Displaying publications 61 - 80 of 591 in total

Abstract:
Sort:
  1. Amir S, Othman R, Subban R, Mohamed N
    Sains Malaysiana, 2011;40:1179-1186.
    Solid polymer electrolytes comprised of various weight percent ratios of poly(ethyl methacrylate) (PEMA) and lithium perchlorate (LiClO4) salt were prepared via solution casting technique using N,N-dimethylformamide (DMF) as the solvent. The conductivity values of the electrolytes were determined via impedance spectroscopy. The conductivity of the PEMA-LiClO4 electrolytes increased with increasing salt concentration and the highest conductivity obtained was in the order of 10-6 S cm-1 at salt concentration of 20 wt%. The conductivity decreased for higher salt concentration. In order to understand the conductivity behavior, XRD and dielectric studies were done. The results showed that the conductivity was influenced by the fraction of amorphous region and number of charge carriers in the system. The transference number measurement was also performed on the highest conducting electrolyte systems. The result of the measurement indicated that the systems were ionic conductors.
    Matched MeSH terms: Solvents
  2. Amjad MW, Amin MC, Katas H, Butt AM
    Nanoscale Res Lett, 2012;7(1):687.
    PMID: 23270381 DOI: 10.1186/1556-276X-7-687
    Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N'-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocarcinoma (DLD-1) cells, the doxorubicin-loaded CA-PEI micelles exhibited better antitumor activity than that shown by doxorubicin. This is the first study on CA-PEI micelles as doxorubicin carriers, and this study demonstrated that they are promising candidates as carriers for sustained targeted antitumor drug delivery system.
    Matched MeSH terms: Solvents
  3. Amran B. Ab. Majid, Mohd Zahari Abdullah, Zaharuddin Ahmad
    The determination technique for U (238U, 235U, 234U) and Th (232Th, 230Th, 228Th) isotopes using alpha spectrometry was developed. The developed technique involved digestion, dissolution, coprecipitation, solvent extraction and electrodeposition methods. The NBS River Sediment and Rocky Flats Soil Standard Reference Materials were analysed to determine the accuracy of the technique. A good accuracy and high percentage recovery of the carrier (70 - 90%) indicated that the developed technique was suitable for U and Th isotopes determination. The technique was used to determine the U and Th concentration in monazite, xenotime and zircon samples. The results showed that the U and Th total concentrations were in the range of 21.03 to 171.25 Bq/g and 27.48 to 242.87 Bq/g respectively.
    Kaedah penguraian, pemelarutan, pemendakan bersama, ekstraksi pelarut dan pemendapan elektrik telah dikaji dan digunakan untuk mendapatkan suatu teknik yang terbaik dalam penentuan isotop uranium 234U, 235U & 238U) dan torium 228Th, 230Th & 232Th) menggunakan sistem spektrometri alfa. Kepekatan isotop U dan Th dalam bahan rujukan piawai River Sediment dan Rocky Flats Soil (NBS) telah dianalisis untuk menentukan kejituan teknik yang dibangunkan. Kajian ini mendapati kepekatan isotop yang diperolehi adalah menghampiri nilai teraku (sijil) dan peratus perolehan semula pembawa yang besar (70-90%). Ini menunjukkan teknik yang dibangunkan sesuai digunakan untuk penentuan isotop uranium dan torium. Seterusnya teknik yang dibangunkan telah digunakan untuk menentukan kandungan uranium dan torium dalam sampel monazit, xenotim dan zirkon tempatan. Kepekatan jumlah isotop uranium yang diperolehi didapati berada dalam julat 21.03 - 171.25 Bq/g manakala kepekatan jumlah isotop torium pula terletak antara 27.48 - 242.87 Bq/g.
    Matched MeSH terms: Solvents
  4. Anand K, Abdul NS, Ghazi T, Ramesh M, Gupta G, Tambuwala MM, et al.
    ACS Omega, 2021 Jan 12;6(1):265-277.
    PMID: 33458478 DOI: 10.1021/acsomega.0c04461
    In this study, novel self-assembled carbazole-thiooctanoic acid nanoparticles (CTNs) were synthesized from amino carbazole (a mutagen) and thiooctanoic acid (an antioxidant). The nanoparticles were characterized using hyperspectral techniques. Then, the antiproliferative potential of CTNs was determined in HepG2 liver carcinoma cells. This study employed a solvent-antisolvent interaction method to synthesize a spherical CTN of size less than 50 nm. Moreover, CT was subsequently capped to gold nanoparticles (AuNPs) in the additional comparative studies. The CT derivative was synthesized from carbazole and lipoic acid by the amide bond formation reaction using a coupling agent. Furthermore, it was characterized using infrared (IR), 1H nuclear magnetic resonance, dynamic light scattering (DLS), and transmission electron microscopy techniques. The CT-capped gold nanoparticles (CTAuNPs) were prepared from CT, chloroauric acid, and NaBH4. The CTAuNPs were characterized using ultraviolet-visible, high-resolution TEM, DLS, and Fourier transform IR techniques. The cytotoxicity and apoptosis-inducing ability of both nanoparticles were determined in HepG2 cells. The results demonstrate that CTNs exhibit antiproliferative activity in the cancerous HepG2 cells. Moreover, molecular docking and molecular dynamics studies were conducted to explore the therapeutic potential of CT against human EGFR suppressor protein to gain more insights into the binding mode of the CT, which may show a significant role in anticancer therapy.
    Matched MeSH terms: Solvents
  5. Anarjan N, Jafarizadeh-Malmiri H, Nehdi IA, Sbihi HM, Al-Resayes SI, Tan CP
    Int J Nanomedicine, 2015;10:1109-18.
    PMID: 25709435 DOI: 10.2147/IJN.S72835
    Nanodispersion systems allow incorporation of lipophilic bioactives, such as astaxanthin (a fat soluble carotenoid) into aqueous systems, which can improve their solubility, bioavailability, and stability, and widen their uses in water-based pharmaceutical and food products. In this study, response surface methodology was used to investigate the influences of homogenization time (0.5-20 minutes) and speed (1,000-9,000 rpm) in the formation of astaxanthin nanodispersions via the solvent-diffusion process. The product was characterized for particle size and astaxanthin concentration using laser diffraction particle size analysis and high performance liquid chromatography, respectively. Relatively high determination coefficients (ranging from 0.896 to 0.969) were obtained for all suggested polynomial regression models. The overall optimal homogenization conditions were determined by multiple response optimization analysis to be 6,000 rpm for 7 minutes. In vitro cellular uptake of astaxanthin from the suggested individual and multiple optimized astaxanthin nanodispersions was also evaluated. The cellular uptake of astaxanthin was found to be considerably increased (by more than five times) as it became incorporated into optimum nanodispersion systems. The lack of a significant difference between predicted and experimental values confirms the suitability of the regression equations connecting the response variables studied to the independent parameters.
    Matched MeSH terms: Solvents
  6. Anarjan N, Tan CP, Ling TC, Lye KL, Malmiri HJ, Nehdi IA, et al.
    J Agric Food Chem, 2011 Aug 24;59(16):8733-41.
    PMID: 21726079 DOI: 10.1021/jf201314u
    A simplex centroid mixture design was used to study the interactions between two chosen solvents, dichloromethane (DCM) and acetone (ACT), as organic-phase components in the formation and physicochemical characterization and cellular uptake of astaxanthin nanodispersions produced using precipitation and condensation processes. Full cubic or quadratic regression models with acceptable determination coefficients were obtained for all of the studied responses. Multiple-response optimization predicted that the organic phase with 38% (w/w) DCM and 62% (w/w) ACT yielded astaxanthin nanodispersions with the minimum particle size (106 nm), polydispersity index (0.191), and total astaxanthin loss (12.7%, w/w) and the maximum cellular uptake (2981 fmol/cell). Astaxanthin cellular uptake from the produced nanodispersions also showed a good correlation with their particle size distributions and astaxanthin trans/cis isomerization ratios. The absence of significant (p > 0.05) differences between the experimental and predicted values of the response variables confirmed the adequacy of the fitted models.
    Matched MeSH terms: Solvents/pharmacology*
  7. Ang HH, Lee KL
    J Basic Clin Physiol Pharmacol, 2002;13(3):249-54.
    PMID: 12670032 DOI: 10.1515/jbcpp.2002.13.3.249
    The effect of increasing doses of various fractions of Eurycoma longifolia Jack extracts on libido was examined in middle-aged male rats. The results showed that a high dose (800 mg/kg) of all E. longifolia Jack extracts significantly increased mount frequency (MF) (P < 0.05) over that of untreated controls, but had no effect on the frequency of intromission or ejaculation. Methanol, chloroform, water, and butanol fractions exhibited MF of 2.5 +/- 0.1, 2.6 +/- 0.3, 2.5 +/- 0.1 and 2.6 +/- 0.2, respectively, in adult, middle-aged male rats, and retired breeders versus 2.3 +/- 0.1 in untreated controls. This translated to a minor increase in MF of 8.7%, 13.0%, 8.7%, and 13.0% for these fractions, respectively, during the 20-minute observation period. The results of this study show that E. longifolia Jack extracts can increase libido in middle-aged male rats.
    Matched MeSH terms: Solvents
  8. Anis SN, Nurhezreen MI, Sudesh K, Amirul AA
    Appl Biochem Biotechnol, 2012 Jun;167(3):524-35.
    PMID: 22569781 DOI: 10.1007/s12010-012-9677-9
    A simple, efficient and economical method for the recovery of P(3HB-co-3HHx) was developed using various chemicals and parameters. The initial content of P(3HB-co-3HHx) in bacterial cells was 50-60 wt%, whereas the monomer composition of 3HHx used in this experiments was 3-5 mol%. It was found that sodium hydroxide (NaOH) was the most effective chemical for the recovery of biodegradable polymer. High polyhydroxyalkanoate purity and recovery yield both in the range of 80-90 wt% were obtained when 10-30 mg/ml of cells were incubated in NaOH at the concentration of 0.1 M for 60-180 min at 30 °C and polished using 20 % (v/v) of ethanol.
    Matched MeSH terms: Solvents/chemistry
  9. Anisuzzaman, S.M., Krishnaiah, D., Bono, A., Lahin, F.A., Suali, E., Zuyyin, I.A.Z.
    MyJurnal
    In this study, simulation and optimisation of the purification of bioethanol from an azeotropic mixture was done using the Aspen HYSYS and the Response Surface Methodology (RSM), respectively, to achieve an acceptable bioethanol content with minimal energy use. The objective of this study is to develop the simulation process of bioethanol production from a fermentation effluent. Additionally, the effects of parameters such as solvent temperature, number of entrainer feed stage, mass flow rate and third components of the process for production of bioethanol were studied. As bioethanol is a product of biofuel production, the main challenge facing bioethanol production is the separation of high purity ethanol. However, the separation of ethanol and water can be achieved with the addition of a suitable solvent such as 1,3-butylene glycol (13C4Diol), mixture 13C4Diol and ethylene glycol (EGlycol) and mixture 13C4Diol and glycol ethyl ether (DEG) in the extractive distillation process. For the 13C4Diol mixture, the temperature of entrainer is 90oC with 1500 kg/hr of entrainer rate, while the number of entrainer feed stage is one. The optimum conditions for mixture 13C4Diol and EGlycol require a temperature of entrainer of 90.77oC with an entrainer rate of 1500 kg/hr, while the number of entrainer feed stage is one. Lastly, for optimum conditions for the mixture 13C4Diol and DEG, the temperature of entrainer should be 90oC with an entrainer rate of 1564.04 kg/hr, while the number of entrainer feed stage is one. This study shows that process simulation and optimisation can enhance the removal of water from an azeotropic mixture.
    Matched MeSH terms: Solvents
  10. Aniza Omar, Ainnur Sherene Kamisan, Muhd Zu Azhan bin Yahya, Siti Zafirah Zainal Abidin, Ab Malik Marwan Ali, Siti Irma Yuana Saaid
    MyJurnal
    Magnesium-based polymer gel electrolytes consist of magnesium triflate (MgTf) salt, a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) solvents as well as cellulose acetate as a polymeric agent were prepared via direct dissolution method. The highest ionic conductivity obtained for MgTf-EC:DEC(1:1) liquid electrolytes was 2.66 x 10-3 S cm-1 and enhanced to 2.73 x 10-3 S cm-1 with the addition of cellulose acetate. These results were in agreement with the activation energy obtained with the lowest value of 0.11. The best explanation on the enhancement in ionic conductivity of PGE is due to the “breathing polymeric chain model”. The plots of conductivity-temperature shown to obey an Arrhenius rule. The electrical properties of the sample with the highest conductivity were analyzed using electrical permittivity-based frequency and temperature dependence in the range of 100 Hz - 1 MHz and 303-373K, respectively. The variation in dielectric permittivity (εr and εi) as a function of frequency at different temperatures exhibited decays at higher frequencies and a dispersive behavior at low frequencies. Based on the observed electrical properties, it can be inferred that this polymer gel electrolyte could be a promising candidate as an electrolyte in electrochemical devices.
    Matched MeSH terms: Solvents
  11. Anuar N, Mohd Adnan AF, Saat N, Aziz N, Mat Taha R
    ScientificWorldJournal, 2013;2013:810547.
    PMID: 24174918 DOI: 10.1155/2013/810547
    Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R (2) = 0.972) were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL) solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R (2) = 0.954) were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL) solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit.
    Matched MeSH terms: Solvents
  12. Anusha B, Purushotman R, Lina LC, Avatar S
    Med J Malaysia, 2012 Apr;67(2):212-3.
    PMID: 22822647 MyJurnal
    Superglue in the ear as a foreign body is an uncommon presentation. We report the case of a lady who accidentally instilled superglue directly onto her tympanic membrane and presented five days later. We successfully removed the glue with acetone and managed to preserve the integrity of the tympanic membrane.
    Matched MeSH terms: Solvents/administration & dosage*
  13. Ariffin NHM, Hasham R, Hamzah MAAM, Park CS
    Fitoterapia, 2024 Jan;172:105755.
    PMID: 38000761 DOI: 10.1016/j.fitote.2023.105755
    Ficus deltoidea was known for its potent antioxidant, anti-melanogenic and photoprotective skin barrier activities. These properties are contributed by its biomarkers which are vitexin and isovitexin. This study aims to optimize the yield of methanolic extraction of Ficus deltoidea leaves (EFD) and evaluate their effects on skin barrier function and hydration. For optimization, Box-Behnken design was utilized to investigate the effects of methanol concentration, sonication time, and solvent-to-sample ratio on the yields of vitexin and isovitexin in EFD. The optimal yields obtained were 32.29 mg/g for vitexin and 35.87 mg/g for isovitexin. The optimum extraction conditions were 77.66% methanol concentration, 20.03 min sonication time, and 19.88 mL/g solvent-to-sample ratio. The quantitative real-time polymerase chain reaction was utilized to measure variant marker genes of transglutaminase-1, caspase 14, ceramide synthase 3, involucrin, and filaggrin of EFD-induced keratinocyte differentiation by in vitro study. Exposure to EFD has elevated the mRNA levels of all tested marker genes by 0.7-9.2 folds. Then, in vivo efficacy study was conducted on 20 female subjects for 14 days to evaluate skin biophysical assessment of hydration. EFD topical formulation treatment successfully increased skin hydration on day 7 (43.74%) and day 14 (47.23%). In silico study by molecular docking was performed to identify intermolecular binding interactions of vitexin and isovitexin with the interested proteins of tested marker genes. The result of molecular docking to the interested proteins revealed a similar trend with real-time PCR data. In conclusion, EFD potentially enhanced the skin barrier function and hydration of human skin cells.
    Matched MeSH terms: Solvents
  14. Ariffin, A., Khan, M.N., Sim, Y.L.
    ASM Science Journal, 2008;2(1):83-92.
    MyJurnal
    The rate of aqueous cleavage of N-(2’-hydroxyphenyl)phthalimide (A), monitored at 320 nm, 1.0  10–3 M NaOH, 35ºC and within CH3CN content range 1% – 80% v/v in mixed aqueous solvents, follows the reaction scheme: A + HO-/H2O ➝ B + HO-/H2O ➝ P1 + P2 where B, P1 and P2 represent N-(2’-hydroxyphenyl)phthalamic acid, phthalic acid and 2-hydroxyaniline, respectively. The values of k1 and k2 at different content of CH3CN have been calculated from a kinetic equation based upon a reaction scheme with two irreversible pseudo-first-order consecutive reaction paths. The values of k1/k2 are > 104 within CH3CN content range 1% – 80% v/v in mixed aqueous solvents. The intermediate hydrolysis product (B) exists in 72% dianionic, 27.9% monoanionic and 0.1% nonionic form under the present experimental conditions. Both dianionic and monoanionic forms of B are non-reactive while the nonionic form of B is reactive towards hydrolysis under such conditions.
    Matched MeSH terms: Solvents
  15. Arifin K, Daud WR, Kassim MB
    PMID: 24508875 DOI: 10.1016/j.saa.2013.12.107
    Bis(dithiolene) tungsten carbonyl complex, W(S2C2Ph2)2(CO)2 was successfully synthesized and the structure, frontier molecular orbital and optical properties of the complex were investigated theoretically using density functional theory calculations. The investigation started with a molecular structure construction, followed by an optimization of the structural geometry using generalized-gradient approximation (GGA) in a double numeric plus polarization (DNP) basis set at three different functional calculation approaches. Vibrational frequency analysis was used to confirm the optimized geometry of two possible conformations of [W(S2C2Ph2)2(CO)2], which showed distorted octahedral geometry. Electronic structure and optical characterization were done on the ground states. Metal to ligand and ligand to metal charge transfer were dominant in this system.
    Matched MeSH terms: Solvents/chemistry
  16. Arumugham T, K R, Hasan SW, Show PL, Rinklebe J, Banat F
    Chemosphere, 2021 May;271:129525.
    PMID: 33445028 DOI: 10.1016/j.chemosphere.2020.129525
    Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.
    Matched MeSH terms: Solvents
  17. Arzmi MH, John A, Rismayuddin NAR, Kenali NM, Darnis DS
    Data Brief, 2021 Apr;35:106769.
    PMID: 33537383 DOI: 10.1016/j.dib.2021.106769
    Deer antler velvet (DAV) has been traditionally used in Chinese medicine, including treatment on toothache [1]. Due to its rapid and regenerative capacity, deer antlers were proposed to be the good model for bone remodelling in mammals [2]. The data presented in this work is on the liquid chromatography and mass spectrometry (LC-MS) profile and bioactive potential of Malayan deer antler velvet (DAV) on different Candida species that has clinical importance. Aqueous extraction of DAV samples was subjected to Liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) profiling. Reverse phase (RP) separation was used due to the process extraction using water as a solvent to separate polar compound. The data was interpreted using Profile Analysis 2.1V. The DAV samples were also tested for the effect on the biofilm formation of seven Candida species in a 96 well plate [3]. The biofilms were developed for 72 h in aerobic environment. Following that, the biofilms biomass was determined using crystal violet assay.
    Matched MeSH terms: Solvents
  18. Ashraf K, Halim H, Lim SM, Ramasamy K, Sultan S
    Saudi J Biol Sci, 2020 Jan;27(1):417-432.
    PMID: 31889866 DOI: 10.1016/j.sjbs.2019.11.003
    Background: Medicinal plants are important source of drugs with pharmacological activities. Therefore, there is always rising demands to discover more therapeutic agents from various species. Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea are high valued medicinal plants of Malaysia contain rich source of phenolic and flavonoid compounds. The aims of the present study were to evaluate anti-oxidant, antimicrobial and anti-proliferative effects on A549, HeGP2 and MCF7 cell lines of four different extracts of Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea.

    Methodology: The leaves of all selected plants were extracted with methanol, chloroform, ethyl acetate and butanol separately with simple cold maceration. Antioxidant activity of all crude extracts were quantitatively measured against DPPH and Ferric Reducing Assay. Antimicrobial evaluation was done by Microdilution and MTT assay and antipoliferative activity of all extracts of selected plant were evaluated against A549, HePG2 and MCF7 cell lines.

    Results: Results showed that methanol extract exhibited highest percentage free radical scavenging activity of almost all extracts of selected plants. Antimicrobials results showed chloroform and methanol extracts of O. stamineus extract were the two most active extracts against resistant MRSA but not S. aureus. Only methanol extract of G. procumbens showed antimicrobial activity against the tested pathogens. Chloroform and methanol extracts of F. deltoidea elicited antimicrobial activity against S. aureus but not MRSA. Antiproliferative activity against three tested cell lines results showed that ethyl acetate extract of O. stamineus showed good effect whereas methanol extract of F. deltoidea and G. procumbens exhibited good antiproliferative activity.

    Conclusions: The results of the present investigation demonstrated significant variations in the antioxidant, antimicrobial and antiproliferative effects of different solvent extracts. These data could be helpful in isolation of pure potent compounds with good biological activities from the extracts of plants.

    Matched MeSH terms: Solvents
  19. Asiri SM, Shaari K, Abas F, Al-Mekhlafi NA, Lajis NH
    Nat Prod Commun, 2012 Oct;7(10):1333-6.
    PMID: 23157003
    Two new naphthoquinones designated as 3alpha-hydroxy-2-(2-hydroxypropan-2-yI)-9alpha-methoxy-2,3,3alpha,9alpha-tetra-hydronaphtho[2,3-b]furan-4,9-dione (callicarpa-quinone A, 1) and 5-hydroxy-2-(2-hydroxypropan-2-yl)naphtho[2,3-b]furan-4,9-dione (callicarpaquinone B, 2) were isolated from the chloroform fraction of Callicarpa maingayi. Three other known compounds, identified as avicequinone-C (3), wodeshiol (4) and paulownin (5), were reported for the first time from this species. The structure elucidation of compounds was established by comprehensive 1D and 2D NMR spectroscopic analyses as well as EIMS, UV and IR spectral data. Compounds 1 and 2 were tested in vitro for their cytotoxic activity against human breast cancer MCF-7cells. Compound 2 exhibited strong cytotoxic activity with an IC50 value of 1.9 +/- 0.2 microM, while 1 showed moderate activity with an IC50 value of 25.0 +/- 4.3 microM.
    Matched MeSH terms: Solvents
  20. Aslam A, Nokhala A, Peerzada S, Ahmed S, Khan T, Siddiqui MJ
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S777-S780.
    PMID: 33828377 DOI: 10.4103/jpbs.JPBS_243_19
    Aims and Objectives: The present study was aimed to evaluate the antiinflammatory effect of different seed extracts of Trachyspermum ammi at different doses.

    Materials and Methods: Three different seed extracts were prepared through Soxhlet extraction method by using n-hexane, chloroform and methanol solvents. Acute toxicity test performed at dose of 400 mg/ kg, 800 mg/kg, 1600 mg/kg and 3200 mg/kg. Two different strengths of seed extracts (minimum therapeutic dose of 500 mg/kg and maximum therapeutic dose of 1000 mg/kg) were given to Wistar rats to measure anti-inflammatory activity through Carrageenan induced paw edema method.

    Results: The standard drug diclofenac sodium was (percentage of inhibition of paw edema 29.68%) more effective as compared to test drug. When efficacy of all extracts compared with each other, n-hexane extract showed more anti-inflammatory effect (percentage inhibition of paw edema 22.21%) at maximum effective dose 1000 mg/kg.

    Conclusion: Seed extracts of T. ammi showed anti-inflammatory activity by potentiating the neurotransmission of GABA and also by repression glutamate receptor.

    Matched MeSH terms: Solvents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links