-78.
    PMID: 23384468 DOI: 10.1016/j.ultrasmedbio.2012.10.016
    The purpose of this study was to evaluate the diagnostic value of qualitative and semi-quantitative assessment of ultrasound elastography in differentiating between benign and malignant breast lesions. This prospective study was conducted in two tertiary medical centers. Consecutive B-mode ultrasound and real-time elastographic images were obtained for 67 malignant and 101 benign breast lesions in 168 women. Four experienced radiologists analyzed B-mode ultrasound alone and B-mode ultrasound combined with elastography independently. Conventional ultrasound findings were classified according to the American College of Radiology Breast Imaging Reporting and Data System classification. The elastographic assessment was based on qualitative and semi-quantitative parameters (i.e., strain pattern, width ratio, strain ratio). The sensitivity and specificity of combined elastography and conventional ultrasound were significantly higher than that of conventional ultrasound alone. The sensitivity, specificity, positive predictive value and negative predictive value was 97%, 61.4%, 62.5% and 96.8%, respectively, for conventional ultrasound and 100%, 93%, 99% and 90%, respectively, for combined technique. The semi-quantitative assessment with strain ratio and width ratio in elastography were the most useful parameters in differentiating between benign and malignant breast lesions. Cut-off point values for width ratio of more than 1.1 and strain ratio of more than 5.6 showed a high predictive value of malignancy with specificities of 84% and 76%, respectively (p 
    Matched MeSH terms: Elasticity Imaging Techniques/methods*
  20. Lai LL, Wan Yusoff WNI, Vethakkan SR, Nik Mustapha NR, Mahadeva S, Chan WK
    J Gastroenterol Hepatol, 2019 Aug;34(8):1396-1403.
    PMID: 30551263 DOI: 10.1111/jgh.14577
    BACKGROUND AND AIM: The recommendation in regard to screening for non-alcoholic fatty liver disease (NAFLD) among type 2 diabetes mellitus (T2DM) patients differs in major guidelines. The aim of this paper was to study the prevalence of NALFD and advanced fibrosis among T2DM patients.

    METHODS: This is a cross-sectional study of consecutive adult T2DM patients attending the Diabetes Clinic of a university hospital. Significant hepatic steatosis and advanced fibrosis was diagnosed based on transient elastography if the controlled attenuation parameter was ≥ 263 dB/m, and the liver stiffness measurement was ≥ 9.6 kPa using the M probe or ≥ 9.3 kPa using the XL probe, respectively. Patients with liver stiffness measurement ≥ 8 kPa were referred to the Gastroenterology and Hepatology Clinic for further assessment, including liver biopsy.

    RESULTS: The data of 557 patients were analyzed (mean age 61.4 ± 10.8 years, male 40.6%). The prevalence of NAFLD and advanced fibrosis based on transient elastography was 72.4% and 21.0%, respectively. On multivariate analysis, independent factors associated with NAFLD were central obesity (OR 4.856, 95% confidence interval [CI] 2.749-8.577, P = 0.006), serum triglyceride (OR 1.585, 95% CI 1.056-2.381, P = 0.026), and alanine aminotransferase levels (OR 1.047, 95% CI 1.025-1.070, P 

    Matched MeSH terms: Elasticity Imaging Techniques*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links