Displaying publications 61 - 80 of 490 in total

Abstract:
Sort:
  1. Agus Kartono, Mustafa Mamat
    Sains Malaysiana, 2013;42:333-340.
    Differential cross sections for excitation to the n=2 states of atomic helium by electrons were computed for incident energies in the range from 30 to 50 eV. The n=2 states excitation cross sections are calculated with the use of closecoupling expansion with a non-orthogonal Laguerre-L2 basis function. The present status of agreement between theory and experiment for excitation of the ground-state was quite satisfactory.
    Matched MeSH terms: Physical Phenomena
  2. Nur Farahana Pauzi, Zafri Azran Abdul Majid, Wan Muhamad Nasuha Wan Hussin, Abdul Halim Sapuan, Mohd Zulfaezal Che Azemin
    MyJurnal
    X-ray is produced in form of divergent beam. The beam divergence results to blurring effect that influences image diagnosis. Thus, the blurring effect assessment should be enrolled within the quality control (QC) program of an imaging unit.
    Matched MeSH terms: Physical Phenomena
  3. Chen L, Ho CD, Jen LY, Lim JW, Chen YH
    Membranes (Basel), 2020 Oct 22;10(11).
    PMID: 33105658 DOI: 10.3390/membranes10110302
    We investigated the insertion of eddy promoters into a parallel-plate gas-liquid polytetrafluoroethylene (PTFE) membrane contactor to effectively enhance carbon dioxide absorption through aqueous amine solutions (monoethanolamide-MEA). In this study, a theoretical model was established and experimental work was performed to predict and to compare carbon dioxide absorption efficiency under concurrent- and countercurrent-flow operations for various MEA feed flow rates, inlet CO2 concentrations, and channel design conditions. A Sherwood number's correlated expression was formulated, incorporating experimental data to estimate the mass transfer coefficient of the CO2 absorption in MEA flowing through a PTFE membrane. Theoretical predictions were calculated and validated through experimental data for the augmented CO2 absorption efficiency by inserting carbon-fiber spacers as an eddy promoter to reduce the concentration polarization effect. The study determined that a higher MEA feed rate, a lower feed CO2 concentration, and wider carbon-fiber spacers resulted in a higher CO2 absorption rate for concurrent- and countercurrent-flow operations. A maximum of 80% CO2 absorption efficiency enhancement was found in the device by inserting carbon-fiber spacers, as compared to that in the empty channel device. The overall CO2 absorption rate was higher for countercurrent operation than that for concurrent operation. We evaluated the effectiveness of power utilization in augmenting the CO2 absorption rate by inserting carbon-fiber spacers in the MEA feed channel and concluded that the higher the flow rate, the lower the power utilization's effectiveness. Therefore, to increase the CO2 absorption flux, widening carbon-fiber spacers was determined to be more effective than increasing the MEA feed flow rate.
    Matched MeSH terms: Physical Phenomena
  4. Rahman EU, Zhang Y, Ahmad S, Ahmad HI, Jobaer S
    Sensors (Basel), 2021 Feb 02;21(3).
    PMID: 33540500 DOI: 10.3390/s21030974
    The early detection of damaged (partially broken) outdoor insulators in primary distribution systems is of paramount importance for continuous electricity supply and public safety. Unmanned aerial vehicles (UAVs) present a safer, autonomous, and efficient way to examine the power system components without closing the power distribution system. In this work, a novel dataset is designed by capturing real images using UAVs and manually generated images collected to overcome the data insufficiency problem. A deep Laplacian pyramid-based super-resolution network is implemented to reconstruct high-resolution training images. To improve the visibility of low-light images, a low-light image enhancement technique is used for the robust exposure correction of the training images. A different fine-tuning strategy is implemented for fine-tuning the object detection model to increase detection accuracy for the specific faulty insulators. Several flight path strategies are proposed to overcome the shuttering effect of insulators, along with providing a less complex and time- and energy-efficient approach for capturing a video stream of the power system components. The performance of different object detection models is presented for selecting the most suitable one for fine-tuning on the specific faulty insulator dataset. For the detection of damaged insulators, our proposed method achieved an F1-score of 0.81 and 0.77 on two different datasets and presents a simple and more efficient flight strategy. Our approach is based on real aerial inspection of in-service porcelain insulators by extensive evaluation of several video sequences showing robust fault recognition and diagnostic capabilities. Our approach is demonstrated on data acquired by a drone in Swat, Pakistan.
    Matched MeSH terms: Physical Phenomena
  5. Singh G, Makinde OD
    Sains Malaysiana, 2014;43:483-489.
    The paper is aimed at studying fluid flow heat transfer in the axisymmetric boundary layer flow of a viscous incompressible fluid, along the axial direction of a vertical stationary isothermal cylinder in presence of uniform free stream with momentum slip. The equations governing the flow i.e. continuity, momentum and energy equation are transformed into non-similar boundary layer equations and are solved numerically employing asymptotic series method with Shanks transformation. The numerical scheme involves the Runge-Kutta fourth order scheme along with the shooting technique. The flow is analyzed for both assisting and opposing buoyancy and the effect of different parameters on fluid velocity, temperature distribution, heat transfer and shear stress parameters is presented graphically.
    Matched MeSH terms: Physical Phenomena
  6. Kim J, Kim HP, Teridi MA, Yusoff AR, Jang J
    Sci Rep, 2016 11 22;6:37378.
    PMID: 27874026 DOI: 10.1038/srep37378
    Bandgap tuning of a mixed organic cation perovskite is demonstrated via chemical vapor deposition process. The optical and electrical properties of the mixed organic cation perovskite can be manipulated by varying the growth time. A slight shift of the absorption band to shorter wavelengths is demonstrated with increasing growth time, which results in the increment of the current density. Hence, based on the optimized growth time, our device exhibits an efficiency of 15.86% with negligible current hysteresis.
    Matched MeSH terms: Physical Phenomena
  7. Khorramian K, Maleki S, Shariati M, Ramli Sulong NH
    PLoS One, 2015;10(12):e0144288.
    PMID: 26642193 DOI: 10.1371/journal.pone.0144288
    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
    Matched MeSH terms: Physical Phenomena
  8. Lee XJ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Ng HK
    Bioresour Technol, 2017 Jul;236:155-163.
    PMID: 28399419 DOI: 10.1016/j.biortech.2017.03.105
    This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin(-1) N2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg(-1)) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential.
    Matched MeSH terms: Physical Phenomena
  9. Suhaimi SN, Phang LY, Maeda T, Abd-Aziz S, Wakisaka M, Shirai Y, et al.
    Braz J Microbiol, 2012 Apr;43(2):506-16.
    PMID: 24031858 DOI: 10.1590/S1517-83822012000200011
    Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.
    Matched MeSH terms: Physical Phenomena
  10. Ab Rahman MF, Rusli A, Misman MA, Rashid AA
    ACS Omega, 2020 Nov 24;5(46):30329-30335.
    PMID: 33251468 DOI: 10.1021/acsomega.0c04964
    With increased awareness on the importance of gloves arising from the COVID-19 pandemic, people are expected to continue using them even after the pandemic recedes. This scenario in a way increased the rubber solid waste disposal problem; therefore, the production of biodegradable gloves may be an option to overcome this problem. However, the need to study the shelf life of biodegradable gloves is crucial before commercialization. There are well-established models to address the failure properties of gloves as stated in the American Society for Testing and Material (ASTM) D7160. In this study, polysaccharide-based material-filled natural rubber latex (PFNRL) gloves, which are biodegradable gloves, were subjected to an accelerated aging process at different temperatures of 50-80 °C for 1-120 days. Prediction models based on Arrhenius and shift factors were used to estimate the shelf life of the PFNRL gloves. Based on the results obtained, the estimated time for the PFNRL gloves to retain 75% of their tensile strength at shelf temperature (30 °C) based on Arrhenius and shift factor models was 2.8 years. Verification on the activation energy based on the shift factor model indicated that the shelf life of PFNRL gloves is 2.9 years, which is only a 3.6% difference. The value obtained is aligned with the requirement in accordance with ASTM D7160, which states that only up to a maximum of 3 years' shelf life is allowed for the gloves under accelerated aging conditions.
    Matched MeSH terms: Physical Phenomena
  11. Saharudin MS, Wei J, Shyha I, Inam F
    Polymers (Basel), 2017 Jul 28;9(8).
    PMID: 30970992 DOI: 10.3390/polym9080314
    Halloysite nanotubes (HNTs)-polyester nanocomposites with four different concentrations were produced using solution casting technique and the biodegradation effect of short-term seawater exposure (120 h) was studied. Monolithic polyester was observed to have the highest seawater absorption with 1.37%. At 0.3 wt % HNTs reinforcement, the seawater absorption dropped significantly to the lowest value of 0.77% due to increase of liquid diffusion path. For samples tested in dry conditions, the Tg, storage modulus, tensile properties and flexural properties were improved. The highest improvement of Tg was from 79.3 to 82.4 °C (increase 3.1 °C) in the case of 0.3 wt % HNTs. This can be associated with the exfoliated HNTs particles, which restrict the mobility of polymer chains and thus raised the Tg. After seawater exposure, the Tg, storage modulus, tensile properties and flexural properties of polyester and its nanocomposites were decreased. The Young's modulus of 0.3 wt % HNTs-polyester dropped 20% while monolithic polyester dropped up to 24% compared to their values in dry condition. Apart from that, 29% flexural modulus reduction was observed, which was 18% higher than monolithic polyester. In contrast, fracture toughness and surface roughness increased due to plasticization effect. The presence of various microbial communities caused gradual biodegradation on the microstructure of the polyester matrix as also evidently shown by SEM images.
    Matched MeSH terms: Physical Phenomena
  12. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R
    Materials (Basel), 2013 Dec 18;6(12):5942-5950.
    PMID: 28788431 DOI: 10.3390/ma6125942
    Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV-Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV-visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum.
    Matched MeSH terms: Physical Phenomena
  13. Ng SW, Yang Farina AA, Othman AH, Baba I, Sivakumar K, Fun HK
    Acta Crystallogr C, 2000 Mar 15;56(Pt 3):E84-5.
    PMID: 15263206
    The title compound, [Sn(CH(3))(2)(C(5)H(10)NO(2)S(2))(2)], has crystallographic mirror symmetry (C-Sn-C on mirror plane) and the coordination polyhedron around the Sn atom is a tetrahedron [C-Sn-C 139.3 (2) degrees and S-Sn-S 82.3 (1) degrees ] distorted towards a skew-trapezoidal bipyramid owing to an intramolecular Sn.S contact [3.0427 (6) A]. The molecules are linked into a linear chain by intermolecular O-H.O hydrogen bonds [O.O 2.646 (3) A].
    Matched MeSH terms: Physical Phenomena
  14. Abushagur AAG, Arsad N, Bakar AAA
    Sensors (Basel), 2021 Mar 12;21(6).
    PMID: 33809028 DOI: 10.3390/s21062002
    This work investigates a new interrogation method of a fiber Bragg grating (FBG) sensor based on longer and shorter wavelengths to distinguish between transversal forces and temperature variations. Calibration experiments were carried out to examine the sensor's repeatability in response to the transversal forces and temperature changes. An automated calibration system was developed for the sensor's characterization, calibration, and repeatability testing. Experimental results showed that the FBG sensor can provide sensor repeatability of 13.21 pm and 17.015 pm for longer and shorter wavelengths, respectively. The obtained calibration coefficients expressed in the linear model using the matrix enabled the sensor to provide accurate predictions for both measurements. Analysis of the calibration and experiment results implied improvements for future work. Overall, the new interrogation method demonstrated the potential to employ the FBG sensing technique where discrimination between two/three measurands is needed.
    Matched MeSH terms: Physical Phenomena
  15. Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, et al.
    Crit Rev Anal Chem, 2019;49(6):510-533.
    PMID: 30648398 DOI: 10.1080/10408347.2018.1561243
    The development of easy to use, rapid and sensitive methods for direct detection of foodborne bacterial pathogens has become significantly important due to their impact on human health. In recent years, carbon nanomaterials have been adapted in the fabrication of electrochemical biosensors due to their exceptional combination of intrinsic properties such as high conductivity, stability and biocompatibility that render them as a promising candidate for bio-sensing material. The scope of this review is to provide a brief history of the current methods and different types of electrochemical biosensors used for the detection of bacterial pathogens. We primarily focus on the recent progress and applications of graphene, carbon nanotubes and their derivatives in electrochemical biosensors for foodborne bacterial pathogens detection. Finally, the status and future prospects of carbon-based electrochemical biosensors are also reviewed and discussed.
    Matched MeSH terms: Physical Phenomena
  16. Yanliang Shang, Shouji Du, Biao Shao, Tongyin Han
    Sains Malaysiana, 2017;46:2091-2099.
    A large number of shallow buried tunnels are built in the city nowadays and the special strata such as large upper-soft and lower-hard ground often encountered. Deformation control of strata is the focus issue related to the construction safety. Based on Dalian metro Hing Street station with the classical geological condition of upper-soft and lower-hard ground, this paper fully used a combined control method including six different support measures to control the deformation of surrounding rock. 3D finite element model was setup to analyze the construction effect of combined control measures and the monitoring in-site was carried out to verify the deformation control effect of combined control method. It shows that the maximum surface subsidence value is gradually reduced with the support measures gradually increasing. In the case of various supports the maximum sedimentation value is 2.67 cm, which is 42. 1% lower than that of not using control method and the control effect is obvious. In addition, it can be seen that the two-layer initial support and additional large arch foot have the best effect on controlling the ground surface settlement with reduction of 11.7% and 20.2%, respectively. The research results can provide practical experience for the construction of such tunnels, and guide the design and construction of the tunnel in the future.
    Matched MeSH terms: Physical Phenomena
  17. KHOO Y, RAYMOND OOI C
    Sains Malaysiana, 2013;42:1799-1803.
    The control of the Casimir force between two parallel plates can be achieved through inducing the optical Kerr effect of a nonlinear material. By considering a two-plate system which consists of a dispersive metamaterial and a nonlinear material, we show that the Casimir force between the plates can be switched between attractive and repulsive Casimir force by varying the intensity of a laser pulse. The switching sensitivity increases as the separation between plate decreases, thus providing new possibilities of controlling Casimir force for nanoelectromechanical systems.
    Matched MeSH terms: Physical Phenomena
  18. Abu Bakar Mohamad, Wan Ramli Wan Daud, Amir Kadhum, Fathi Messaud, Mohd. Ambar Yarmo
    Chemical structure of treated and untreated Aciplex membrane has been studied by X-ray Photoelectron Spectroscopy (XPS). Survey spectra showed that both membrane surfaces consist of Fluorine, Carbon, Oxygen, Sulphur and trace of Titanium. Binding energies for the elements are (C1s at 290.6 eV, F1s at 687.5 eV, O1s at 531.3 eV, S2P at 168.1 eV and Ti2P at 454.4 eV). Analysis of narrow scan XPS-spectra of each element demonstrate the presence of (-CF, -CF2, CF3, C-O-C and SO-3) groups, which are in agreement with the structural formula as disclosed by the manufacturer. There is no significant change in chemical states of untreated and treated membrane, which reflect its stability to treatment conditions.
    Struktur kimia Aciplex membran yang sudah dibersihkan dan yang belum dibersihkan telah dikaji menggunakan Spektroskopi Fotoelektron Sinaran-X (XPS). Spektra yang telah ditinjau menunjukkan bahawa kedua-dua permukaan membran mengandungi Florin, Karbon, Oksigen, Sulfur dan sedikit Titanium. Tenaga ikatan bagi unsur-unsur tersebut adalah (C1s pada 290.6 eV, F1s pada 687.5 eV. O1s pada 531.3 eV, S2P pada 168.2 eV dan Ti2P pada 454.4 eV). Analisis imbasan kecil spektra-xps bagi setiap unsur menunjukkan kehadiran kilmpulan (-CF, - CF2, CF3, C-O-C dan SO-3) yang bertepatan dengan formula struktur dari pihak pembekal. Tiada terdapat perubahan nyata berhubung dengan keadaan kimia membran yang sudah dibersihkan dan yang belum dibersihkan yang menggambarkan kestabilannya terhadap keadaan pembersihan.
    Matched MeSH terms: Physical Phenomena
  19. Hanan F, Jawaid M, Paridah MT, Naveen J
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916779 DOI: 10.3390/polym12092052
    In this research, the physical, mechanical and morphological properties of oil palm empty fruit bunch (EFB) mat/woven kenaf fabric-reinforced epoxy composites have been investigated. The oil palm EFB/woven kenaf fabrics were varied, with weight ratios of 50/0 (T1), 35/15 (T2), 25/25 (T3), 15/35 (T4) and 0/50 (T5). The composites were fabricated using a simple hand lay-up technique followed by hot pressing. The result obtained shows that an increase in kenaf fiber content exhibited higher tensile and flexural properties. On the other hand, the opposite trend was observed in the impact strength of hybrid composites, where an increase in kenaf fiber content reduced the impact strength. This can be corroborated with the physical properties analysis, where a higher void content, water absorption and thickness swelling were observed for pure oil palm EFB (T1) composites compared to other samples. The scanning electron microscopy analysis results clearly show the different failure modes of the tensile fractured samples. Statistical analysis was performed using one-way ANOVA and shows significant differences between the obtained results.
    Matched MeSH terms: Physical Phenomena
  20. Cheng, S. H., Sarbon, N. M.
    MyJurnal
    The aim of the present work was to develop chicken skin gelatin films incorporated with
    different concentrations of rice starch prepared by casting techniques. Six film-forming
    solutions were prepared separately with different blend ratios of chicken skin gelatin to rice
    starch: A (0/100), B (5/100), C (10/100), D (15/100), E (20/100), and F (25/100). The
    rheological properties of the film-forming solutions (FFS) were determined using frequency
    sweep. The mechanical and physical properties of the respective films were also evaluated.
    With the increase in rice starch concentration, the storage (G’) modulus of FFS increased
    dramatically with loss (G”) modulus as the oscillatory frequency rising to contribute to gel
    behaviour (G’ > G”). As rice starch concentration increased, the chicken skin gelatin films
    also demonstrated higher tensile strength, elongation at break, and water vapour permeability,
    but reduced the solubility of gelatin films in water. Additionally, elevation in melting point
    values indicated that the thermal stability of the composite films was enhanced with the
    increment of rice starch concentration. Film F (with 25% rice starch) yielded the optimal film
    formulation, as it had the highest tensile strength and a high elongation at break value. Thus,
    film F shows the best potential as a film for food packaging.
    Matched MeSH terms: Physical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links