Displaying publications 61 - 80 of 278 in total

Abstract:
Sort:
  1. Deng S, Mai Y, Niu J
    Gene, 2019 Mar 20;689:131-140.
    PMID: 30576805 DOI: 10.1016/j.gene.2018.12.016
    Citrus maxima "seedless" is originally from Malaysia, and now is widely cultivated in Hainan province, China. The essential features of this cultivar are thin skin, green epicarp and seedless at the ripening stage. Here, using C. maxima "seedless" as experimental material, we investigated the physical and inclusion indicators, and found the accumulation of storage compounds during 120-210 DAF leading to inconsistent increase between volume and weight. Component analysis of soluble sugar indicated that arabinose and xylose have a high content in early development of pummelo juice sacs (PJS), whereas fructose, glucose and sucrose show a significant increase during PJS maturation. To clarify a global overview of the gene expressing profiles, the PJSs from four periods (60, 120, 180 and 240 DAF) were selected for comparative transcriptome analysis. The resulting 8275 unigenes showed differential expression during PJS development. Also, the stability of 11 housekeeping genes were evaluated by geNorm method, resulting in a set of five genes (UBC, ACT, OR23, DWA2 and CYP21D) used as control for normalization of gene expression. Based on transcriptome data, 5 sucrose synthases (SUSs) and 10 invertases (INVs) were identified to be involved in sucrose degradation. Importantly, SUS4 may be responsible for arabinose and xylose biosynthesis to form the cell wall in early development, while SUS3 and VIN2 may be important in the accumulation of soluble hexose leading to cell expansion through an osmotic-independent pathway in late development. The information provides valuable metabolite and genetic resources in C. maxima "seedless", and is important for achieving high fruit yield and quality.
    Matched MeSH terms: Fruit/chemistry
  2. Devi Ramaiya S, Bujang JS, Zakaria MH, King WS, Shaffiq Sahrir MA
    J Sci Food Agric, 2013 Mar 30;93(5):1198-205.
    PMID: 23027609 DOI: 10.1002/jsfa.5876
    The levels of sugars, ascorbic acid, total phenolic content (TPC) and total antioxidant activity (TAA) were determined in fruit juices from seven passion fruit (Passiflora spp.) cultivars: P. edulis cultivars Purple, Frederick, Yellow, Pink, P. edulis f. flavicarpa, P. maliformis and P. quadrangularis (we also tested this cultivar's mesocarp).
    Matched MeSH terms: Fruit/chemistry*
  3. Duan H, Khan GJ, Shang LJ, Peng H, Hu WC, Zhang JY, et al.
    Food Chem Toxicol, 2021 Apr;150:112058.
    PMID: 33582168 DOI: 10.1016/j.fct.2021.112058
    The present study uses network pharmacology to study the potential mechanism of Schisandra against atherosclerosis. Drug-disease targets were explored through the traditional Chinese medicine systemic pharmacology network. STRING database and Cytoscape software were employed to construct a component/pathway-target interaction network to screen the key regulatory factors from Schisandra. For cellular, biological and molecular pathways, Gene Ontology (GO) and KEGG pathway analyses were used while the interceptive acquaintances of the pathways was obtained through Metascape database. Initial molecular docking analyses of components from Schisandra pointed the possible interaction of non-muscle myosin ⅡA (NM ⅡA) against atherosclerosis. The screening results from GO and KEGG identified 525 possible targets of 18 active ingredients from Schisandra that further pointed 1451 possible pathways against the pathogenesis of disease whereas 167 targets were further refined based on common/interesting signaling target pathways. Further results of molecular signaling by docking identified very compatible binding between NM IIA and the constituents of Schisandra. Schisandra has a possible target of the serotonergic synapse, neuroactive ligand-receptor interaction and also has close interference in tumor pathways through PTGS2, NOS3, HMOX1 and ESR1. Moreover, it is also concluded that Schisandra has a close association with neuroendocrine, immune-inflammation and oxidative stress. Therefore, it may have the potential of therapeutic utility against atherosclerosis.
    Matched MeSH terms: Fruit/chemistry
  4. Duangjai A, Nuengchamnong N, Suphrom N, Trisat K, Limpeanchob N, Saokaew S
    Kobe J Med Sci, 2018 Oct 15;64(3):E84-E92.
    PMID: 30666038
    This study was to assess the impact of different colors of coffee fruit (green, yellow and red) on adipogenesis and/or lipolysis using 3T3-L1 adipocytes. Characterization of chemical constituents in different colors of coffee fruit extracts was determined by ESI-Q-TOF-MS. The cytotoxicity of the extracts in 3T3-L1 preadipocytes were evaluated by MTT assay. Oil-red O staining and amount of glycerol released in 3T3-L1 adipocytes were measured for lipid accumulation and lipolysis activity. All coffee fruit extracts displayed similar chromatographic profiles by chlorogenic acid > caffeoylquinic acid > caffeic acid. Different colors of raw coffee fruit possessed inhibitory adipogenesis activity in 3T3-L1 adipocytes, especially CRD decreased lipid accumulation approximately 47%. Furthermore, all extracts except CYF and their major compounds (malic, quinic, and chlorogenic acid) increased glycerol release. Our data suggest that different colors of coffee fruit extract have possessed anti-adipogenic and lipolytic properties and may contribute to the anti-obesity effects.
    Matched MeSH terms: Fruit/chemistry
  5. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Fruit/chemistry
  6. Eukun Sage E, Jailani N, Md Taib AZ, Mohd Noor N, Mohd Said MI, Abu Bakar M, et al.
    PLoS One, 2018;13(10):e0205753.
    PMID: 30321238 DOI: 10.1371/journal.pone.0205753
    The pulp and pericarp of mangosteen (Garcinia mangostana) fruit are popular food, beverage and health products whereby 60% of the fruit consist of the pericarp. The major metabolite in the previously neglected or less economically significant part of the fruit, the pericarp, is the prenylated xanthone α-mangostin. This highly bioactive secondary metabolite is typically isolated using solvent extraction methods that involve large volumes of halogenated solvents either via direct or indirect extraction. In this study, we compared the quantities of α-mangostin extracted using three different extraction methods based on the environmentally friendly solvents methanol and ethyl acetate. The three solvent extractions methods used were direct extractions from methanol (DM) and ethyl acetate (DEA) as well as indirect extraction of ethyl acetate obtained via solvent partitioning from an initial methanol extract (IEA). Our results showed that direct extraction afforded similar and higher quantities of α-mangostin than indirect extraction (DM: 318 mg; DEA: 305 mg; IEA: 209 mg per 5 g total dried pericarp). Therefore, we suggest that the commonly used method of indirect solvent extraction using halogenated solvents for the isolation of α-mangostin is replaced by single solvent direct extraction using the environmentally friendly solvents methanol or ethyl acetate.
    Matched MeSH terms: Fruit/chemistry
  7. Fan SP, Zakaria S, Chia CH, Jamaluddin F, Nabihah S, Liew TK, et al.
    Bioresour Technol, 2011 Feb;102(3):3521-6.
    PMID: 21123058 DOI: 10.1016/j.biortech.2010.11.046
    Solvolysis of oil palm empty fruit bunches (EFB) fibres using different solvents (acetone, ethylene glycol (EG), ethanol, water and toluene) were carried out using an autoclave at 275°C for 60 min. The solvent efficiency in term of conversion yield was found to be: EG>water>ethanol>acetone>toluene. The liquid products and residue obtained were analyzed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass selectivity. The obtained results showed that the chemical properties of the oil product were significantly affected by the type of solvent used for the solvolysis process. The higher heating value (HHV) of oil products obtained using ethanol is ∼29.42 MJ/kg, which is the highest among the oil products produced using different solvents. Water, ethanol and toluene yield major phenolic compounds. While EG favors the formation of alcohol compounds and acetone yields ketone and aldehyde compounds.
    Matched MeSH terms: Fruit/chemistry*
  8. Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, et al.
    Bioresour Technol, 2013 Mar;132:254-61.
    PMID: 23411456 DOI: 10.1016/j.biortech.2013.01.044
    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively.
    Matched MeSH terms: Fruit/chemistry*
  9. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N
    Eur J Nutr, 2017 Mar;56(2):591-601.
    PMID: 26593435 DOI: 10.1007/s00394-015-1103-y
    PURPOSE: The present study was undertaken to explore the possible anti-diabetic mechanism(s) of Emblica officinalis (EO) and its active constituent, ellagic acid (EA), in vitro and in vivo.

    METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.

    RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.

    CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.

    Matched MeSH terms: Fruit/chemistry
  10. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jul;116:522-5.
    PMID: 22595094 DOI: 10.1016/j.biortech.2012.03.123
    The feasibility of langsat empty fruit bunch waste for preparation of activated carbon (EFBLAC) by microwave-induced activation was explored. Activation with NaOH at the IR ratio of 1.25, microwave power of 600 W for 6 min produced EFBLAC with a carbon yield of 81.31% and adsorption uptake for MB of 302.48 mg/g. Pore structural analysis, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated the physical and chemical characteristics of EFBLAC. Equilibrium data were best described by the Langmuir isotherm, with a monolayer adsorption capacity of 402.06 mg/g, and the adsorption kinetics was well fitted to the pseudo-second-order equation. The findings revealed the potential to prepare high quality activated carbon from langsat empty fruit bunch waste by microwave irradiation.
    Matched MeSH terms: Fruit/chemistry*
  11. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;104:679-86.
    PMID: 22101073 DOI: 10.1016/j.biortech.2011.10.005
    This work explores the feasibility of orange peel, a citrus processing biomass as an alternative precursor for preparation of activated carbon (OPAC) via microwave assisted K(2)CO(3) activation. The operational parameters, chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were investigated. The virgin characteristics of OPAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurement. The optimum conditions resulted in OPAC with a monolayer adsorption capacity of 382.75 mg/g for methylene blue and carbon yield of 80.99%. The BET surface area, Langmuir surface area and total pore volume were identified to be 1104.45 m(2)/g, 1661.04 m(2)/g and 0.615 m(3)/g, respectively. Equilibrium data were simulated using the Langmuir, Freundlich, Dubinin-Radushkevich, Redlich-Peterson, and Toth isotherms, and kinetic data were fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models.
    Matched MeSH terms: Fruit/chemistry*
  12. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;103(1):398-404.
    PMID: 22050840 DOI: 10.1016/j.biortech.2011.09.116
    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.
    Matched MeSH terms: Fruit/chemistry
  13. Foo KY, Lee LK, Hameed BH
    Bioresour Technol, 2013 Apr;133:599-605.
    PMID: 23501142 DOI: 10.1016/j.biortech.2013.01.097
    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate.
    Matched MeSH terms: Fruit/chemistry*
  14. Gannasin SP, Ramakrishnan Y, Adzahan NM, Muhammad K
    Molecules, 2012 Jun 05;17(6):6869-85.
    PMID: 22669042 DOI: 10.3390/molecules17066869
    Hydrocolloid from tamarillo (Solanum betaceum Cav.) puree was extracted using water and characterised for the first time. Proximate compositions of the extracted hydrocolloid were also determined. Functional characteristics such as water-holding capacity, oil-holding capacity, emulsifying activity, emulsion stability, foaming capacity and stability of the hydrocolloid were evaluated in comparison to that of commercial hydrocolloids. Its functional groups and degree of esterification were determined using Fourier Transform Infrared (FT-IR) spectroscopy. Monosaccharide profiling was done using reverse-phase high pressure liquid chromatography (RP-HPLC). Screening of various fruits for high hydrocolloid yield after water extraction resulted in tamarillo giving the highest yield. The yield on dry weight basis was 8.30%. The hydrocolloid constituted of 0.83% starch, 21.18% protein and 66.48% dietary fibre with 49.47% degree of esterification and the monosaccharides identified were mannose, ribose, rhamnose, galacturonic acid, glucose, galactose, xylose and arabinose. Higher oil-holding capacity, emulsifying activity and emulsion stability compared to commercial hydrocolloids propose its possible application as a food emulsifier and bile acid binder. Foaming capacity of 32.19% and good foam stabilisation (79.36% of initial foam volume after 2 h of foam formation) suggest its promising application in frothy beverages and other foam based food products. These findings suggest that water-extracted tamarillo hydrocolloid can be utilised as an alternative to low methoxyl pectin.
    Matched MeSH terms: Fruit/chemistry
  15. Gannasin SP, Adzahan NM, Hamzah MY, Mustafa S, Muhammad K
    Food Chem, 2015 Sep 1;182:292-301.
    PMID: 25842340 DOI: 10.1016/j.foodchem.2015.03.010
    Tamarillo (Solanum betaceum Cav.) is an underutilised fruit in Malaysia. The fruit, however, contains good proportions of soluble fibre, protein, starch, anthocyanins and carotenoids. Amongst the fruits, only tamarillo mesocarp contains both polar (anthocyanins) and non-polar (carotenoids) pigments. The ability to retain both polar and non-polar pigments in the mesocarp could be related to the unique properties of its hydrocolloids. To understand the pigment-hydrocolloid interaction in the fruit, information on the physicochemical characteristics of the hydrocolloids is required. Therefore, hydrocolloids from the anthocyanin-rich seed mucilage fraction of the tamarillo and its carotenoid-rich pulp fraction were extracted and characterised. Water and 1% citric acid were used to extract the seed mucilage hydrocolloid while 72% ethanol and 20mM HEPES buffer were used for pulp hydrocolloid extraction. Seed mucilage hydrocolloid was primarily composed of arabinogalactan protein-associated pectin whereas pulp hydrocolloid was composed of hemicellulosic polysaccharides with some naturally interacting proteins and neutral polysaccharides.
    Matched MeSH terms: Fruit/chemistry*
  16. George DS, Razali Z, Santhirasegaram V, Somasundram C
    J Food Sci, 2015 Feb;80(2):S426-34.
    PMID: 25586772 DOI: 10.1111/1750-3841.12762
    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers.
    Matched MeSH terms: Fruit/chemistry
  17. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N
    Int J Mol Sci, 2012;13(3):3291-3340.
    PMID: 22489153 DOI: 10.3390/ijms13033291
    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1-3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed.
    Matched MeSH terms: Fruit/chemistry
  18. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Fruit/chemistry
  19. Ghorbani P, Soltani M, Homayouni-Tabrizi M, Namvar F, Azizi S, Mohammad R, et al.
    Molecules, 2015;20(7):12946-58.
    PMID: 26193248 DOI: 10.3390/molecules200712946
    The development of reliable and ecofriendly approaches for the production of nanomaterials is a significant aspect of nanotechnology nowadays. One of the most important methods, which shows enormous potential, is based on the green synthesis of nanoparticles using plant extract. In this paper, we aimed to develop a rapid, environmentally friendly process for the synthesis silver nanoparticles using aqueous extract of sumac. The bioactive compounds of sumac extract seem to play a role in the synthesis and capping of silver nanoparticles. Structural, morphological and optical properties of the nanoparticles were characterized using FTIR, XRD, FESEM and UV-Vis spectroscopy. The formation of Ag-NP was immediate within 10 min and confirmed with an absorbance band centered at 438 nm. The mean particle size for the green synthesized silver nanoparticles is 19.81 ± 3.67 nm and is fairly stable with a zeta potential value of -32.9 mV. The bio-formed Ag-NPs were effective against E. coli with a maximum inhibition zone of 14.3 ± 0.32 mm.
    Matched MeSH terms: Fruit/chemistry
  20. Goh MS, Lam SD, Yang Y, Naqiuddin M, Addis SNK, Yong WTL, et al.
    J Hazard Mater, 2021 10 15;420:126624.
    PMID: 34329083 DOI: 10.1016/j.jhazmat.2021.126624
    In agriculture, the convenience and efficacy of chemical pesticides have become inevitable to manage cultivated crop production. Here, we review the worldwide use of pesticides based on their categories, mode of actions and toxicity. Excessive use of pesticides may lead to hazardous pesticide residues in crops, causing adverse effects on human health and the environment. A wide range of high-tech-analytical methods are available to analyse pesticide residues. However, they are mostly time-consuming and inconvenient for on-site detection, calling for the development of biosensors that detect cellular changes in crops. Such new detection methods that combine biological and physicochemical knowledge may overcome the shortage in current farming to develop sustainable systems that support environmental and human health. This review also comprehensively compiles domestic pesticide residues removal tips from vegetables and fruits. Synthetic pesticide alternatives such as biopesticide and nanopesticide are greener to the environment. However, its safety assessment for large-scale application needs careful evaluation. Lastly, we strongly call for reversions of pesticide application trends based on the changing climate, which is lacking in the current scenario.
    Matched MeSH terms: Fruit/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links