Displaying publications 81 - 100 of 324 in total

Abstract:
Sort:
  1. Singh AK, Hakimi MH, Kumar A, Ahmed A, Abidin NSZ, Kinawy M, et al.
    Sci Rep, 2020 12 17;10(1):22108.
    PMID: 33335176 DOI: 10.1038/s41598-020-78906-x
    A high bituminous shale horizon from the Gurha mine in the Bikaner sub-basin of the Rajasthan District, NW India, was studied using a collection of geochemical and petrological techniques. This study investigated the nature and environmental conditions of the organic matter and its relation to the unconventional oil-shale resources of the bituminous shale. The analyzed shales have high total organic carbon and total sulfur contents, suggesting that these shale sediments were deposited in a paralic environment under reducing conditions. The dominant presence of organic matter derived from phytoplankton algae suggests warm climatic marine environment, with little connection to freshwater enhancing the growth of algae and other microorganisms. The analyzed bituminous shales have high aquatic-derived alginite organic matters, with low Pr/Ph, Pr/n-C17, and Ph/n-C18 ratios. It is classified as Type II oil-prone kerogen, consistent with high hydrogen index value. Considering the maturity indicators of geochemical Tmax (
  2. Batra J, Tripathi S, Kumar A, Katz JM, Cox NJ, Lal RB, et al.
    Sci Rep, 2016;6:19063.
    PMID: 26750153 DOI: 10.1038/srep19063
    A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.
  3. Kumari R, Guo Z, Kumar A, Wiens M, Gangappa S, Katz JM, et al.
    Antiviral Res, 2020 Apr;176:104747.
    PMID: 32092305 DOI: 10.1016/j.antiviral.2020.104747
    Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.
  4. Samrot AV, Angalene JLA, Roshini SM, Stefi SM, Preethi R, Raji P, et al.
    Int J Biol Macromol, 2019 Nov 01;140:393-400.
    PMID: 31425761 DOI: 10.1016/j.ijbiomac.2019.08.121
    In this study, gum of Araucaria heterophylla was collected. The collected gum was subjected for extraction of polysaccharide using solvent extraction system. Thus, extracted polysaccharide was further purified using solvent method and was characterized using UV-Vis spectroscopy, Phenol sulfuric acid assay, FTIR, TGA, TLC and GC-MS. The gum derived polysaccharide was found to have the following sugars Rhamnose, Allose, Glucosinolate, Threose, Idosan, Galactose and Arabinose. The extracted polysaccharide was tested for various in-vitro bioactive studies such as antibacterial activity, antioxidant activity and anticancer activity. The polysaccharide was found to have antioxidant and anticancer activity. Further, the polysaccharide was subjected for carboxymethylation to favor the nanocarrier synthesis, where it was chelated using Sodium Tri Meta Phosphate (STMP) to form nanocarriers. The nanocarriers so formed were loaded with curcumin and were characterized using FTIR, SEM, EDX and AFM. Both the loaded and unloaded nanocarriers were studied for its in-vitro cytotoxic effect against the MCF7 human breast cancer cell lines. The nanocarriers were found to deliver the drug efficiently against the cancer cell line used in this study.
  5. Baskaran S, Nahulan T, Kumar AS
    Med J Malaysia, 2004 Dec;59 Suppl F:72-4.
    PMID: 15941170
    This is the first time we encountered a peculiar case of osteomyelitis complicating a closed fracture. The patient was a 38 year-old lady who presented just like any other patient with a closed fracture of the right femur. Intraoperatively we were surprised to find pus from the fracture site. This not only changed the surgical management but altered the subsequent outcome as well.
  6. Ma Q, Rejab MRM, Hassan SA, Hu H, Kumar AP
    J Mech Behav Biomed Mater, 2022 Dec;136:105514.
    PMID: 36215770 DOI: 10.1016/j.jmbbm.2022.105514
    Sandwich panel is increasingly used as lightweight energy absorbing components, which provides excellent crashworthiness performance with the three-dimensional periodic core. This paper investigates 3D-printed bio-inspired spherical-roof cubic cores with multi-walled carbon nanotubes (MWCNT) and foam-filled cores under quasi-static loading. The proposed bio-inspired spherical-roof cubic cores with 1.5 mm wall thickness were manufactured using the fused filament fabrication process, which used 70% polylactic acid (PLA) and 30% carbon fiber filament. Moreover, four groups of 3D-printed bio-inspired spherical-roof cubic cores were compared and analyzed on compressive properties and failure behavior. Experimental results were shown that foam-filled double bio-inspired spherical-roof cubic core with MWCNT was the maximum Fpeak with 1.92 kN, which provided a much more stable plateau load and better energy-absorbing characteristics. In addition, it is conducted that a double bio-inspired spherical-roof cubic core with four notches core is considered as the potential energy-absorbing core.
  7. Shamsudin NAA, Swamy BPM, Ratnam W, Sta Cruz MT, Sandhu N, Raman AK, et al.
    Rice (N Y), 2016 Dec;9(1):21.
    PMID: 27164982 DOI: 10.1186/s12284-016-0093-6
    BACKGROUND: With the objective of improving the grain yield (GY) of the Malaysian high quality rice cultivar MRQ74 under reproductive stage drought stress (RS), three drought yield QTLs, viz. qDTY 2.2, qDTY 3.1 , and qDTY 12.1 were pyramided by marker assisted breeding (MAB). Foreground selection using QTL specific markers, recombinant selection using flanking markers, and background selections were performed in every generation. BC1F3 derived pyramided lines (PLs) with different combinations of qDTY 2.2, qDTY 3.1 , and qDTY 12.1 were evaluated under both RS and non-stress (NS) during the dry season (DS) of 2013 and 2014 at IRRI.

    RESULTS: The GY reductions in RS trials compared to NS trials ranged from 79 to 99 %. Plant height (PH) was reduced and days to flowering (DTF) was delayed under RS. Eleven BC1F5 MRQ74 PLs with yield advantages of 1009 to 3473 kg ha(-1) under RS and with yields equivalent to MRQ74 under NS trials were identified as promising drought tolerance PLs. Five best PLs, IR 98010-126-708-1-4, IR 98010-126-708-1-3, IR 98010-126-708-1-5, IR 99616-44-94-1-1, and IR 99616-44-94-1-2 with a yield advantage of more than 1000 kg ha(-1) under RS and with yield potential equivalent to that of MRQ74 under NS were selected. The effect of three drought grain yield QTLs under RS in MRQ74 was validated. Under NS, PLs with two qDTY combinations (qDTY 2.2 + qDTY 12.1 ) performed better than PLs with other qDTY combinations, indicating the presence of a positive interaction between qDTY 2.2 and qDTY 12.1 in the MRQ74 background.

    CONCLUSION: Drought tolerant MRQ74 PLs with a yield advantage of more than 1000 kg ha(-1) under RS were developed. Differential yield advantages of different combinations of the qDTYs indicate a differential synergistic relationship among qDTYs.

  8. Kumar A
    Asian Pac J Trop Biomed, 2011 Jan;1(1):6-7.
    PMID: 23569715 DOI: 10.1016/S2221-1691(11)60058-0
    To investigate oxidative stress, hemoglobin percentage and erythrocyte osmotic fragility in various aging groups.
  9. Shamsudin NA, Swamy BP, Ratnam W, Sta Cruz MT, Raman A, Kumar A
    BMC Genet, 2016;17:30.
    PMID: 26818269 DOI: 10.1186/s12863-016-0334-0
    Three drought yield QTLs, qDTY 2.2, qDTY 3.1, and qDTY 12.1 with consistent effect on grain yield under reproductive stage drought stress were pyramided through marker assisted breeding with the objective of improving the grain yield of the elite Malaysian rice cultivar MR219 under reproductive stage drought stress. Foreground selection using QTL specific markers, recombinant selection using flanking markers, and background selection were performed. BC1F3-derived lines with different combinations of qDTY 2.2 , qDTY 3.1, and qDTY 12.1 were evaluated under both reproductive stage drought stress and non-stress during the dry seasons of 2013 and 2014 at IRRI.
  10. Langyan S, Khan FN, Yadava P, Alhazmi A, Mahmoud SF, Saleh DI, et al.
    Saudi J Biol Sci, 2021 Oct;28(10):5480-5489.
    PMID: 34588858 DOI: 10.1016/j.sjbs.2021.08.027
    Flaxseed (Linum usitatissimum), commonly known as linseed is an oilseed crop, emerging as an important and functional ingredient of food and has been paid more attention due to its nutritional value as well as beneficial effects. It is mainly rich in is α-linolenic acid (ALA, omega-3 fatty acid), fibres and lignans that have potential health benefits in reducing cardiovascular diseases, diabetes, osteoporosis, atherosclerosis, cancer, arthritis, neurological and autoimmune disorders. Due to its richness in omega-3 fatty acid, a group of enzymes known as fatty acid desaturases (FADs) mainly introduce double bonds into fatty acids' (FAs) hydrocarbon chains that produce unsaturated fatty acids. Fatty acid desaturase 3 (FAD3), the commonest microsomal enzyme of omega-3 fatty acid, synthesizes linolenic acid (C18:3) from linoleic acid located in endoplasmic reticulum (ER) facing towards the cytosol. The emerging field of bioinformatics and large number of databases of bioactive peptides, helps in providing time-saving and efficient method for identification of potential bioactivities of any protein. In this study, 10 unique sequences of FAD3 from flaxseed protein have been used for in silico proteolysis and releasing of various bioactive peptides using three plant proteases, namely ficin, papain and stem bromelain, that are evaluated with the help of BIOPEP database. Overall, 20 biological activities were identified from these proteins. The results showed that FAD3 protein is a potential source of peptides with angiotensin-I-converting enzyme (ACE) inhibitory and dipeptidyl peptidase-IV (DPP-IV) activities, and also various parameters such as ∑A, ∑B, AE, W, BE, V and DHt were also calculated. Furthermore, PeptideRanker have been used for screening of novel promising bioactive peptides. Various bioinformatics tools also used to study protein's physicochemical properties, peptide's score, toxicity, allergenicity aggregation, water solubility, and drug likeliness. The present work suggests that flaxseed protein can be a good source of bioactive peptides for the synthesis of good quality and quantity of oil, and in silico method helps in investigating and production of functional peptides.
  11. Kumar A
    J Ethnopharmacol, 2020 May 10;253:112667.
    PMID: 32061673 DOI: 10.1016/j.jep.2020.112667
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. is a stemless, rhizomatous, aromatic, perennial and indigenous herb. It is native to India and distributed in China, Bangladesh, Myanmar, Sri Lanka, Japan, Thailand, Indonesia, Malaysia, Vietnam, Laos, Sudan, Nigeria and South Africa. It is an important Indian medicinal herb that has a long history of use in the treatment of several kinds of human ailments including vata ailments like cough and cold, fever, headache, pains disorders, skin diseases, rheumatic diseases, arthritis, joint fractures, vertigo, wounds, gastritis, antidote for snake venoms, inflammation, blood vomiting, mouth sores and tongue blisters in infants. Moreover, the rhizomes of this plant are highly aromatic and have been used widely as spices, in food flavoring, pickles, cosmetics and in perfumery products.

    AIM OF THE REVIEW: This paper aimed to provide a critical review of current scenario on K. galanga. This review provides a current data on diversity, phytochemistry, pharmacological activities and traditional uses of K. galanga.

    MATERIALS AND METHODS: The information and data on K. galanga were collated from various resources like ethnobotanical textbooks and literature databases such as PubMed, Science Direct, Wiley, Springer, Tailor and Francis, Scopus, Inflibnet, Google and Google Scholar.

    RESULTS: The forty-nine phytochemicals including esters, terpenoids, flavonoids, thiourea derivatives, polysaccharides, diarylheptanoids, phenolic acids, phenolic glycoside and cyclic lipodepsipeptide have been hitherto isolated and characterized. The major bioactive compounds extracted from the rhizome of K. galanga were ethyl p-methoxycinnamate, ethyl cinnamate, kaempferol, kaempferide, kaempsulfonic acids, kaemgalangol A, xylose, cystargamide B and 3-caren-5-one. Various studies demonstrated that the K. galanga and its constituents possess several pharmacological activities like antimicrobial, antioxidant, amebicidal, analgesic, anti-inflammatory, anti-tuberculosis, anti-dengue, anti-nociceptive, anti-angiogenic, anticancer, hyperlipidemic, hypopigmentary, osteolysis, larvicidal, insecticidal and mosquito repellent, nematocidal, sedative, sniffing, vasorelaxant and wound healing.

    CONCLUSION: Kaempferia galanga L. is a valuable medicinal plant which is used traditionally in India to treat a wide variety of ailments. A number of bioactive phytochemicals like esters, terpenoids, flavonoids, polysaccharides, diarylheptanoids, cyclic lipodepsipeptide, phenolic acids and glucoside have been isolated from the rhizomes of K. galanga by several researchers. These phytochemicals are highly bioactive and exhibit various pharmacological activities.

  12. Bhandarkar AM, Pandey AK, Nayak R, Pujary K, Kumar A
    Med J Armed Forces India, 2021 Feb;77(Suppl 1):S37-S41.
    PMID: 33612930 DOI: 10.1016/j.mjafi.2020.10.021
    Background: Social media has become an integral part in the life of every individual in the 21st century. Social media addiction in the younger age group is a major problem. The objective of this study was to find a correlation between academic performance and social media use.

    Methods: This was a cross-sectional questionnaire-based study conducted in a medical school over a period of 3 months (Nov 2018-Jan 2019), where 400 medical undergraduates who use social media participated in the study. Data collected from the questionnaire included the academic performance in terms of university examination marks, the duration of social media use per day and the social media addiction score. Data correlation was done using the Pearson's correlation factor.

    Results: 41.5% of students used social media for upto 3 h per day. Whatsapp (98.25%) and Youtube (91.75%) were the most commonly used social media applications. 73.5% used social media to read health-related news, 71.5% used it to complete assignments and more than 50% used it for seminar preparation, test preparation and research-related purposes. Academic performance of female students was better than male students. There was a significantly higher use of social media among academically low-performing medical students compared with high-performing medical students. There was a weak negative correlation between academic performance and social media usage and a strong positive correlation between social media usage and the social media addiction score.

    Conclusions: Social media has a negative impact on the academic performance of 21st-century undergraduate medical students.

  13. Swamy BPM, Shamsudin NAA, Rahman SNA, Mauleon R, Ratnam W, Sta Cruz MT, et al.
    Rice (N Y), 2017 Dec;10(1):21.
    PMID: 28523639 DOI: 10.1186/s12284-017-0161-6
    BACKGROUND: The identification and introgression of major-effect QTLs for grain yield under drought are some of the best and well-proven approaches for improving the drought tolerance of rice varieties. In the present study, we characterized Malaysian rice germplasm for yield and yield-related traits and identified significant trait marker associations by structured association mapping.

    RESULTS: The drought screening was successful in screening germplasm with a yield reduction of up to 60% and heritability for grain yield under drought was up to 78%. There was a wider phenotypic and molecular diversity within the panel, indicating the suitability of the population for quantitative trait loci (QTL) mapping. Structure analyses clearly grouped the accessions into three subgroups with admixtures. Linkage disequilibrium (LD) analysis revealed that LD decreased with an increase in distance between marker pairs and the LD decay varied from 5-20 cM. The Mixed Linear model-based structured association mapping identified 80 marker trait associations (MTA) for grain yield (GY), plant height (PH) and days to flowering (DTF). Seven MTA were identified for GY under drought stress, four of these MTA were consistently identified in at least two of the three analyses. Most of these MTA identified were on chromosomes 2, 5, 10, 11 and 12, and their phenotypic variance (PV) varied from 5% to 19%. The in silico analysis of drought QTL regions revealed the association of several drought-responsive genes conferring drought tolerance. The major-effect QTLs are useful in marker-assisted QTL pyramiding to improve drought tolerance.

    CONCLUSION: The results have clearly shown that structured association mapping is one of the feasible options to identify major-effect QTLs for drought tolerance-related traits in rice.

  14. Bheel N, Sohu S, Jhatial AA, Memon NA, Kumar A
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5207-5223.
    PMID: 34420161 DOI: 10.1007/s11356-021-16034-3
    This experimental research was conducted to study the combined effect of agricultural by-product wastes on the properties of concrete. The coconut shell ash (CSA) was utilized to substitute cement content ranging from 0 to 20% by weight of total binder and sugarcane bagasse ash (SCBA) to substitute fine aggregates (FA) ranging from 0 to 40% by weight of total FA. In this regard, a total of 300 concrete specimens (cylinders and cubes) were prepared using 1:1.5:3 mix proportions with a 0.52 water-binder ratio. The study investigated the workability, density, permeability, and mechanical properties in terms of compressive and splitting tensile strengths. Additionally, the total embodied carbon for all mix proportions was calculated. It was observed that with an increase in CSA and SCBA contents, the workability, density, and permeability reduced significantly. Due to CSA and SCBA being pozzolanic materials, a gain in compressive and splitting tensile strengths was observed for certain concrete mixes, after which the strength decreased. The increase in embodied carbon of SCBA increased the total embodied carbon of concrete; however, it can be said that C15S40 which consists of 15% CSA and 40% SCBA is the optimum mix that achieved 28.75 MPa and 3.05 MPa compressive and tensile strength, respectively, a reduction of 4% total embodied carbon.
  15. Catolos M, Sandhu N, Dixit S, Shamsudin NAA, Naredo MEB, McNally KL, et al.
    Front Plant Sci, 2017;8:1763.
    PMID: 29085383 DOI: 10.3389/fpls.2017.01763
    Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs) for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant) and IR64-21 (drought susceptible) was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3 , and qDTY8.1 ) under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number). The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0-22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3 +qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1 +qDTY8.1 and qDTY1.1 +qDTY8.1 +qDTY1.3 , across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.
  16. Kumar A
    Asian Pac J Trop Biomed, 2014 May;4(Suppl 1):S189-97.
    PMID: 25183079 DOI: 10.12980/APJTB.4.2014D153
    OBJECTIVE: To address the association of dietary vitamins, anthropometric profile, lipid profile, antioxidant enzymes and lipid peroxidation in hypertensive participant compared with normotensive healthy controls.

    METHODS: Dietary intake of vitamins was assessed by 131 food frequency questionnaire items in both hypertensive participants and normotensive age-sex matched healthy controls. The associated changes in serum antioxidants and lipid peroxidation were also assessed along with lipid profile and anthropometric measurements in both groups of subjects under study.

    RESULTS: Dietary vitamins intake was higher in hypertensive participants excepting for vitamin B2 and ascorbic acid compared to normotensive controls. Anthropometric variables in the hypertensive showed significant differences in weight, body mass index, waist circumference, hip circumference, waist-hip ratio and mid-arm circumference. The total cholesterol, low-density lipoprotein cholesterol, triglyceride were significantly higher (P<0.001) in hypertensive except high-density lipoprotein cholesterol which was significantly higher (P<0.001) in normotensive. The serum endogenous antioxidants and enzyme antioxidants were significantly decreased in hypertensive except serum albumin levels compared to normotensive along with concomitant increase in serum lipoprotein (a) malondialdehyde and conjugated diene levels.

    CONCLUSIONS: Based on the observations, our study concludes that hypertension is caused due to interplay of several confounding factors namely anthropometry, lipid profile, depletion of endogenous antioxidants and rise in oxidative stress.

  17. Rajaiah P, Kumar A
    Indian J Med Res, 2022;156(4&5):588-597.
    PMID: 36926775 DOI: 10.4103/ijmr.IJMR_2606_19
    Japanese encephalitis (JE) is a leading cause of viral encephalitis in Southeast Asia. It is a serious public health issue in India, and cases have been emerging in newer areas of the country. Although vaccination efforts have already been initiated in the country since 2006 and later through the Universal Immunization Programme in 2011, still a significant reduction in the number of cases has to be achieved since an escalating trend of JE incidence has been reported in certain States such as Assam, Uttar Pradesh and West Bengal. Moreover, fresh cases of JE have been reported from certain pockets in Odisha as well. Despite the mass JE vaccination programme implemented in prioritized endemic zones in the country in 2011, a shift in the age group of JE virus (JEV) infection was noticed affecting the adult population in West Bengal. The recent detection of the circulation of genotype I (GI) in Gorakhpur, Uttar Pradesh and the co-circulation of GI and genotype III (GIII) in West Bengal are probably a warning signal for the public health personnel to strengthen the surveillance system in all endemic hotspots in the country. The abrupt emergence of JEV genotype V (GV) in China and Korea in 2009, after its first detection in Malaya in 1952, endemic countries have been cautioned to strengthen their surveillance, because GV has been suspected of getting dispersed efficiently in other parts of Asia. Moreover, the reduced protection efficiency of the JEV GIII-based vaccine against the JEV genotype V further warrants careful evaluation of the ongoing vaccination strategies in the endemic countries, anticipating the possible incursion of GV and its impact on future control strategies. In view of the above facts, the present communication reviews the current knowledge on the molecular epidemiology of JEV in India vis-a-vis the global scenario and discusses the future priorities in JEV research in India for effectively designing control strategies.
  18. Balkrishna A, Kumar A, Arya V, Rohela A, Verma R, Nepovimova E, et al.
    Oxid Med Cell Longev, 2021;2021:3155962.
    PMID: 34737844 DOI: 10.1155/2021/3155962
    Nanotechnology is gaining significant attention, with numerous biomedical applications. Silver in wound dressings, copper oxide and silver in antibacterial preparations, and zinc oxide nanoparticles as a food and cosmetic ingredient are common examples. However, adverse effects of nanoparticles in humans and the environment from extended exposure at varied concentrations have yet to be established. One of the drawbacks of employing nanoparticles is their tendency to cause oxidative stress, a significant public health concern with life-threatening consequences. Cardiovascular, renal, and respiratory problems and diabetes are among the oxidative stress-related disorders. In this context, phytoantioxidant functionalized nanoparticles could be a novel and effective alternative. In addition to performing their intended function, they can protect against oxidative damage. This review was designed by searching through various websites, books, and articles found in PubMed, Science Direct, and Google Scholar. To begin with, oxidative stress, its related diseases, and the mechanistic basis of oxidative damage caused by nanoparticles are discussed. One of the main mechanisms of action of nanoparticles was unearthed to be oxidative stress, which limits their use in humans. Secondly, the role of phytoantioxidant functionalized nanoparticles in oxidative damage prevention is critically discussed. The parameters for the characterization of nanoparticles were also discussed. The majority of silver, gold, iron, zinc oxide, and copper nanoparticles produced utilizing various plant extracts were active free radical scavengers. This potential is linked to several surface fabricated phytoconstituents, such as flavonoids and phenols. These phytoantioxidant functionalized nanoparticles could be a better alternative to nanoparticles prepared by other existing approaches.
  19. Nabgan W, Nabgan B, Ikram M, Jadhav AH, Ali MW, Ul-Hamid A, et al.
    Chemosphere, 2022 Mar;290:133296.
    PMID: 34914962 DOI: 10.1016/j.chemosphere.2021.133296
    The fatty acid methyl ester (FAME) production from dairy effluent scum as a sustainable energy source using CaO obtained from organic ash over titanium dioxide nanoparticles (TNPs) as the transesterification nano-catalyst has been studied. The physical and chemical properties of the synthesized catalysts were characterized, and the effect of different experimental factors on the biodiesel yield was studied. It was revealed that the CaO-TiO2 nano-catalyst displayed bifunctional properties, has both basic and acid phases, and leads to various effects on the catalyst activity in the transesterification process. These bifunctional properties are critical for achieving simultaneous transesterification of dairy scum oil feedstock. According to the reaction results, the catalyst without and with a low ratio of TNPs showed a low catalytic activity. In contrast, the 3Ca-3Ti nano-catalyst had the highest catalytic activity and a strong potential for reusability, producing a maximum biodiesel yield of 97.2% for a 3 wt% catalyst, 1:20 oil to methanol molar ratio for the dairy scum, and a reaction temperature of 70 °C for a period of 120 min under a 300 kPa pressure. The physical properties of the produced biodiesel are within the EN14214 standards.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links