Displaying publications 81 - 100 of 225 in total

Abstract:
Sort:
  1. Nazeri AAZA, Sani SFA, Ung NM, Almugren KS, Alkallas FH, Bradley DA
    Appl Radiat Isot, 2021 Oct;176:109814.
    PMID: 34175543 DOI: 10.1016/j.apradiso.2021.109814
    Brachytherapy is commonly used in treatment of cervical, prostate, breast and skin cancers, also for oral cancers, typically via the application of sealed radioactive sources that are inserted within or alongside the area to be treated. A particular aim of the various brachytherapy techniques is to accurately transfer to the targeted tumour the largest possible dose, at the same time minimizing dose to the surrounding normal tissue, including organs at risk. The dose fall-off with distance from the sources is steep, the dose gradient representing a prime factor in determining the dose distribution, also representing a challenge to the conduct of measurements around sources. Amorphous borosilicate glass (B2O3) in the form of microscope cover slips is recognized to offer a practicable system for such thermoluminescence dosimetry (TLD), providing for high-spatial resolution (down to 
    Matched MeSH terms: Glass*
  2. Naji, Ghassan Abdul-Hamid, Ros Anita Omar, Rosiyah Yahya
    MyJurnal
    The mismatch in coefficient of thermal expansion (CTE) between the veneered
    porcelain and the ceramic core has been primarily identified as the cause of core/veneer chipping
    in all-ceramic restorations. This study aimed to evaluate the effect of sodalite infiltration on the
    CTE behaviour and bond strength of different all-ceramic prostheses. Materials and Methods: The
    experimental groups were synthesised sodalite-infiltrated alumina (IA-SOD) and synthesised
    sodalite-infiltrated zirconia-toughened alumina (ZTA) (IZ-SOD), while the control groups were glassinfiltrated alumina (IA-glass) and glass-infiltrated ZTA (IZ-glass). (Copied from article).
    Matched MeSH terms: Glass
  3. Nadiah Ramlan, Nazirah Wahidah Mohd Zamri, Mohamad Yusof Maskat, Mohd Suzeren Md Jamil, Saiful Irwan Zubairi, Chin OH, et al.
    Sains Malaysiana, 2018;47:1147-1155.
    A 50Hz glow discharge He/CH4
    plasma was generated and applied for the glass surface modification to reduce the powder
    adhesion on wall of spray dryer. The hydrophobicity of the samples determined by the water droplet contact angle and
    adhesion weight on glass, dependent on the CH4 flow rate and plasma exposure time. The presence of CH3
    groups and
    higher surface roughness of the plasma treated glass were the factors for its hydrophobicity development. Response
    surface methodology (RSM) results using central composite rotatable design (CCRD) showed that optimal responses
    were obtained by the combination of parameters, CH4
    gas flow rate = 3 sccm and exposure time = 10 min. In optimum
    conditions, the contact angle increased by 47% and the weight of the adhesion reduced by 38% (w/w). The plasma
    treatment could enhance the value of the contact angle and thus reduced the adhesion on the spray dryer glass surface.
    Matched MeSH terms: Glass
  4. NUR FIKRIAH HASHIM, NURAQILAH MOHD ZAINAL, NURAIN JAMIL, NURUL NASUHA MOHD NOR, SURIANI MAT JUSOH
    MyJurnal
    Nowadays, Kenaf fiber is sustainably useful in marine structures and has become one of the materials that may be high in demand as it is light, biodegradable and environmental friendly. This study investigates the effect of fiber percentage on compressive strength of fiber reinforced concrete (FRC) and the relationship between compressive strength and time of FRC immersion in seawater. FRC concrete cubes were prepared using four different percentage of fiber (0%, 1.5%, 3.0% and 4.5%). These FRC were immersed in seawater for 7, 14 and 21 days for three consecutive weeks. Based on the experiment, it was found that there was improvement in compressive strength of FRC when compared to plain cement concrete. The results showedthat 3.0% of KF to cement matrix concrete determined the highest compressive strength of 205.43 Pa while 0% of KF fiber to cement concrete matrix (control specimen) showed the lowest compressive strength of 158.28 Pa. Also the addition of Kenaf fiber to cement concrete decreased the seawater absorption more than concrete with absolutely 0% of KF fiber to cement concrete (control specimen). In conclusion, the results did show significant improvement and a consistent trend on strength with the addition of FRC. This study also revealed that the percentage of water absorption was on the increase for 0, 7 and 14 days and become constant after day 21. This is due to manufacturing defects that occurred which block the water from entering the material and making the material absorb less water.
    Matched MeSH terms: Glass Ionomer Cements
  5. Muslim, Y.S., Knowles, J., Howlett, J.
    Ann Dent, 2005;12(1):-.
    MyJurnal
    Hydroxyapatite (HA) has been increasingly used in biomedical applications due to its biocompatibility with living tissues. However, its use is limited to low load bearing areas due to the poor mechanical properties compared to bone. The aim of this project is to improve the mechanical properties of synthetic HA by optimising the processing method and also by using a phosphate based glass as a sintering aid to develop Glass Reinforced Hydroxyapatite (GR-HA). A phosphate based glass containing CaO, P2O5 and CaF2 was incorporated into HA at 2.5wt% and 5wt% additions during the milling process prior to sintering at 1300°C. The flexural strength mean values for GR-HA ranged from 80MPa to 110MPa. Pure HA exhibited a much lower flexural strength mean value ranging from 66MPa to 79MPa. The improved mechanical properties were associated with the occurrence of residual stress as a result of decomposition of HA to b-Tricalcium Phosphate (TCP) and in 5wt% GRHA to a-Tricalcium Phosphate (TCP).
    Matched MeSH terms: Glass
  6. Murali G, Amran M, Fediuk R, Vatin N, Raman SN, Maithreyi G, et al.
    Materials (Basel), 2020 Dec 11;13(24).
    PMID: 33322254 DOI: 10.3390/ma13245648
    Ferrocement panels, while offering various benefits, do not cover instances of low and moderated velocity impact. To address this problem and to enhance the impact strength against low-velocity impact, a fibrous ferrocement panel is proposed and investigated. This study aims to assess the flexural and low-velocity impact response of simply supported ferrocement panels reinforced with expanded wire mesh (EWM) and steel fibers. The experimental program covered 12 different ferrocement panel prototypes and was tested against a three-point flexural load and falling mass impact test. The ferrocement panel system comprises mortar reinforced with 1% and 2% dosage of steel fibers and an EWM arranged in 1, 2, and 3 layers. For mortar preparation, a water-cement (w/c) ratio of 0.4 was maintained and all panels were cured in water for 28 days. The primary endpoints of the investigation are first crack and ultimate load capacity, deflection corresponding to first crack and ultimate load, ductility index, flexural strength, crack width at ultimate load, a number of impacts needed to induce crack commencement and failure, ductility ratio, and failure mode. The finding revealed that the three-layers of EWM inclusion and steel fibers resulted in an additional impact resistance improvement at cracking and failure stages of ferrocement panels. With superior ultimate load capacity, flexural strength, crack resistance, impact resistance, and ductile response, as witnessed in the experiment program, ferrocement panel can be a positive choice for many construction applications subjected to repeated low-velocity impacts.
    Matched MeSH terms: Glass Ionomer Cements
  7. Muhd Norhasri Mohd Sidek, Mohd Fadzil Arshad, Megat Azmi Megat Johari, Zaid Mohd Yazid, Amir Khomeiny, R.
    MyJurnal
    Metakaolin is a manufactured pozzolan produced by thermal processing of purified kaolinitic clay using electrical furnace. This study has examined the effect of Metakaolin on the properties of cement and concrete at a replacement level of 0%, 5%, 10% and 15%. The parameters studied were divided into two groups which are chemical compositions, water requirement, setting time and soundness test were carried out for cementitous properties. Workability, compressive strength and bending strength were test for concrete properties. Hardened concrete was cured under different type of curing conditions and tested.. The result showed that the inclusions of Metakaolin as cement replacement minerals have change some of the cementitous and concrete properties. This research reveals, the optimum effect for cementitous and concrete properties for metakaolin was 10%.
    Matched MeSH terms: Glass Ionomer Cements
  8. Muhammad Faiz Ghazali, Mohamad Juraidi Jamal, Syed Azuan Syed Ahmad
    MyJurnal
    Synthetic fibers such as glass fiber and carbon fiber are traditionally used as reinforcement in engineering composites. The increasing of environmental concerns has led to the use of natural fibers as renewable alternatives reinforcement. Among them, coconut meat husk fiber which abundant availability can be used as reinforcement fiber. However, the coconut meat husk fiber, same as other natural fibers, has the issues of fiber/matrix bonding and moisture absorption. Chemical treatments are needed to modify the surface of fiber, aiming at improving the adhesion with polymer matrix and reducing the hydrophilicity of the fiber. Alkalization was used in this study to treat the coconut meat husk fiber. The effects of chemical treatments for 1hr and 24 hr treatment time on the coconut meat husk fibers reinforced composites were investigated. A result showed that the 24 hr alkali treatment gave the highest tensile stenght compared to the 1hr treatment and RO water.
    Matched MeSH terms: Glass
  9. Moheet IA, Luddin N, Rahman IA, Kannan TP, Nik Abd Ghani NR, Masudi SM
    Eur J Dent, 2019 Jul;13(3):470-477.
    PMID: 31280484 DOI: 10.1055/s-0039-1693524
    The aim of this article is to provide a brief insight regarding the recent studies and their recommendations related to the modifications to glass ionomer cement (GIC) powder in order to improve their properties. An electronic search of publications was made from the year 2000 to 2018. The databases included in the current study were EBSCOhost, PubMed, and ScienceDirect. The inclusion criteria for the current study include publication with abstract or full-text articles, original research, reviews or systematic reviews, in vitro, and in vivo studies that were written in English language. Among these only articles published in peer-reviewed journals were included. Articles published in other languages, with no available abstract and related to other nondentistry fields, were excluded. A detailed review of the recent materials used as a filler phase in GIC powder has revealed that not all modifications produce beneficial results. Recent work has demonstrated that modification of GIC powder with nano-particles has many beneficial effects on the properties of the material. This is due to the increase in surface area and surface energy, along with better particle distribution of the nano-particle. Therefore, more focus should be given on nano-particle having greater chemical affinity for GIC matrix as well as the tooth structure that will enhance the physicochemical properties of GIC.
    Matched MeSH terms: Glass Ionomer Cements
  10. Mohd Zainal Abidin R, Luddin N, Shamsuria Omar N, Mohamed Aly Ahmed H
    J Clin Pediatr Dent, 2015;39(3):235-40.
    PMID: 26208068 DOI: 10.17796/1053-4628-39.3.235
    To compare the cytotoxicity of conventional GIC and Resin Modified GIC (RMGIC) polymerized at 2 different times on stem cells from human exfoliated deciduous teeth (SHED).
    Matched MeSH terms: Glass Ionomer Cements/toxicity*
  11. Mohd Zain N.S., Tajudin S.S., Mohd Noor S.N.F., Mohamad H.
    MyJurnal
    Thisstudy aim tocharacterize melt-derivedbioactive glass and to determinethe bioactive glass (BG) suitability for dental usagethrough proliferative activity assessment of stem cells from human exfoliated deciduous teeth (SHED)when exposed to bioactive glass conditioned medium. Bioglass 45S5 in mole percentages (46.13% SiO2, 26.91% CaO, 24.35% Na2O and 2.60% P2O5)was synthesizedthrough melt-derived and characterized usingX-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR)to confirm and identify its properties.SHEDwere used to evaluate the biocompatibility of 45S5 by exposing the cells to various concentration of BG-conditioned medium (1-10 mg/ml) using alamarBlue assay. The BG produced has an amorphous structureas shown by XRD analysis. TheSi-O-Si bending, asymmetric Si-O stretching and asymmetricSi-O-Si stretchingbands were observed in the BG structure supporting the presenceof silicate network. For alamarBlue assay, SHED cultured in BG-conditioned medium showed high proliferation rate when subjected to minimal powder content in the DMEM cell culture medium.Hence, it can be concluded that SHED cultured in lower powder content of the BG-conditioned media showedhigh proliferative activity suggesting the potential of the BG for dental usage.
    Matched MeSH terms: Glass
  12. Mohd Yunus NH, Yunas J, Pawi A, Rhazali ZA, Sampe J
    Micromachines (Basel), 2019 Feb 22;10(2).
    PMID: 30813276 DOI: 10.3390/mi10020146
    This paper investigates micromachined antenna performance operating at 5 GHz for radio frequency (RF) energy harvesting applications by comparing different substrate materials and fabrication modes. The research aims to discover appropriate antenna designs that can be integrated with the rectifier circuit and fabricated in a CMOS (Complementary Metal-Oxide Semiconductor)-compatible process approach. Therefore, the investigation involves the comparison of three different micromachined antenna substrate materials, including micromachined Si surface, micromachined Si bulk with air gaps, and micromachined glass-surface antenna, as well as conventional RT/Duroid-5880 (Rogers Corp., Chandler, AZ, USA)-based antenna as the reference. The characteristics of the antennas have been analysed using CST-MWS (CST MICROWAVE STUDIO®-High Frequency EM Simulation Tool). The results show that the Si-surface micromachined antenna does not meet the parameter requirement for RF antenna specification. However, by creating an air gap on the Si substrate using a micro-electromechanical system (MEMS) process, the antenna performance could be improved. On the other hand, the glass-based antenna presents a good S11 parameter, wide bandwidth, VSWR (Voltage Standing Wave Ratio) ≤ 2, omnidirectional radiation pattern and acceptable maximum gain of >5 dB. The measurement results on the fabricated glass-based antenna show good agreement with the simulation results. The study on the alternative antenna substrates and structures is especially useful for the development of integrated patch antennas for RF energy harvesting systems.
    Matched MeSH terms: Glass
  13. Mohd Fudzi L, Zainal Z, Lim HN, Chang SK, Holi AM, Sarif Mohd Ali M
    Materials (Basel), 2018 Apr 29;11(5).
    PMID: 29710822 DOI: 10.3390/ma11050704
    Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².
    Matched MeSH terms: Glass
  14. Mohd Amirul Syafiq Mohd Yunos, Zainal Abidin Talib, Wan Mahmood Mat Yunus, Liew, Josephine Ying Chyi, Paulus, Wilfred Sylvester
    MyJurnal
    Semiconductor thin films Copper Tin Selenide, Cu2SnSe3, a potential compound for solar cell applications or semiconductor radiation detector were prepared by thermal evaporation method onto well-cleaned glass substrates. The as-deposited films were annealed in flowing purified nitrogen N2, for 2 hours in a temperature range from 100˚C to 500˚C. The structure of as-deposited and annealed films has been studied by X-ray diffraction technique. The semi-quantitative analysis indicated from Reitveld refinement show that the samples composed of Cu2SnSe3 and SnSe. These studies revealed that the films were structured in mixed phase between cubic space group F-43m (no. 216) and orthorhombic space group P n m a (no. 62). The crystallite size and lattice strain were determined from Scherrer calculation method. The results show that increasing in annealing temperature resulted in direct increase in crystallite size and decrease in lattice strain.
    Matched MeSH terms: Glass
  15. Mohd Amin MF, Heijman SG, Lopes SI, Rietveld LC
    ScientificWorldJournal, 2014;2014:162157.
    PMID: 25197693 DOI: 10.1155/2014/162157
    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.
    Matched MeSH terms: Glass/chemistry
  16. Mohammad Razaul Karim, Sumiani Yusoff, Hashim Abdul Razak, Faisal I. Chowdhury, Hossain Zabed
    Sains Malaysiana, 2018;47:523-530.
    Technical benefit of incorporation of Palm Oil Clinker (POC) in cement-based applications has been proven in recent
    studies. The aim of this work was to assess the heavy metal leaching behavior to ensure environmental safety of using
    POC in cement-based applications. The chemical composition, morphology, total organic carbon (TOC) and mineralogy
    were determined using XRF, FESEM, TOC analyzers and XRD to select appropriate chemical reagents for complete digestion.
    HNO3
    , HF and HClO4
    were used for digestion of POC to measure heavy metal content using ICP-MS. The chemical reagents
    CH3
    COOH, NH2
    OH-HCl, H2
    O2
    +CH3
    COONH4
    and HF+HNO3
    +HCl were used for extraction of acid soluble, reducible,
    oxidizable and residual fractions of heavy metals in POC, respectively. The leaching toxicity of the POC was investigated
    by the USEPA 1311 TCLP method. The result showed the presence of Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba and Pb with
    levels of 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 and 1.76 mg/kg, respectively, in POC. The leaching value
    in mg/L of As (4.56), Cu(1.05), Be (0.89), Zn(0.51), Ba(0.26), Ni (0.17), V(0.15), Cr(0.001) and Se (0.001) is found well
    below the standard limit of risk. Risk assessment code (RAC) analysis confirms the safe incorporation of POC in cementbased
    applications.
    Matched MeSH terms: Glass Ionomer Cements
  17. Mohammad Hafizuddin Jumali, Norhashimah Ramli, Izura Izzuddin, Muhammad Yahaya, Muhamad Mat Salleh
    The influence of PANI additions on methanol sensing properties of ZnO thin films at room temperature had been investigated. Commercial polyaniline powder (PANI) was mixed into 3 mL ZnO solution in five different weight percentages namely 1.25, 2.50, 3.75, 5.00 and 6.25% to obtain ZnO/PANI composite solutions. These solutions were spin coated onto glass substrate to form thin films. Microstructural studies by FESEM indicated that ZnO/PANI films showed porous structures with nanosize grains. The thickness of the film increased from 55 to 256 nm, proportionate to increment of PANI. The presence of 2 adsorption peaks at ~310 nm and ~610 nm in UV-Vis spectrum proved that addition of PANI has modified the adsorption peak of ZnO film. Methanol vapour detection showed that addition of PANI into ZnO dramatically improved the sensing properties of the sensor. The sensors also exhibited good repeatability and reversibility. Sensor with the amount of PANI of 3.75 wt% exhibited the highest sensitivity with response and recovery time was about 10 and 80 s, respectively. The possible sensing mechanism of the sensor was also discussed in this article.
    Matched MeSH terms: Glass
  18. Mohamed SH, Arifin A, Mohd Ishak ZA, Nizam A, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:147-8.
    PMID: 15468861
    The aim of this study was to evaluate the mechanical properties and glass transition temperature (Tg) of a denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3). The glass transition temperature was studied by using differential scanning calorimetry (DSC). The effect of powder-to-liquid ratio was investigated. The result showed that the tensile properties and the Tg were slightly effected by the powder-to-liquid ratio. The ratio of 2.2:1 by weight of powder to liquid was found to be the best ratio for mixing the material to give the best result in this formulation.
    Matched MeSH terms: Glass*
  19. Mhareb MHA, Alajerami YSM, Alqahtani M, Alshahri F, Saleh N, Alonizan N, et al.
    Luminescence, 2020 Jun;35(4):525-533.
    PMID: 31883298 DOI: 10.1002/bio.3761
    Lithium borate (LB) glasses doped with dysprosium oxide (Dy2 O3 ) have been prepared by utilizing the conventional melt-quench technique. The prepared glass samples were exposed to 60 Co to check their dosimetric features and kinetic parameters. These features involve glow curves, annealing, fading, reproducibility, minimum detectable dose (MDD), and effective atomic number (Zeff ). Kinetic parameters including the frequency factors and activation energy were also determined using three methods (glow curve analysis, initial rise, and peak shape method) and were thoroughly interpreted. In addition, the incorporation of Dy impurities into LB enhanced the thermoluminescence sensitivity ~170 times. The glow from LB:Dy appeared as a single prominent peak at 190°C. The best annealing proceeding was obtained at 300°C for 30 min. Signal stability was reported for a period of 1 and 3 months with a reduction of 26% and 31%, respectively. The proposed glass samples showed promising dosimeter properties that can be recommended for personal radiation monitoring.
    Matched MeSH terms: Glass/chemistry
  20. Mhareb MH, Hashim S, Ghoshal SK, Alajerami YS, Saleh MA, Razak NA, et al.
    Luminescence, 2015 Dec;30(8):1330-5.
    PMID: 25828828 DOI: 10.1002/bio.2902
    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.
    Matched MeSH terms: Glass/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links