Displaying publications 61 - 80 of 92 in total

Abstract:
Sort:
  1. Al-Mudaris ZA, Majid AS, Ji D, Al-Mudarris BA, Chen SH, Liang PH, et al.
    PLoS One, 2013;8(11):e80983.
    PMID: 24260527 DOI: 10.1371/journal.pone.0080983
    Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the anticancer activity of Bn1. The present study provides a new insight of benzyl vanillin derivatives as potential anti-leukemic agent.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  2. Fani S, Kamalidehghan B, Lo KM, Hashim NM, Chow KM, Ahmadipour F
    Drug Des Devel Ther, 2015;9:6191-201.
    PMID: 26648695 DOI: 10.2147/DDDT.S87064
    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  3. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Ashraf Abdullah A
    Eur J Med Chem, 2015 Jan 27;90:82-92.
    PMID: 25461313 DOI: 10.1016/j.ejmech.2014.11.005
    A series of benzimidazole-based N-heterocyclic carbene (NHC) proligands {1-benzyl-3-(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (1/4), 1,3-bis(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (2/5) and 1,3-bis(3-(2-methylbenzyl)-benzimidazolium-1-ylmethylbenzene dibromide/dihexafluorophosphate (3/6)} has been synthesized by the successive N-alkylation method. Ag complexes {1-benzyl-3-(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (7), 1,3-bis(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (8) and 1,3-bis(3-(2-methylbenzyl)-benzimidazol-2-ylidene)-1-ylmethylbenzene disilver(I) dihexafluorophosphate (9)} of NHC ligands have been synthesized by the treatment of benzimidazolium salts with Ag2O at mild reaction conditions. Both, NHC proligands and Ag-NHC complexes have been characterized by (1)H and (13)C{(1)H} NMR and FTIR spectroscopy and elemental analysis technique. Additionally, the structure of the NHC proligand 5 and the mononuclear Ag complexes 7 and 8 has been elucidated by the single crystal X-ray diffraction analysis. Both the complexes exhibit the same general structural motif with linear coordination geometry around the Ag centre having two NHC ligands. Preliminary in vitro antibacterial potentials of reported compounds against a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria evidenced the higher activity of mononuclear silver(I) complexes. The anticancer studies against the human derived colorectal cancer (HCT 116) and colorectal adenocarcinoma (HT29) cell lines using the MTT assay method, revealed the higher activity of Ag-NHC complexes. The benzimidazolium salts 4-6 and Ag-NHC complexes 7-9 displayed the following IC50 values against the HCT 116 and HT29 cell lines, respectively, 31.8 ± 1.9, 15.2 ± 1.5, 4.8 ± 0.6, 10.5 ± 1.0, 18.7 ± 1.6, 1.20 ± 0.3 and 245.0 ± 4.6, 8.7 ± 0.8, 146.1 ± 3.1, 7.6 ± 0.7, 5.5 ± 0.8, 103.0 ± 2.3 μM.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  4. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*
  5. Yoon YK, Ali MA, Wei AC, Shirazi AN, Parang K, Choon TS
    Eur J Med Chem, 2014 Aug 18;83:448-54.
    PMID: 24992072 DOI: 10.1016/j.ejmech.2014.06.060
    Two series of novel benzimidazole derivatives were designed, synthesized and evaluated for their SIRT1 and SIRT2 inhibitory activity. Among the newly synthesized compounds, compound 4j displayed the best inhibitory activity for SIRT1 (IC50 = 54.21 μM) as well as for SIRT2 (IC50 = 26.85 μM). Cell proliferation assay showed that compound 4j possessed good antitumor activity against three different types of cancer cells derived from colon (HCT-116), breast (MDA-MB-468) and blood-leukemia (CCRF-CEM) with cell viability of 40.0%, 53.2% and 27.2% respectively at 50 μM. Docking analysis of representative compound 4j into SIRT2 indicated that the interaction with receptor was primarily due to hydrogen bonding and π-π stacking interactions.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  6. Mai CW, Yaeghoobi M, Abd-Rahman N, Kang YB, Pichika MR
    Eur J Med Chem, 2014 Apr 22;77:378-87.
    PMID: 24675137 DOI: 10.1016/j.ejmech.2014.03.002
    In the present study, a series of 46 chalcones were synthesised and evaluated for antiproliferative activities against the human TRAIL-resistant breast (MCF-7, MDA-MB-231), cervical (HeLa), ovarian (Caov-3), lung (A549), liver (HepG2), colorectal (HT-29), nasopharyngeal (CNE-1), erythromyeloblastoid (K-562) and T-lymphoblastoid (CEM-SS) cancer cells. The chalcone 38 containing an amino (-NH2) group on ring A was the most potent and selective against cancer cells. The effects of the chalcone 38 on regulation of 43 apoptosis-related markers in HT-29 cells were determined. The results showed that 20 apoptotic markers (Bad, Bax, Bcl-2, Bcl-w, Bid, Bim, CD40, Fas, HSP27, IGF-1, IGFBP-4, IGFBP-5, Livin, p21, Survivin, sTNF-R2, TRAIL-R2, XIAP, caspase-3 and caspase-8) were either up regulated or down regulated.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  7. Khaledi H, Alhadi AA, Yehye WA, Ali HM, Abdulla MA, Hassandarvish P
    Arch Pharm (Weinheim), 2011 Nov;344(11):703-9.
    PMID: 21953995 DOI: 10.1002/ardp.201000223
    A new series of gallic hydrazones containing an indole moiety was synthesized through the reaction of gallic hydrazide and different indole carboxaldehydes. Their antioxidant activities were determined on DPPH radical scavenging and inhibition of lipid peroxidation. The in-vitro cytotoxic activities of the compounds were evaluated against HCT-116 (human colon cancer cell line) and MCF-7 (estrogen-dependent human breast cancer cell line) by the MTT method. An attempt to correlate the biological results with their structural characteristics has been done. A limited positive structure activity relationship was found between cytotoxic and antioxidant activities.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  8. Stone EL, Citossi F, Singh R, Kaur B, Gaskell M, Farmer PB, et al.
    Bioorg Med Chem, 2015 Nov 01;23(21):6891-9.
    PMID: 26474663 DOI: 10.1016/j.bmc.2015.09.052
    Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.7). Time-dependent appearance of γ-H2AX foci revealed subsequent DNA double strand breaks. Propensity for systemic toxicity of benzothiazoles steered development of prodrugs' hydrogels for localised delivery. Clinical applications of targeted therapies include prevention or treatment of recurrent disease after surgical resection of solid tumours. In vitro evaluation of 5F 203 prodrugs' activity demonstrated nanomolar potency against MCF-7 breast and IGROV-1 ovarian carcinoma cell lines.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*
  9. Nakagawa-Goto K, Chen JY, Cheng YT, Lee WL, Takeya M, Saito Y, et al.
    Mol Oncol, 2016 06;10(6):921-37.
    PMID: 27055598 DOI: 10.1016/j.molonc.2016.03.002
    Triple-negative breast cancer (TNBC) is associated with high grade, metastatic phenotype, younger patient age, and poor prognosis. The discovery of an effective anti-TNBC agent has been a challenge in oncology. In this study, fifty-eight ester derivatives (DETDs) with a novel sesquiterpene dilactone skeleton were organically synthesized from a bioactive natural product deoxyelephantopin (DET). Among them, DETD-35 showed potent antiproliferative activities against a panel of breast cancer cell lines including TNBC cell line MDA-MB-231, without inhibiting normal mammary cells M10. DETD-35 exhibited a better effect than parental DET on inhibiting migration, invasion, and motility of MDA-MB-231 cells in a concentration-dependent manner. Comparative study of DETD-35, DET and chemotherapeutic drug paclitaxel (PTX) showed that PTX mainly caused a typical time-dependent G2/M cell-cycle arrest, while DETD-35 or DET treatment induced cell apoptosis. In vivo efficacy of DETD-35 was evaluated using a lung metastatic MDA-MB-231 xenograft mouse model. DETD-35 significantly suppressed metastatic pulmonary foci information along with the expression level of VEGF and COX-2 in SCID mice. DETD-35 also showed a synergistic antitumor effect with PTX in vitro and in vivo. This study suggests that the novel compound DETD-35 may have a potential to be further developed into a therapeutic or adjuvant agent for chemotherapy against metastatic TNBC.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  10. Zahedifard M, Faraj FL, Paydar M, Looi CY, Hasandarvish P, Hajrezaie M, et al.
    Curr Pharm Des, 2015;21(23):3417-26.
    PMID: 25808938
    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*
  11. Abdelgawad MA, Bakr RB, Ahmad W, Al-Sanea MM, Elshemy HAH
    Bioorg Chem, 2019 11;92:103218.
    PMID: 31536956 DOI: 10.1016/j.bioorg.2019.103218
    To enhance the cytotoxicity of benzimidazole and/or benzoxazole core, the benzimidazole/benzoxazole azo-pyrimidine were synthesized through diazo-coupling of 3-aminophenybenzimidazole (6a) or 3-aminophenylbenzoxazole (6b) with diethyl malonate. The new azo-molanates 6a&b mixed with urea in sodium ethoxide to afford the benzimidazolo/benzoxazolopyrimidine 7a&b. The structure elucidation of new synthesized targets was proved using spectroscopic techniques NMR, IR and elemental analysis. The cytoxicity screening had been carried out against five cancer cell lines: prostate cancer (PC-3), lung cancer (A-549), breast cancer (MCF-7), pancreas cancer (PaCa-2) and colon cancer (HT-29). Furthermore, the antioxidant activity, phospholipase A2-V and cyclooxygenases inhibitory activities of the target compounds 7a&b were evaluated and the new compounds showed potent activity (cytotoxicity IC50 range from 4.3 to 9.2 µm, antioxidant activity from 40% to 80%, COXs or LOX inhibitory activity from 1.92 µM to 8.21 µM). The docking of 7a&b was made to confirm the mechanism of action.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  12. Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(7):609-621.
    PMID: 30526456 DOI: 10.2174/1389557519666181210162413
    BACKGROUND: A series of 6, 6'-(1,4-phenylene)bis(4-(4-bromophenyl)pyrimidin-2-amine) derivatives has been synthesized by Claisen-Schmidt condensation and its chemical structures was confirmed by FT-IR, 1H/13C-NMR spectral and elemental analyses. The molecular docking study was carried out to find the interaction between active bis-pyrimidine compounds with CDK-8 protein. The in vitro antimicrobial potential of the synthesized compounds was determined against Gram-positive and Gram-negative bacterial species as well fungal species by tube dilution technique. Antimicrobial results indicated that compound 11y was found to be most potent one against E. coli (MICec = 0.67 µmol/mL) and C. albicans (MICca = 0.17 µmol/mL) and its activity was comparable to norfloxacin (MIC = 0.47 µmol/mL) and fluconazole (MIC = 0.50 µmol/mL), respectively.

    CONCLUSION: Anticancer screening of the synthesized compounds using Sulforhodamine B (SRB) assay demonstrated that compounds 2y (IC50 = 0.01 µmol/mL) and 4y (IC50= 0.02 µmol/mL) have high antiproliferative potential against human colorectal carcinoma cancer cell line than the reference drug (5- fluorouracil) and these compounds also showed best dock score with better potency within the ATP binding pocket and may also be used lead for rational drug designing.

    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  13. Chin LF, Kong SM, Seng HL, Khoo KS, Vikneswaran R, Teoh SG, et al.
    J Inorg Biochem, 2011 Mar;105(3):339-47.
    PMID: 21421121 DOI: 10.1016/j.jinorgbio.2010.11.018
    The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)(2)(phen) 2, (phen=1,10-phenanthroline, ma(-)=maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  14. Von ST, Seng HL, Lee HB, Ng SW, Kitamura Y, Chikira M, et al.
    J Biol Inorg Chem, 2012 Jan;17(1):57-69.
    PMID: 21833656 DOI: 10.1007/s00775-011-0829-0
    By inhibiting only two or three of 12 restriction enzymes, the series of [M(phen)(edda)] complexes [M(II) is Cu, Co, Zn; phen is 1,10-phenanthroline; edda is N,N'-ethylenediaminediacetate] exhibit DNA binding specificity. The Cu(II) and Zn(II) complexes could differentiate the palindromic sequences 5'-CATATG-3' and 5'-GTATAC-3', whereas the Co(II) analogue could not. This and other differences in their biological properties may arise from distinct differences in their octahedral structures. The complexes could inhibit topoisomerase I, stabilize or destabilize G-quadruplex, and lower the mitochondrial membrane potential of MCF7 breast cells. The pronounced stabilization of G-quadruplex by the Zn(II) complex may account for the additional ability of only the Zn(II) complex to induce cell cycle arrest in S phase. On the basis of the known action of anticancer compounds against the above-mentioned individual targets, we suggest the mode of action of the present complexes could involve multiple targets. Cytotoxicity studies with MCF10A and cisplatin-resistant MCF7 suggest that these complexes exhibit selectivity towards breast cancer cells over normal ones.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  15. Ooi KK, Yeo CI, Ang KP, Akim AM, Cheah YK, Halim SN, et al.
    J Biol Inorg Chem, 2015 Jul;20(5):855-73.
    PMID: 26003312 DOI: 10.1007/s00775-015-1271-5
    The phosphanegold(I) carbonimidothioates, Ph3PAu{SC(OR)=NC6H4Me-4} for R = Me (1), Et (2) and iPr (3), feature linear P-Au-S coordination geometries and exhibit potent in vitro cytotoxicity against HT-29 colon cancer cells in both monolayer and multi-cellular spheroid models (e.g., IC50 = 11.9 ± 0.4 and 20.3 ± 0.3 μM for 2, respectively). Both intrinsic and extrinsic pathways of apoptosis are demonstrated by human apoptosis PCR array analysis, caspase activities, DNA fragmentation and cell apoptotic assays. Compounds 1-3 induce an extrinsic pathway that leads to down-regulation of NFκB. Compound 2 also exhibits an extrinsic apoptotic pathway involving the activation of both p53 and p73, whereas 3 activates p53 only. Lys48- and Lys63-linked polyubiquitination are also promoted by 1-3. Each of cytotoxic Ph3PAu{SC(OR)=NC6H4Me-4}, for R = Me (1), Et (2) and iPr (3), induce an intrinsic apoptotic pathway as well as an extrinsic pathway leading to down-regulation of NFκB. Lys48- and Lys63-linked polyubiquitination are promoted by 1-3 and these are able to inhibit cell invasion and to suppress the activity of TrxR.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  16. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2020;20(15):1559-1571.
    PMID: 30179132 DOI: 10.2174/1389557518666180903151849
    BACKGROUND: Various analogues of benzimidazole are found to be biologically and therapeutically potent against several ailments. Benzimidazole when attached with heterocyclic rings has shown wide range of potential activities. So, from the above provided facts, we altered benzimidazole derivatives so that more potent antagonists could be developed. In the search for a new category of antimicrobial and anticancer agents, novel azomethine of 2-mercaptobenzimidazole derived from 3-(2- (1H-benzo[d]imidazol-2-ylthio)acetamido)benzohydrazide were synthesized.

    RESULTS AND DISCUSSION: The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug.

    CONCLUSION: In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.

    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*
  17. Verma R, Bairy I, Tiwari M, Bhat GV, Shenoy GG
    Mol Divers, 2019 Aug;23(3):541-554.
    PMID: 30430400 DOI: 10.1007/s11030-018-9889-1
    A series of novel 2-amino-4-(3-hydroxy-4-phenoxyphenyl)-6-(4-substituted phenyl) nicotinonitriles were synthesized and evaluated against HepG2, A-549 and Vero cell lines. Compounds 3b (IC50 16.74 ± 0.45 µM) and 3p (IC50 10.57 ± 0.54 µM) were found to be the most active compounds against A-549 cell line among the evaluated compounds. Further 3b- and 3p-induced apoptosis was characterized by AO/EB (acridine orange/ethidium bromide) nuclear staining method and also by DNA fragmentation study. A decrease in cell viability and initiation of apoptosis was clearly evident through the morphological changes in the A-549 cells treated with 3b and 3p when stained with this method. Fragmentation of DNA into nucleosomes was observed which further confirmed the cell apoptosis in cells treated with compound 3b. Flow cytometry studies confirmed the cell cycle arrest at G2/M phase in A549 cells treated with compound 3b. Further in silico studies performed supported the in vitro anticancer activity of these compounds as depicted by dock score and binding energy values.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*
  18. Monika, Sharma A, Suthar SK, Aggarwal V, Lee HB, Sharma M
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3814-8.
    PMID: 25027934 DOI: 10.1016/j.bmcl.2014.06.068
    The new series of pentacyclic triterpenoids reduced lantadene A (3), B (4), and 22β-hydroxy-3-oxo-olean-12-en-28-oic acid (5) analogs were synthesized and tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead analog (11) showed sub-micromolar activity against TNF-α induced activation of NF-κB and exhibited inhibition of IKKβ in a single-digit micromolar dose. At the same time, 11 showed promising cytotoxicity against A549 lung cancer cells with IC50 of 0.98 μM. The Western blot analysis further showed that the suppression of NF-κB activity by the lead analog 11 was due to the inhibition of IκBα degradation, a natural inhibitor of NF-κB. The physicochemical evaluation demonstrated that the lead analog 11 was stable in the simulated gastric fluid of pH 2, while hydrolyzed at a relatively higher rate in the human blood plasma to release the active parent moieties. Molecular docking analysis showed that 11 was hydrogen bonded with the Arg-31 and Gln-110 residues of the IKKβ.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*
  19. Bharkavi C, Vivek Kumar S, Ashraf Ali M, Osman H, Muthusubramanian S, Perumal S
    Bioorg Med Chem, 2016 11 15;24(22):5873-5883.
    PMID: 27687968 DOI: 10.1016/j.bmc.2016.09.044
    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC50 <1.56μM) and 6l (IC50=2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC50 values of 1.10 and 1.16μmol/L respectively.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
  20. Sathishkumar P, Preethi J, Vijayan R, Mohd Yusoff AR, Ameen F, Suresh S, et al.
    PMID: 27541567 DOI: 10.1016/j.jphotobiol.2016.08.005
    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links