METHOD: Therefore, there is a need to improve delivery of therapeutic macromolecules to enable non-invasive delivery routes, less frequent dosing through controlled-release drug delivery, and improved drug targeting to increase efficacy and reduce side effects.
RESULT: Non-invasive administration routes such as intranasal, pulmonary, transdermal, ocular and oral delivery have been attempted intensively by formulating macromolecules into nanoparticulate carriers system such as polymeric and lipidic nanoparticles.
CONCLUSION: This review discusses barriers to drug delivery and current formulation technologies to overcome the unfavorable properties of macromolecules via non-invasive delivery (mainly intranasal, pulmonary, transdermal oral and ocular) with a focus on nanoparticulate carrier systems. This review also provided a summary and discussion of recent data on non-invasive delivery of macromolecules using nanoparticulate formulations.
PURPOSE OF THE STUDY: This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability.
MATERIALS AND METHODS: NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation.
RESULTS: The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed.
CONCLUSION: The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.
OBJECTIVE: A sensitive method for the estimation of CRM in plasma, as well as fecal matter-based solid self-nano emulsifying drug delivery system (S-SNEDDS), has been reported for the first time.
METHODS: A bioanalytical method was optimized using Box-Behnken Design having 13 runs and 3 responses. The optimized method was developed using methanol and water (70:30 v/v) with a flow rate of 1 mL/min. Quercetin was used as an internal standard. A specificity test was also performed for the developed CRM solid self-nano emulsifying drug delivery system.
RESULTS: The retention time of CRM was found to be 14.18 minutes. The developed method was validated and found to be linear in the range of 50-250 ng/mL with an R2 of 0.999. Accuracy studies indicated that CRM had a percentage recovery of less than 105% and more than 95%, respectively. Precision studies were carried out for inter, intraday, and inter-analyst precision, and the %RSD was found to be less than 2%. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.37 ng/mL and 10.23 ng/mL, respectively. Stability studies for shortterm, long term and freeze-thaw cycles showed a %RSD of less than 2%, indicating the stability of CRM in the plasma matrix. Moreover, the blank fecal microbiota extract slurry did not show any peak at the retention time of CRM in a CRM-loaded solid nanoemulsifying drug delivery system containing fecal microbiota extract indicating its specificity.
CONCLUSION: Hence, the developed method can have clinical implications as it helps estimate CRM in blood samples and also provides a simple and sensitive method for the estimation of plant-based flavonoids along with fecal microbiota extract formulations.