Displaying publications 61 - 80 of 89 in total

Abstract:
Sort:
  1. Wan Omar WH, Sarbon NM
    J Food Sci Technol, 2016 Nov;53(11):3928-3938.
    PMID: 28035148 DOI: 10.1007/s13197-016-2379-5
    The aim of this study is to investigate the functional and antioxidant properties of chicken skin gelatin hydrolysate (CSGH) as affected by the drying method used in the preparation of gelatin (freeze-dried and vacuum dried). CSGH obtained from freeze-dried gelatin showed better functional properties such as emulsifying activity index (EAI), water holding and oil binding capacity at different pH compared to CSGH produced from vacuum dried gelatin. Meanwhile, the CSGH of the vacuum dried gelatin exhibited a better emulsifying stability index (ESI), foaming capacity and stability. CSGH from freeze-dried gelatin showed better antioxidant, DPPH radical scavenging and metal chelating activity.
    Matched MeSH terms: Freeze Drying
  2. Tan YZ, Chong YQ, Khong E, Liew YK, Chieng N
    Int J Pharm, 2019 Jul 20;566:400-409.
    PMID: 31136777 DOI: 10.1016/j.ijpharm.2019.05.063
    Live attenuated Mycobacterium bovis (M. bovis), marketed as Bacille Calmette-Guérin is the only FDA-approved vaccine against tuberculosis. The prerequisite of cold chain storage between 2 and 8 °C hinders the global vaccination effort. The study aims to investigate the effect of trehalose, sucrose and glycerol combinations in enhancing the stability of M. bovis. The bacilli were formulated in various ratios of trehalose-glycerol, sucrose-glycerol, trehalose-sucrose-glycerol systems (test samples) and sodium glutamate (control), freeze-dried and stored for 28 days at 4 °C, 25 °C and 37 °C. Bacteria viability at pre-, post-freeze-drying and after storage were quantified by its density in colony-forming unit per milliliter (CFU/mL) as obtained through the pour plate method. Formulations were characterized using differential scanning calorimetry. Structural collapsed cakes were found on all freeze-dried formulations because of the low Tg'. Comparing between binary and ternary formulations, trehalose-sucrose-glycerol was found to be a superior lyoprotectant. Upon storage, the viability of bacteria in disaccharide-polyol formulations was highest when stored at 4 °C followed by 25 °C. The lowest viability was found after storage at 37 °C. While the ternary disaccharide-polyol system may be used as a thermoprotectant up to 25 °C, sodium glutamate has a superior thermoprotective effect at temperature above 25 °C.
    Matched MeSH terms: Freeze Drying
  3. Mirhosseini H, Amid BT
    Chem Cent J, 2013 Jan 04;7(1):1.
    PMID: 23289739 DOI: 10.1186/1752-153X-7-1
    BACKGROUND: A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed). Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity.

    RESULTS: In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques.

    CONCLUSION: The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum.

    Matched MeSH terms: Freeze Drying
  4. Norhayati Pa'e, Nur Idayu Abd Hamid, Norzieana Khairuddin, Khairul Azly Zahan, Kok FS, Bazlul Mobin Siddique, et al.
    Sains Malaysiana, 2014;43:767-773.
    Nata de coco or bacterial cellulose produced by Acetobacter xylinum is a unique type of biocellulose. It contains more than 90% of water. Dried nata was preferred compared to wet form since it is more convenient and portable with stable properties. Therefore, drying process is necessary in order to produce dried nata de coco. Drying method is a key factor that influenced the properties of dried nata de coco produced. The aim of this study was to investigate the effect of different drying methods on morphology, crystallinity, swelling ability and tensile strength of dried nata de coco. Nata de coco samples were dried using three physical drying methods such as oven, tray dryer or freeze dryer until it achieved 3-5% moisture content. Obviously, the three drying techniques produced web-like structured nata de coco and quite similar crystallinity which was in range between 87 and 89%. Freeze dried sample showed the largest swelling capacity and tensile strength which was found to be 148 MPa. Different drying method gave different properties of nata de coco. Therefore, the present work proposed the most suitable drying method can be utilized based on the properties of end product needed.
    Matched MeSH terms: Freeze Drying
  5. Mohd Zainol, M.K., Abdul-Hamid A., Abu Bakar, F., Pak Dek, S.
    MyJurnal
    The effect of different drying methods on the degradation of flavonoids in Centella asiatica was evaluated. C. asiatica leaf, root and petiole were dried using air-oven, vacuum oven and freeze drier. Flavonoid was determined utilizing reverse-phase high performance liquid chromatography (RP-HPLC). Results of the study revealed the presence of high concentration of flavonoids in C. asiatica leaf, root and petiole, which include, naringin (4688.8 ± 69 μg/100 g, 3561.3 ± 205 μg/ 100 g, and 978.3 ± 96 μg/ 100 g), rutin (905.6 ± 123 μg/ 100 g, 756.07 ± 95 μg/ 100 g, and 557.25 ± 58 μg/ 100 g), quercetin (3501.1 ± 107 μg/ 100 g, 1086.31 ± 90 μg/ 100 g, and 947.63 ± 83 μg/ 100 g) and catechin (915.87 ± 6.01 μg/ 100 g, 400.6 ± 67 μg/ 100 g, and 250.56 ± 18 μg/ 100g). Luteolin, kaempferol and apigenin on the other hand, were inconsistently present in some parts of C. asiatica. Air-oven treatment resulted in the highest total flavonoids degradation followed by vacuum oven and freeze dried with percent degradation of 97%, 87.6% and 73%, respectively. Catechin and rutin were found to be the most stable flavonoids with percent degradation up to 35%, 66% and 76% for freeze dried, vacuum oven and air oven, respectively.
    Matched MeSH terms: Freeze Drying
  6. Hashim R, Zahid NI, Velayutham TS, Aripin NFK, Ogawa S, Sugimura A
    J Oleo Sci, 2018 Jun 01;67(6):651-668.
    PMID: 29760332 DOI: 10.5650/jos.ess17261
    Also recognized as carbohydrate liquid crystals, glycolipids are amphiphiles whose basic unit comprises of a sugar group attached to an alkyl chain. Glycolipids are amphitropic, which means these materials form liquid crystal self-assemblies when dry (thermotropic) as well as when dissolved in solvents (lyotropic/surfactants) such as water. Many glycolipids are also naturally derived since these can be found in cell membranes. Their membrane and surfactant functions are largely understood through their lyotropic properties. While glycolipids are expected to play major roles as eco-friendly surfactants in the global surfactant market, their usefulness as thermotropic liquid crystal material is, to date, unknown, due to relatively lack of research performed and data reported in the literature. Understandably since glycolipids are hygroscopic with many hydroxy groups, removing the last trace water is very challenging. In recent time, with careful lyophilization and more consistent characterization technique, some researchers have attempted serious studies into "dry" or anhydrous glycolipids. Motivated by possible developments of novel thermotropic applications, some results from these studies also provide surprising new understanding to support conventional wisdom of the lyotropic systems. Here we review the dry state of glycosides, a family of glycolipids whose sugar headgroup is linked to the lipid chain via a glycosidic oxygen linker. The structure property relationship of both linear and anhydrous Guerbet glycosides will be examined. In particular, how the variation of sugar stereochemistry (e.g. anomer vs. epimer), the chain length and chain branching affect the formation of thermotropic liquid crystals phases, which not only located under equilibrium but also far from equilibrium conditions (glassy phase) are scrutinized. The dry glycolipid assembly has been subjected to electric and magnetic fields and the results show interesting behaviors including a possible transient current generation.
    Matched MeSH terms: Freeze Drying
  7. Al-Ahdal SA, Ahmad Kayani AB, Md Ali MA, Chan JY, Ali T, Adnan N, et al.
    Int J Mol Sci, 2019 Jul 23;20(14).
    PMID: 31340481 DOI: 10.3390/ijms20143595
    We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aβ) in a microfluidic environment. The Aβ was separated from the cells and characterized using the gradual dissolution of Aβ as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aβ under specific dielectrophoretic parameters. Further, Aβ in the fibril form at the tip of the electrode dissolved at high frequency. This was perhaps due to the conductivity of the suspending medium changing according to the frequency, which resulted in a higher temperature at the tips of the electrodes, and consequently in the breakdown of the hydrogen bonds. However, those shaped as spheroidal monomers experienced a delay in the Aβ fibril transformation process. Yeast cells exposed to relatively low temperatures at the base of the electrode did not experience a positive or negative change in viability. The DEP microfluidic platform incorporating the integrated microtip electrode array was able to selectively manipulate the yeast cells and dissolve the Aβ to a controlled extent. We demonstrate suitable dielectrophoretic parameters to induce such manipulation, which is highly relevant for Aβ-related colloidal microfluidic research and could be applied to Alzheimer's research in the future.
    Matched MeSH terms: Freeze Drying
  8. Ullah S, Zainol I, Chowdhury SR, Fauzi MB
    Int J Biol Macromol, 2018 May;111:158-168.
    PMID: 29305219 DOI: 10.1016/j.ijbiomac.2017.12.136
    The various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds were developed and investigated the effect of various composition chitosan/fish collagen/glycerin on scaffolds morphology, mechanical strength, biostability and cytocompatibility. The scaffolds were fabricated via freeze-drying technique. The effects of various compositions consisting in 3D scaffolds were investigated via FT-IR analysis, porosity, swelling and mechanical tests, and effect on the morphology of scaffolds investigated microscopically. The biostability and cytocompatibility tests were used to explore the ability of scaffolds to use for tissue engineering application. The average pore sizes of scaffolds were in range of 100.73±27.62-116.01±52.06, porosity 71.72±3.46-91.17±2.42%, tensile modulus in dry environment 1.47±0.08-0.17±0.03MPa, tensile modulus in wet environment 0.32±0.03-0.14±0.04MPa and biodegradation rate (at day 30) 60.38±0.70-83.48±0.28%. In vitro culture of human fibroblasts and keratinocytes showed that the various composition multicomponent 3D scaffolds were good cytocompatibility however, the scaffolds contained high amount of fish collagen excellently facilitated cell proliferation and adhesion. It was found that the high amount fish collagen and glycerin scaffolds have high porosity, enough mechanical strength and biostability, and excellent cytocompatibility.
    Matched MeSH terms: Freeze Drying
  9. Foo PC, Chan YY, See Too WC, Tan ZN, Wong WK, Lalitha P, et al.
    J Med Microbiol, 2012 Sep;61(Pt 9):1219-1225.
    PMID: 22556327 DOI: 10.1099/jmm.0.044552-0
    Entamoeba histolytica is the only Entamoeba species that causes amoebiasis in humans. Approximately 50 million people are infected, with 100, 000 deaths annually in endemic countries. Molecular diagnosis of Entamoeba histolytica is important to differentiate it from the morphologically identical Entamoeba dispar to avoid unnecessary medication. Conventional molecular diagnostic tests require trained personnel, cold-chain transportation and/or are storage-dependent, which make them user-unfriendly. The aim of this study was to develop a thermostabilized, one-step, nested, tetraplex PCR assay for the detection of Entamoeba histolytica, Entamoeba dispar and Entamoeba species in cold-chain-free and ready-to-use form. The PCR test was designed based on the Entamoeba small subunit rRNA (SSU-rRNA) gene, which detects the presence of any Entamoeba species, and simultaneously can be used to differentiate Entamoeba histolytica from Entamoeba dispar. In addition, a pair of primers was designed to serve as an internal amplification control to help identify inhibitors in the samples. All PCR reagents together with the designed primers were thermostabilized by lyophilization and were stable at 24 °C for at least 6 months. The limit of detection of the tetraplex PCR was found to be 39 pg DNA or 1000 cells for Entamoeba histolytica and 78 pg DNA or 1000 cells for Entamoeba dispar, and the specificity was 100 %. In conclusion, this cold-chain-free, thermostabilized, one-step, nested, multiplex PCR assay was found to be efficacious in differentiating Entamoeba histolytica from other non-pathogenic Entamoeba species.
    Matched MeSH terms: Freeze Drying
  10. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Chem Commun (Camb), 2019 Jun 11.
    PMID: 31184357 DOI: 10.1039/c9cc02812a
    We report a one-step emulsification and rapid freeze-drying process to develop a curcumin-ionic liquid (CCM-IL) complex that could be readily dispersed in water with a significantly enhanced solubility of ∼8 mg mL-1 and half-life (t1/2) of ∼260 min compared with free CCM (solubility ∼30 nM and t1/2 ∼ 20 min). This process using an IL consisting of a long chain carbon backbone as a surfactant, may provide an alternative way of enhancing the solubility of poorly water-soluble drugs.
    Matched MeSH terms: Freeze Drying
  11. Ahmad Razi Othman, Intan Safinar Ismail, Norhani Abdullah, Syahida Ahmad
    MyJurnal
    Jatropha curcas is a multipurpose plant that has been suggested as a possible cure to
    inflammation. It can be used as a source of animal feed, live fence, biodiesel and in traditional
    medicine. Practitioners have used various extraction techniques to extract the active components
    of the plant. This article compares the efficiency of three methods of drying technique for the
    extraction of the total phenolic content from the plant. The freeze-drying method was the best
    method compared to oven dry and air dry. The freeze-drying method dries J. curcas root sample
    faster and preserve the total phenolic content better than the other methods.
    Matched MeSH terms: Freeze Drying
  12. Muhamad Haikal Zainal, Khairul Baqir Alkhair Khairul Amin, Oskar Hasdinor Hassan, Sharifah Aminah Syed Mohamad, Abd Malik Marwan Ali, Fathiah Abdullah, et al.
    MyJurnal
    Many kinds of substrates have been used to investigate bioelectricity production with Microbial Fuel Cell (MFC). Dry algae biomass has the highest maximum power density compared to other substrates due to high carbon sources from its lipid. However, the bacterial digestion of algae biomass is not simple because of the complexity and strength of the algal cell wall structure. An algae biomass extraction is needed to break the cell wall structure and facilitate digestion. Spray drying method is commonly used in highvalue products but may degrade some algal components which are crucial for microbial degradation in MFC, while the freeze-drying method is able to preserve algal cell constituents. The MFC was fed with freeze dried and spray dried algae biomass to produce energy and determine the degradation efficiency. Results showed the average voltage generated was 739 mV and 740 mV from freeze dried and spray dried algae biomass, respectively. The maximum power density of freeze dried algae biomass is 159.9 mW/m2 and spray dried algae biomass is 152.3 mW/m2. Freeze dried algae biomass has 54.2% of COD removal and 28.4% of Coulombic Efficiency while spray dried algae biomass has 50.1% of COD removal and 24.9% of Coulombic Efficiency.
    Matched MeSH terms: Freeze Drying
  13. Khor BK, Chear NJ, Azizi J, Khaw KY
    Molecules, 2021 Mar 09;26(5).
    PMID: 33803330 DOI: 10.3390/molecules26051489
    The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using supercritical carbon dioxide (scCO2) and conventional extraction methods. The antioxidant activities of CPEs were evaluated by cell-free (1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric-reduced antioxidative power (FRAP)) and cell-based (H2O2) assay. Both C. papaya leaf scCO2 extract with 5% ethanol (CPSCE) and C. papaya leaf scCO2 extract (CPSC) exhibited stronger DPPH radical scavenging activity than conventional extracts. In the FRAP assay, two hydrophilic extracts (C. papaya leaf ethanol extract (CPEE) and C. papaya freeze-dried leaf juice (CPFD)) showed relatively stronger reducing power compared to lipophilic extracts. Cell-based assays showed that CPFD significantly protected skin fibroblasts from H2O2-induced oxidative stress in both pre-and post-treatment. CPEE protected skin fibroblasts from oxidative stress in a dose-dependent manner while CPSCE significantly triggered the fibroblast recovery after treatment with H2O2. GC-MS analysis indicated that CPSCE had the highest α-tocopherol and squalene contents. By contrast, both CP hydrophilic extracts (CPEE and CPFD) had a higher total phenolic content (TPC) and rutin content than the lipophilic extracts. Overall, CPEs extracted using green and conventional extraction methods showed antioxidative potential in both cell-based and cell-free assays due to their lipophilic and hydrophilic antioxidants, respectively.
    Matched MeSH terms: Freeze Drying
  14. Normah Ismail, Nurulain Abd Razak
    MyJurnal
    Protease was extracted from two maturity stages of noni fruits (Morinda citrifolia L.), unripe (stage 1) and ripe (stage 5). The crude extract was partially purified by acetone precipitation method followed by dialysis, gel filtration chromatography and freeze drying. Protein concentrations, proteolytic activity, molecular weight distribution, pH stability, temperature stability and storage efficiency of the resulting protease were evaluated. The unripe and ripe noni fruit contains 0.65 and 0.35% protein, respectively. Molecular weight of the proteases from both stages ranged approximately between 3 to 28 kDa based on the SDS-PAGE results. The optimum activity were at pH 7s and 6, temperatures of 40 and 50°C, respectively for proteases obtained from the unripe and ripe fruit. Analysis from the freeze dried protease indicated that protease from ripe noni fruits had higher protein concentration and specific activity compared to those from unripe fruit. However, it is more sensitive to pH and temperature and less stable during storage as it shows lower proteolytic activity compared to protease from unripe fruit. Based on its high proteolytic activity reaching up to 70.31 U/mg and storage stability (30% lost of activity), noni fruit could be an alternative source of plant protease.
    Matched MeSH terms: Freeze Drying
  15. Abdualkader AM, Ghawi AM, Alaama M, Awang M, Merzouk A
    Pak J Pharm Sci, 2013 May;26(3):525-35.
    PMID: 23625426
    The medicinal Malaysian leeches have been used in traditional medicine to treat many different ailments. In this study, leech saliva extract (LSE) was collected from the medicinal Malaysian leech Hirudinaria manillensis. Gel electrophoresis of LSE was carried out to estimate the peptide and protein molecular weights of its content. Results showed that LSE contains more than 60 peptides and proteins with molecular masses ranging from 1.9-250kDa. Thrombin time assay in vitro was employed to assess the collected LSE antithrombin activity. First, to study its stability, LSE was lyophilized under the following different conditions: pre-freezing temperature, type of container and lyophilization cycle. Pre-freezed LSE sample at -20°C and lyophilized for 24 hours retained about 100-95% of its original biological activities. Second, the LSE antithrombin activity was monitored for a period of six months. Storage temperature, type of the container and photosensitivity effects on antithrombin activity of the lyophilized (solid state) and non-lyophilized (liquid state) were investigated. Results showed that storage temperature drastically affected the biological activity of LSE with -20 °C as the optimum temperature. Samples stored at ambient temperature and +4 °C were light photosensitive and adversely affected when stored in polypropylene tubes. Lyophilized samples were more stable than non-lyophilized ones over the period of study. To sum up, in order to have a biologically active stock of LSE, it has to be lyophilized for no more than 24 hours following freezing at -20°C and has to be stored at -20°C in glass tubes protected from light.
    Matched MeSH terms: Freeze Drying/methods
  16. Chua LYW, Chua BL, Figiel A, Chong CH, Wojdyło A, Szumny A, et al.
    Molecules, 2019 Apr 24;24(8).
    PMID: 31022967 DOI: 10.3390/molecules24081625
    The preservation of active constituents in Cassia alata through the removal of moisture is crucial in producing a final product with high antioxidant activity. This study aims to determine the influences of various drying methods and drying conditions on the antioxidant activity, volatiles and phytosterols content of C. alata. The drying methods used were convective drying (CD) at 40 °C, 50 °C and 60 °C; freeze drying; vacuum microwave drying (VMD) at 6, 9 and 12 W/g; and two-stage convective pre-drying followed by vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g. The drying kinetics of C. alata are best described by the thin-layer model (modified Page model). The highest antioxidant activity, TPC and volatile concentration were achieved with CD at 40 °C. GC-MS analysis identified the presence of 51 volatiles, which were mostly present in all samples but with quantitative variation. The dominant volatiles in fresh C. alata are 2-hexenal (60.28 mg 100 g-1 db), 1-hexanol (18.70 mg 100 g-1 db) and salicylic acid (15.05 mg 100 g-1 db). The concentration of phytosterols in fresh sample was 3647.48 mg 100 g-1 db, and the major phytosterols present in fresh and dried samples were β-sitosterol (1162.24 mg 100 g-1 db). CPD-VMFD was effective in ensuring the preservation of higher phytosterol content in comparison with CD at 50 °C. The final recommendation of a suitable drying method to dehydrate C. alata leaves is CD at 40 °C.
    Matched MeSH terms: Freeze Drying
  17. Juhari NH, Martens HJ, Petersen MA
    Molecules, 2021 Oct 16;26(20).
    PMID: 34684840 DOI: 10.3390/molecules26206260
    Fresh roselle are high in moisture and deteriorate easily, which makes drying important for extending shelf-life and increasing availability. This study investigated the influence of different drying methods (oven-drying, freeze-drying, vacuum-drying, and sun-drying) on the quality of roselle calyx expressed as physicochemical properties (moisture content, water activity, soluble solids, color), volatile compounds, and microstructure. Oven-drying and freeze-drying reduced moisture content most while vacuum-drying and sun-drying were not as efficient. All drying methods except sun-drying resulted in water activities low enough to ensure safety and quality. Vacuum-drying had no impact on color of the dry calyx and only small impact on color of water extract of calyx. Drying reduced terpenes, aldehydes, and esters but increased furans. This is expected to reduce fruity, floral, spicy, and green odors and increase caramel-like aroma. Sun-drying produced more ketones, alcohols, and esters. Scanning electron microscopy revealed that freeze-drying preserved the cell structure better, and freeze-dried samples resembled fresh samples most compared to other drying techniques. The study concludes that freeze-drying should be considered as a suitable drying method, especially with respect to preservation of structure.
    Matched MeSH terms: Freeze Drying/methods
  18. Shamekhi F, Shuhaimi M, Ariff A, Manap YA
    Folia Microbiol (Praha), 2013 Mar;58(2):91-101.
    PMID: 22843029 DOI: 10.1007/s12223-012-0183-9
    The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics-calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p > 0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.
    Matched MeSH terms: Freeze Drying*
  19. Oh HKF, Siow LF, Lim YY
    J Food Biochem, 2019 07;43(7):e12856.
    PMID: 31353691 DOI: 10.1111/jfbc.12856
    Different drying methods and blanching were investigated as to their effects on antioxidant and oxidase activities of Thunbergia laurifolia leaves. Results showed that oven-drying had the highest degradation of total phenolic content (TPC) and antioxidant activity at >85%, while freeze-drying had the lowest at <20%. However, inactivation of oxidase enzymes by blanching at 100°C resulted in a lesser decrease in TPC for oven-drying at 50 and 100°C (51% and 65%, respectively), indicating the importance of inactivating the oxidase enzymes for lower degradation of phenolics on drying. The high-performance liquid chromatography analysis showed that its major antioxidant, rosmarinic acid, degraded tremendously in the presence of oxidase enzymes, but only degraded slightly upon inactivation of oxidase enzymes. Hence, this work showed that by controlling the enzymatic activity, the preservation of phenolics with specific bioactivity in herbal tea leaves can be achieved. PRACTICAL APPLICATIONS: Thunbergia laurifolia leaves have been frequently consumed in the form of a tea or pill due to its medicinal properties. Processing of fresh herbal plant leaves by drying is required to preserve antioxidant phenolic compounds and quality of the plant leaves. Although the drying effects on the antioxidant properties have been studied, the factors that cause the change in properties have not been investigated in-depth. Controlling the factors that affect the phenolic content can help to preserve the beneficial antioxidants when processing the leaves by drying. The result of this study will be of relevance and beneficial to the herbal tea industry.
    Matched MeSH terms: Freeze Drying/methods
  20. Liew KB, Odeniyi MA, Peh KK
    Pharm Dev Technol, 2016;21(3):346-53.
    PMID: 25597618 DOI: 10.3109/10837450.2014.1003657
    Freeze drying technology has not been maximized and reported in manufacturing orally disintegrating films. The aim of this study was to explore the freeze drying technology in the formulation of sildenafil orally disintegrating films and compare the physical properties with heat-dried orally disintegrating film. Central composite design was used to investigate the effects of three factors, namely concentration of carbopol, wheat starch and polyethylene glycol 400 on the tensile strength and disintegration time of the film. Heat-dried films had higher tensile strength than films prepared using freeze-dried method. For folding endurance, freeze-dried films showed improved endurance than heat-dried films. Moreover, films prepared using freeze-dried methods were thicker and had faster disintegration time. Formulations with higher amount of carbopol and starch showed higher tensile strength and thickness whereas formulations with higher PEG 400 content showed better flexibility. Scanning electron microscopy showed that the freeze-dried films had more porous structure compared to the heat-dried film as a result of the release of water molecule from the frozen structure when it was subjected to freeze drying process. The sildenafil film was palatable. The dissolution profiles of freeze-dried and heat-dried films were similar to Viagra® with f2 of 51.04 and 65.98, respectively.
    Matched MeSH terms: Freeze Drying
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links