Displaying publications 61 - 80 of 3940 in total

Abstract:
Sort:
  1. AbdulKadir WAFW, Ahmad AL, Boon Seng O
    Membranes (Basel), 2021 Mar 23;11(3).
    PMID: 33807017 DOI: 10.3390/membranes11030228
    The hydrophobic membranes have been widely explored to meet the membrane characteristics for the membrane distillation (MD) process. Inorganic metal oxide nanoparticles have been used to improve the membrane hydrophobicity, but limited studies have used nano clay particles. This study introduces halloysite nanotube (HNT) as an alternative material to synthesis a hydrophobic poly(vinylidene fluoride) (PVDF)-HNT membrane. The PVDF membranes were fabricated using functionalized HNTs (e.g., carnauba wax and 1H,1H,2H,2H-perfluorooctyl-trichlorosilane (FOTS)). The results were determined by Fourier transform infrared-attenuated total reflection, scanning electron microscope, goniometer and porometer to determine the desired hydrophobic membrane for direct contact membrane distillation (DCMD). The addition of FOTS-HNT (fs-HNT) and carnauba wax-HNT (fw-HNT) in the PVDF membrane enhanced the water contact angle (CA) to 127° and 137°, respectively. The presence of fw-HNT in the PVDF membrane exhibited higher liquid entry pressure (LEP) (2.64 bar) compared to fs-HNT in the membrane matrix (1.44 bar). The PVDF/fw-HNT membrane (Pfw-HNT) obtained the highest flux of 7.24 L/m2h with 99.9% salt removal. A stable permeability in the Pfw-HNT membrane was obtained throughout 16 h of DCMD. The incorporation of fw-HNT in the PVDF membrane had improved the anti-wetting properties and the membrane performance with the anti-fouling effect.
    Matched MeSH terms: Water
  2. Abdulbari HA, Basheer EAM
    Sci Rep, 2019 08 29;9(1):12576.
    PMID: 31467344 DOI: 10.1038/s41598-019-49071-7
    Directional solvent extraction is one of the promising membrane-less seawater desalination method. This technique was not extensively investigated due the poor mixing and separation performances of its bench-scale system. It is believed that, overcoming these drawbacks is possible now with the rapid development of microfluidics technology that enabled high-precession micro mixing and separation. This work presents microfluidics chip for extracting and separating salt from seawater. The chip was designed with two sections for extraction and separation. In both sections, the liquids were separated using capillary channels perpendicular to the main stream. The main channels were designed to be 400 µm in width and 100 µm in height. Two streams inlets were introduced through a Y-junction containing octanoic acid as the organic phase and saltwater as the aqueous phase. The desalination performance was investigated at four different temperatures and five different solvent flow rates. Water product salinity was recorded to be as low as 0.056% (w/w) at 60 °C and 40 mL/h. A maximum water yield of 5.2% was achieved at 65 °C and 40 mL/h with a very low solvent residual (70 ppm). The chip mass transfer efficiency was recorded to be as high as 68% under similar conditions. The fabricated microfluidic desalination system showed a significant improvement in terms of water yield and separation efficiency over the conventional macroscale. The high performance of this microsystem resulted from its ability to achieve a high mixing efficiency and separate phases selectively and that will provide a good platform in the near future to develop small desalination kits for personal use.
    Matched MeSH terms: Saline Waters; Seawater; Water
  3. Abdulhameed AS, Wu R, Musa SA, Agha HM, ALOthman ZA, Jawad AH, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128267.
    PMID: 37992917 DOI: 10.1016/j.ijbiomac.2023.128267
    In this study, chitosan/nano SiO2 (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.
    Matched MeSH terms: Water Pollutants, Chemical*
  4. Abdullah AC, Adnan JS, Rahman NA, Palur R
    Malays J Med Sci, 2017 Mar;24(1):104-112.
    PMID: 28381933 DOI: 10.21315/mjms2017.24.1.11
    INTRODUCTION: Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view.

    AIM: To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom).

    METHODS: This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey-white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9.

    RESULTS: HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 (Z = -5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey-white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 (Z = -4.24) at the centrum semiovale, 8.93 versus 8.18 (Z = -5.32) at the basal ganglia and 8.79 versus 8.06 (Z = -4.93) at the middle cerebellar peduncles. All results were significant with P-value < 0.01.

    CONCLUSIONS: Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the former. However, HUs of the images produced by CereTom do fulfil the recommendation of the ACR.

    Matched MeSH terms: Water
  5. Abdullah AH, Abdullah EA, Zainal Z, Hussein MZ, Ban TK
    Water Sci Technol, 2012;65(9):1632-8.
    PMID: 22508126 DOI: 10.2166/wst.2012.057
    The adsorption of methyl orange dye from aqueous solution onto penta-bismuth hepta-oxide nitrate, Bi(5)O(7)NO(3), synthesized by precipitation method, was studied in a batch adsorption system. The effects of operation parameters such as adsorbent dose, initial dye concentration, pH and temperature were investigated. The adsorption equilibrium and mechanism of adsorption was evaluated by Langmuir and Freundlich isotherm and different kinetic models, respectively. The results indicate that adsorption is highly dependent on all operation parameters. At optimum conditions, the adsorption capacity was found to be 18.9 mg/g. The adsorption data fits well with the Langmuir isotherm model indicating monolayer coverage of adsorbate molecules on the surface of Bi(5)O(7)NO(3). The kinetic studies show that the adsorption process is a second-order kinetic reaction. Although intra-particle diffusion limits the rate of adsorption, the multi-linearity plot of intra-particle model shows the importance of both film and intra-particle diffusion as the rate-limiting steps of the dye removal. Thermodynamic parameters show that the adsorption process is endothermic, spontaneous and favourable at high temperature.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification
  6. Abdullah AR, Sinnakkannu S, Tahir NM
    Bull Environ Contam Toxicol, 2001 Jun;66(6):762-9.
    PMID: 11353379
    Matched MeSH terms: Water Pollutants/analysis
  7. Abdullah AR, Woon WC, Bakar RA
    Bull Environ Contam Toxicol, 1996 Jul;57(1):155-62.
    PMID: 8661474
    Matched MeSH terms: Water Pollutants, Chemical/metabolism*
  8. Abdullah AR, Tahir NM, Wei LK
    Bull Environ Contam Toxicol, 1994 Oct;53(4):618-26.
    PMID: 8000192
    Matched MeSH terms: Water Pollutants/analysis*
  9. Abdullah AZ, Ling PY
    J Hazard Mater, 2010 Jan 15;173(1-3):159-67.
    PMID: 19740600 DOI: 10.1016/j.jhazmat.2009.08.060
    The ambient sonocatalytic degradation of congo red, methyl orange, and methylene blue by titanium dioxide (TiO(2)) catalyst at initial concentrations between 10 and 50mg/L, catalyst loadings between 1.0 and 3.0mg/L and hydrogen peroxide (H(2)O(2)) concentrations up to 600 mg/L is reported. A 20 kHz ultrasonic processor at 50 W was used to accelerate the reaction. The catalysts were exposed to heat treatments between 400 and 1000 degrees C for up to 4h to induce phase change. Sonocatalysts with small amount of rutile phase showed better sonocatalytic activity but excessive rutile phase should be avoided. TiO(2) heated to 800 degrees C for 2h showed the highest sonocatalytic activity and the degradation of dyes was influenced by their chemical structures, chemical phases and characteristics of the catalysts. Congo red exhibited the highest degradation rate, attributed to multiple labile azo bonds to cause highest reactivity with the free radicals generated. An initial concentration of 10mg/L, 1.5 g/L of catalyst loading and 450 ppm of H(2)O(2) gave the best congo red removal efficiency of above 80% in 180 min. Rate coefficients for the sonocatalytic process was successfully established and the reused catalyst showed an activity drop by merely 10%.
    Matched MeSH terms: Water; Water Purification
  10. Abdullah F, Sina I, Fauzee F
    Pak J Biol Sci, 2008 Nov 01;11(21):2478-83.
    PMID: 19205267
    An assemblage of beetle specimens from family Carabidae (ground beetles) was carried out at Kenyir water catchment as an indicator to measure disturbance. The samplings were conducted from 30th July to 1st August 2007 at limestone forest of Teluk Bewah and the dipterocarp forest of Sungai Cicir. 28 individuals from 13 species were collected from Teluk Bewah whereas 54 individuals from ten species was sampled from Sungai Cicir. The carabids were more specious (Simpson Diversity index: 0.97) and more abundant (Margalef index: 5.35) at Teluk Bewah compared to Sungai Cicir (Simpson Diversity index, 0.72: Margalefindex, 2.22). Light trapping was most efficient assembling 97.56% of ground beetles compared to Malaise trap, pitfall and net sweeping. This is the first record of beetle assemblage at Kenyir water catchment, Malaysia. New records for Kenyir, Terengganu, Malaysia are Abacetus sp. 1, Abacetus sp. 2, Acupalpus rectifrotis, Aephnidius adelioides, Dischissus notulatus, Dolichoctis sp., Dolichoctis sp. 2, Dolichoctis straitus, Ophinoea bimaculata, Perigona sp., Pheropsophus piciccollis, Pheropsophus occipitalis, Stenolophus quinquepustulatus, Stenolophus smaragdulus, Stenolophus sp., Tachys coracinus, Casnoidea sp., Orthogonius sp. Seven species coded as Cara C, Cara J, Cara M, Cara N, Cara O, Cara R and Cara S were unidentified and are probably new species to be described in another report. There is moderately high diversity (Simpson Diversity index: 0.846) of Carabidae indicating that ecotourism does not affect diversity of ground beetle at Kenyir Lake.
    Matched MeSH terms: Water/metabolism*
  11. Abdullah FH, Abu Bakar NHH, Abu Bakar M
    J Hazard Mater, 2021 03 15;406:124779.
    PMID: 33338763 DOI: 10.1016/j.jhazmat.2020.124779
    Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.
    Matched MeSH terms: Water Purification*
  12. Abdullah FH, Bakar NHHA, Bakar MA
    J Hazard Mater, 2022 Feb 15;424(Pt B):127416.
    PMID: 34655867 DOI: 10.1016/j.jhazmat.2021.127416
    Industrial wastewaters contain hazardous contaminants that pollute the environment and cause socioeconomic problems, thus demanding the employment of effective remediation procedures such as photocatalysis. Zinc oxide (ZnO) nanomaterials have emerged to be a promising photocatalyst for the removal of pollutants in wastewater owing to their excellent and attractive characteristics. The dynamic tunable features of ZnO allow a wide range of functionalization for enhanced photocatalytic efficiency. The current review summarizes the recent advances in the fabrication, modification, and industrial application of ZnO photocatalyst based on the analysis of the latest studies, including the following aspects: (1) overview on the properties, structures, and features of ZnO, (2) employment of dopants, heterojunction, and immobilization techniques for improved photodegradation performance, (3) applicability of suspended and immobilized photocatalytic systems, (4) application of ZnO hybrids for the removal of various types of hazardous pollutants from different wastewater sources in industries, and (5) potential of bio-inspired ZnO hybrid nanomaterials for photocatalytic applications using renewable and biodegradable resources for greener photocatalytic technologies. In addition, the knowledge gap in this field of work is also highlighted.
    Matched MeSH terms: Waste Water
  13. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification; Water Pollutants, Chemical/chemistry; Waste Water/chemistry*
  14. Abdullah MF, Azfaralariff A, Lazim AM
    J Biomater Sci Polym Ed, 2018 10;29(14):1745-1763.
    PMID: 29989528 DOI: 10.1080/09205063.2018.1489023
    This research aims to compare the ability of smart hydrogel in removing the methylene blue prepared by using two different radiation methods. The extracted pectin from the dragon fruit peel (Hylocereus polyrhizus) was used with acrylic acid (AA) to produce a polymerized hydrogel through gamma and microwave radiation. The optimum hydrogel swelling capacity was obtained by varying the dose of radiation, pectin to AA ratio and pH used. From the array of samples, the ideal hydrogel was obtained at pH 8 with a ratio of 2:3 (pectin: AA) using 10 kGy and 400 W radiated gamma and microwave respectively. The performance of both hydrogels namely as Pc/AA(G) (gamma) and Pc/AA(Mw) (microwave) were investigated using methylene blue (MB) adsorption studies. In this study, three variables were manipulated, pH and MB concentration and hydrogel mass in order to find the optimum condition for the adsorption. Results showed that 20 mg of Pc/AA(G) performed the highest MB removal which was about 45% of 20 mg/L MB at pH 8. While 30 mg of Pc/AA(Mw) able to remove up to 35% of 20 mg/L MB at the same pH condition. To describe the adsorption mechanism, both kinetic models pseudo-first-order, pseudo-second-order were employed. The results from kinetic data showed that it fitted the pseudo-first-order as compared to pseudo-second-order model equation. This study provides alternative of green, facile and affective biomaterial for dye absorbents that readily available.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*
  15. Abdullah MM, Jamaludin L, Hussin K, Bnhussain M, Ghazali CM, Ahmad MI
    Int J Mol Sci, 2012;13(4):4388-95.
    PMID: 22605984 DOI: 10.3390/ijms13044388
    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.
    Matched MeSH terms: Water/chemistry
  16. Abdullah MP, Yew CH, Ramli MS
    Water Res, 2003 Nov;37(19):4637-44.
    PMID: 14568050
    A modeling procedure that predicts trihalomethane (THM) formation from field sampling at the treatment plant and along its distribution system using Tampin district, Negeri Sembilan and Sabak Bernam district, Selangor as sources of data were studied and developed. Using Pearson method of correlation, the organic matter measured as TOC showed a positive correlation with formation of THM (r=0.380,P=0.0001 for Tampin and r=0.478,P=0.0001 for Sabak Bernam). Similar positive correlation was also obtained for pH in both districts with Tampin (r=0.362,P=0.0010) and Sabak Bernam (r=0.215,P=0.0010). Chlorine dosage was also found to have low correlation with formation of THM for the two districts with Tampin (r=0.233,P=0.0230) and Sabak Bernam (r=0.505,P=0.0001). Distance from treatment plant was found to have correlation with formation of THM for Tampin district with r=0.353 and P=0.0010. Other parameters such as turbidity, ammonia, temperature and residue chlorine were found to have no correlation with formation of THM. Linear and non-linear models were developed for these two districts. The results obtained were validated using three different sets of field data obtained from own source and district of Seremban (Pantai and Sg. Terip), Negeri Sembilan. Validation results indicated that there was significant difference in the predictive and determined values of THM when two sets of data from districts of Seremban were used with an exception of field data of Sg. Terip for non-linear model developed for district of Tampin. It was found that a non-linear model is slightly better than linear model in terms of percentage prediction errors. The models developed were site specific and the predictive capabilities in the distribution systems vary with different environmental conditions.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Purification/methods*
  17. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
    Matched MeSH terms: Waste Water/analysis*
  18. Abdullah N, Fulazzaky MA, Yong EL, Yuzir A, Sallis P
    J Environ Manage, 2016 Mar 1;168:273-9.
    PMID: 26760229 DOI: 10.1016/j.jenvman.2015.12.015
    The treatment of high-strength organic brewery wastewater with added acetaminophen (AAP) by an anaerobic digester was investigated. An anaerobic packed-bed reactor (APBR) was operated as a continuous process with an organic loading rate of 1.5-g COD per litre per day and a hydraulic retention time of three days. The results of steady-state analysis showed that the greatest APBR performances for removing COD and TOC were as high as 98 and 93%, respectively, even though the anaerobic digestibility after adding the different AAP concentrations of 5, 10 and 15 mg L(-1) into brewery wastewater can affect the efficiency of organic matter removal. The average CH4 production decreased from 81 to 72% is counterbalanced by the increased CO2 production from 11 to 20% before and after the injection of AAP, respectively. The empirical kinetic models for substrate utilisation and CH4 production were used to predict that, under unfavourable conditions, the performance of the APBR treatment process is able to remove COD with an efficiency of only 6.8%.
    Matched MeSH terms: Waste Water
  19. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Pollutants, Chemical/chemistry; Water Purification/methods
  20. Abdullah NA, Asri LN, Husin SM, Shukor AM, Darbis NDA, Ismail K, et al.
    Environ Monit Assess, 2021 Sep 07;193(10):634.
    PMID: 34491451 DOI: 10.1007/s10661-021-09426-y
    We studied the water quality of the riparian firefly sanctuary of Sungai Rembau, or Rembau River, in Negeri Sembilan, Malaysia, from January 2018 to November 2018 to determine the possible influence of the physico-chemical characteristics of the water on the firefly populations living within the sanctuary. We set up a total of five water quality sampling stations and 10 firefly sampling stations along the river. Dissolved oxygen (DO), temperature, pH and electrical conductivity (EC) were measured in situ, while chemical oxygen demand (COD), total suspended solids (TSS), biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N) were analysed in the laboratory. Firefly samples were collected using a sweep net at both day and night for 1 min. Sungai Rembau was categorized as Class II on the Malaysian water quality index (WQI), which indicates slight pollution. Except for EC and DO, the water quality parameter values were not significantly different (p > 0.05) between the sampling stations. A total of 529 firefly individuals consisting of Pteroptyx tener (n = 525, 99.24%), P. malaccae (n = 3, 0.57%) and P. asymmetria (n = 1, 0.19%) were collected. There was significant correlation between firefly abundance and BOD (r =  - 0.198, p 
    Matched MeSH terms: Water Quality
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links