Displaying publications 81 - 100 of 337 in total

Abstract:
Sort:
  1. Chew YH, Shia YL, Lee CT, Majid FA, Chua LS, Sarmidi MR, et al.
    Mol Cell Endocrinol, 2009 May 6;303(1-2):13-24.
    PMID: 19428987 DOI: 10.1016/j.mce.2009.01.018
    A model of glucose regulation system was combined with a model of insulin-signaling pathways in this study. A feedback loop was added to link the transportation of glucose into cells (by GLUT4 in the insulin-signaling pathways) and the insulin-dependent glucose uptake in the glucose regulation model using the Michaelis-Menten kinetic model. A value of K(m) for GLUT4 was estimated using Genetic Algorithm. The estimated value was found to be 25.3 mM, which was in the range of K(m) values found experimentally from in vivo and in vitro human studies. Based on the results of this study, the combined model enables us to understand the overall dynamics of glucose at the systemic level, monitor the time profile of components in the insulin-signaling pathways at the cellular level and gives a good estimate of the K(m) value of glucose transportation by GLUT4. In conclusion, metabolic modeling such as displayed in this study provides a good predictive method to study the step-by-step reactions in an organism at different levels and should be used in combination with experimental approach to increase our understanding of metabolic disorders such as type 2 diabetes.
    Matched MeSH terms: Glucose/metabolism*
  2. Chia LL, Jantan I, Chua KH
    Curr Pharm Biotechnol, 2017;18(7):560-568.
    PMID: 28786357 DOI: 10.2174/1389201018666170808144703
    BACKGROUND: Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure.

    OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.

    METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.

    RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.

    CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.

    Matched MeSH terms: Glucose/metabolism
  3. Chia YY, Liong SY, Ton SH, Kadir KB
    Eur J Pharmacol, 2012 Feb 29;677(1-3):197-202.
    PMID: 22227336 DOI: 10.1016/j.ejphar.2011.12.037
    The activities of phosphoenolpyruvate carboxykinase (PEPCK) are influenced by active glucocorticoids which are activated by 11-β-hydroxysteroid dehydrogenase 1 (11β-HSD1) while hexose-6-phosphate dehydrogenase (H6PDH) influences the activities of 11-βHSD1 in a cofactor manner. Dysregulation of PEPCK and H6PDH has been associated with the pathogenesis of metabolic syndrome. Sixteen male Sprague Dawley rats, fed ad libitum, were assigned to two groups, control and treated, with the treated group being given GA at 100mg/kg for one week. Blood and subcutaneous and visceral adipose tissue, abdominal and quadriceps femoris muscle, liver and kidney were examined. GA treatment led to an overall significant decrease in blood glucose while HOMA-IR. PEPCK activities decreased in the liver but increased in the visceral adipose tissue. H6PDH activities also decreased significantly in the liver while 11β-HSD1 activities decreased significantly in all studied tissues except for subcutaneous adipose tissue. Adipocytes in the subcutaneous and visceral depots showed a reduction in size. Though increased glycogen storage was seen in the liver, no changes were observed in the kidneys and muscles. Results from this study may imply that GA could counteract the development of type 2 diabetes mellitus by improving insulin sensitivity and probably by reduction of H6PDH, 11β-HSD1 and a selective decrease in PEPCK activities.
    Matched MeSH terms: Glucose/metabolism*
  4. Chin KY, Ima-Nirwana S, Mohamed IN, Aminuddin A, Ngah WZ
    Exp. Clin. Endocrinol. Diabetes, 2013 Jul;121(7):407-12.
    PMID: 23765753 DOI: 10.1055/s-0033-1345164
    Testosterone and sex hormone-binding globulin (SHBG) have been shown to be associated with metabolic syndrome (MS) in men. This study aimed at validating these relationships in a group of middle-aged and elderly men and assessing their strength of association to MS. A cross-sectional study of 332 Malaysian men aged 40 years and above was conducted. The blood of subject was collected under fasting condition for determination of testosterone, SHBG, glucose and lipid levels. Their medical history, smoking and alcohol consumption status, waist circumference (WC), body mass index (BMI) and blood pressure (BP) were recorded. All testosterone and SHBG levels were significantly reduced in MS subjects compared to non-MS subjects (p<0.05). Testosterone and SHBG were correlated significantly with most of the MS indicators without adjustments. In multiple regression analysis, the triglyceride level was the only MS indicator that was significantly, inversely and independently associated with all testosterone measurements and SHBG (p<0.05). Waist circumference was significantly and negatively associated with SHBG level (p<0.05) though not independent of BMI. Total testosterone and SHBG were significantly and inversely associated with the presence of MS. Testosterone and SHBG are potential intervention targets for the prevention of MS in men.
    Matched MeSH terms: Blood Glucose/metabolism
  5. Chu AH, Moy FM
    J Sci Med Sport, 2014 Mar;17(2):195-200.
    PMID: 23665093 DOI: 10.1016/j.jsams.2013.04.003
    Metabolic syndrome is a highly prevalent health problem within the adult population in developing countries. We aimed to study the association of physical activity levels and metabolic risk factors among Malay adults in Malaysia.
    Matched MeSH terms: Blood Glucose/metabolism
  6. Chuang LM, Tsai ST, Huang BY, Tai TY, Diabcare-Asia 1998 Study Group
    Diabet Med, 2002 Dec;19(12):978-85.
    PMID: 12647837 DOI: 10.1046/j.1464-5491.2002.00833.x
    AIMS: To establish the status of diabetes control in Asia, the Diabcare-Asia 198 study collected data from 230 diabetes centres in Bangladesh, People's Republic of China, India, Indonesia, Malaysia, Philippines, Singapore, South Korea, Sri Lanka, Taiwan, Thailand and Vietnam from March to December 1998.

    METHODS: Data were obtained either by patient interview during the enrolment visit or by reviewing medical records for the most recent laboratory assessment and clinical examinations. Blood samples were also collected during patients'. visits for central assessments of HbA1c (normal range 4.7-6.4%).

    RESULTS: The mean of centrally measured HbA1c was 8.6 +/- 2.0% for 18 211 patients (82% of the analysis population). Of the patients with central HbA1c measurements, the majority (55%) had values exceeding 8%, indicative of poor glycaemic control. The prevalence of retinopathy, microalbuminuria and neuropathy was also higher in the group of patients with higher HbA1c. Based on the findings from central HbA1c measurements and reported local HbA1c assessments, it also appears that more patients with poor glycaemic control did not have access to glycated haemoglobin measurements. Mean HbA1c of thediabetic populations in Bangladesh, Indonesia, Korea, Malaysia and Taiwan were significantly lower (all P = 0.0001, except P = 0.0007 for Malaysia), while that of China, India, Philippines and Vietnam was significantly higher (all P = 0.0001) than the grand mean.

    CONCLUSIONS: In our study population of the Asian diabetes patients treated at diabetes centres, more than half were not well controlled. The prevalence of diabetic microvascular complications was higher in the group of patients with higher HbA1c. Further therapeutic actions to improve glycaemic control are required to prevent chronic diabetic complications.
    Matched MeSH terms: Blood Glucose/metabolism*
  7. Chun S, Choi Y, Chang Y, Cho J, Zhang Y, Rampal S, et al.
    Am Heart J, 2016 07;177:17-24.
    PMID: 27297845 DOI: 10.1016/j.ahj.2016.03.018
    BACKGROUND: Sugar-sweetened carbonated beverage consumption has been linked to obesity, metabolic syndrome, type 2 diabetes, and clinically manifest coronary heart disease, but its association with subclinical coronary heart disease remains unclear. We investigated the relationship between sugar-sweetened carbonated beverage consumption and coronary artery calcium (CAC) in a large study of asymptomatic men and women.

    METHODS: This was a cross-sectional study of 22,210 adult men and women who underwent a comprehensive health screening examination between 2011 and 2013 (median age 40 years). Sugar-sweetened carbonated beverage consumption was assessed using a validated food frequency questionnaire, and CAC was measured by cardiac computed tomography. Multivariable-adjusted CAC score ratios and 95% CIs were estimated from robust Tobit regression models for the natural logarithm (CAC score +1).

    RESULTS: The prevalence of detectable CAC (CAC score >0) was 11.7% (n = 2,604). After adjustment for age; sex; center; year of screening examination; education level; physical activity; smoking; alcohol intake; family history of cardiovascular disease; history of hypertension; history of hypercholesterolemia; and intake of total energy, fruits, vegetables, and red and processed meats, only the highest category of sugar-sweetened carbonated beverage consumption was associated with an increased CAC score compared with the lowest consumption category. The multivariable-adjusted CAC ratio comparing participants who consumed ≥5 sugar-sweetened carbonated beverages per week with nondrinkers was 1.70 (95% CI, 1.03-2.81). This association did not differ by clinical subgroup, including participants at low cardiovascular risk.

    CONCLUSION: Our findings suggest that high levels of sugar-sweetened carbonated beverage consumption are associated with a higher prevalence and degree of CAC in asymptomatic adults without a history of cardiovascular disease, cancer, or diabetes.

    Matched MeSH terms: Blood Glucose/metabolism
  8. Craig ME, Jones TW, Silink M, Ping YJ
    J Diabetes Complications, 2007 Sep-Oct;21(5):280-7.
    PMID: 17825751 DOI: 10.1016/j.jdiacomp.2006.04.005
    AIMS: The incidence of type 1 diabetes is increasing in many parts of Asia, where resources may not enable targets for glycemic control to be achieved. The aims of this study were to describe glycemic control, diabetes care, and complications in youth with type 1 diabetes from the Western Pacific Region and to identify factors associated with glycemic control and hypoglycemia.
    METHODS: A cross-sectional clinic-based study on 2312 children and adolescents (aged <18 years; 45% males) from 96 pediatric diabetes centers in Australia, China, Hong Kong, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand was conducted. Clinical and management details were recorded, and finger-pricked blood samples were obtained for central glycated hemoglobin (HbA(1c)).
    RESULTS: The median age of the patients was 12.5 years [interquartile range (IQR)=9.4-15.3 years]; diabetes duration, 4.4 years (IQR=2.5-7.2 years); and HbA(1c) level, 8.3% (IQR 7.4%-9.7%). Insulin treatment consisted of one or two daily injections in 61% of the patients (range=22%-90% by country), and home blood glucose monitoring (range=67%-100%) was practiced by 96%. HbA(1c) level was significantly associated with country, age, diabetes duration, sex, insulin dose per kilogram, insulin regimen, and frequency of home blood glucose measurement in multiple regression analysis. The incidence of severe hypoglycemia, defined as any episode requiring assistance in the previous 3 months, was 73 per 100 patient-years and was associated with country, male sex, higher HbA(1c) level, an insulin regimen with three or more injections, and more frequent home blood glucose testing. The incidence of diabetic ketoacidosis was 10 per 100 patient-years and was associated with country, higher HbA(1c) level, and higher insulin dose per kilogram.
    CONCLUSIONS: There is marked variability in glycemic control, hypoglycemia, complication rates, and diabetes care among children from the Western Pacific Region. Most are not achieving adequate glycemic control, placing them at high risk of microvascular complications.
    Matched MeSH terms: Blood Glucose/metabolism*
  9. Das S, Roy P, Pal R, Auddy RG, Chakraborti AS, Mukherjee A
    PLoS One, 2014;9(7):e101818.
    PMID: 24991800 DOI: 10.1371/journal.pone.0101818
    Silybin, is one imminent therapeutic for drug induced hepatotoxicity, human prostate adenocarcinoma and other degenerative organ diseases. Recent evidences suggest that silybin influences gluconeogenesis pathways favorably and is beneficial in the treatment of type 1 and type 2 diabetes. The compound however is constrained due to solubility (0.4 mg/mL) and bioavailabilty limitations. Appropriate nanoparticle design for silybin in biocompatible polymers was thus proposed as a probable solution for therapeutic inadequacy. New surface engineered biopolymeric nanoparticles with high silybin encapsulation efficiency of 92.11% and zeta potential of +21 mV were designed. Both the pure compound and the nanoparticles were evaluated in vivo for the first time in experimental diabetic conditions. Animal health recovered substantially and the blood glucose levels came down to near normal values after 28 days treatment schedule with the engineered nanoparticles. Restoration from hyperglycemic damage condition was traced to serum insulin regeneration. Serum insulin recovered from the streptozotocin induced pancreatic damage levels of 0.17 ± 0.01 µg/lit to 0.57 ± 0.11 µg/lit after nanoparticle treatment. Significant reduction in glycated hemoglobin level, and restoration of liver glycogen content were some of the other interesting observations. Engineered silybin nanoparticle assisted recovery in diabetic conditions was reasoned due to improved silybin dissolution, passive transport in nanoscale, and restoration of antioxidant status.
    Matched MeSH terms: Blood Glucose/metabolism*
  10. Daud NM, Ismail NA, Thomas EL, Fitzpatrick JA, Bell JD, Swann JR, et al.
    Obesity (Silver Spring), 2014 Jun;22(6):1430-8.
    PMID: 24715424 DOI: 10.1002/oby.20754
    OBJECTIVE: To investigate the effect of nutrient stimulation of gut hormones by oligofructose supplementation on appetite, energy intake (EI), body weight (BW) and adiposity in overweight and obese volunteers.

    METHODS: In a parallel, single-blind and placebo-controlled study, 22 healthy overweight and obese volunteers were randomly allocated to receive 30 g day(-1) oligofructose or cellulose for 6 weeks following a 2-week run-in. Subjective appetite and side effect scores, breath hydrogen, serum short chain fatty acids (SCFAs), plasma gut hormones, glucose and insulin concentrations, EI, BW and adiposity were quantified at baseline and post-supplementation.

    RESULTS: Oligofructose increased breath hydrogen (P 

    Matched MeSH terms: Blood Glucose/metabolism
  11. Daud SM, Yaacob NS, Fauzi AN
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):59-65.
    PMID: 33576213 DOI: 10.31557/APJCP.2021.22.S1.59
    OBJECTIVE: The persistent activation of aerobic glycolysis in cancer cells results in accumulation of lactate and other metabolic intermediates that contribute to tumorigenesis. Increased glycolysis is frequently dysregulated in triple-negative breast cancer (TNBC), which promotes tumor growth and immune escape. This study was conducted to investigate the effect of 2-methoxy-1, 4-naphthoquinone (MNQ), compound extracted from Impatiens balsamina on glycolytic activities in human breast adenocarcinoma, MDA-MB-231 cells.

    METHODS: Initially, MTT proliferation assay was used to test the cell viability with various doses of MNQ (5-100 µM). As the half maximal inhibitory concentration (IC50) was obtained, glucose uptake and lactate assays of the cells were tested with IC50 dose of MNQ. The treated cells were also subjected to gene and protein analysis of glycolysis-related molecules (GLUT1 and Akt).

    RESULTS: The results showed that MNQ decreased the percentage of MDA-MB-231 cell viability in a dose-dependent manner with the IC50 value of 29 µM. The percentage of glucose uptake into the cells and lactate production decreased significantly after treatment with MNQ as compared to untreated cells. Remarkably, the expressions of GLUT1 and Akt molecules decreased in MNQ-treated cells, suggesting that the inhibition of glycolysis by MNQ is GLUT1-dependent and possibly mediated by the Akt signaling pathway.

    CONCLUSION: Our findings indicate the ability of MNQ to inhibit the glycolytic activities as well as glycolysis-related molecules in MDA-MB-231 cells, suggesting the potential of MNQ to be further developed as an effective anticancer agent against TNBC cells.

    Matched MeSH terms: Glucose/metabolism*
  12. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, et al.
    Sci Rep, 2016 Apr 28;6:25139.
    PMID: 27122001 DOI: 10.1038/srep25139
    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p  0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake.
    Matched MeSH terms: Blood Glucose/metabolism
  13. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Blood Glucose/metabolism
  14. Dietmann A, Putzer D, Beer R, Helbok R, Pfausler B, Nordin AJ, et al.
    Int J Infect Dis, 2016 Oct;51:73-77.
    PMID: 27418580 DOI: 10.1016/j.ijid.2016.06.022
    BACKGROUND: Tick borne encephalitis (TBE) is an acute meningoencephalitis with or without myelitis caused by an RNA virus from the flavivirus family transmitted by Ixodes spp ticks. The neurotropic TBE virus infects preferentially large neurons in basal ganglia, anterior horns, medulla oblongata, Purkinje cells and thalamus. Brain metabolic changes related to radiologic and clinical findings have not been described so far.

    METHODS: Here we describe the clinical course of 10 consecutive TBE patients with outcome assessment at discharge and after 12 month using a modified Rankin Scale. Patients underwent cerebral MRI after confirmation of diagnosis and before discharge. (18)F-FDG PET/CT scans were performed within day 5 to day 14 after TBE diagnosis. Extended analysis of coagulation parameters by thrombelastometry (ROTEM® InTEM, ExTEM, FibTEM) was performed every other day after confirmation of TBE diagnosis up to day 10 after hospital admission or discharge.

    RESULTS: All patients presented with a meningoencephalitic course of disease. Cerebral MRI scans showed unspecific findings at predilection areas in 3 patients. (18)F-FDG PET/CT showed increased glucose utilization in one patient and decreased (18)F-FDG uptake in seven patients. Changes in coagulation measured by standard parameters and thrombelastometry were not found in any of the patients.

    DISCUSSION: Glucose hypometabolism was present in 7 out of 10 TBE patients reflecting neuronal dysfunction in predilection areas of TBE virus infiltration responsible for development of clinical signs and symptoms.

    Matched MeSH terms: Glucose/metabolism*
  15. Dongare S, Gupta SK, Mathur R, Saxena R, Mathur S, Agarwal R, et al.
    Mol Vis, 2016;22:599-609.
    PMID: 27293376
    PURPOSE: Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes.

    METHODS: Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels.

    RESULTS: Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract-treated group compared to the vehicle-treated group.

    CONCLUSIONS: The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation.

    Matched MeSH terms: Blood Glucose/metabolism
  16. Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, et al.
    Drug Des Devel Ther, 2023;17:1907-1932.
    PMID: 37397787 DOI: 10.2147/DDDT.S409373
    Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
    Matched MeSH terms: Glucose/metabolism
  17. Ellulu MS, Rahmat A, Patimah I, Khaza'ai H, Abed Y
    Drug Des Devel Ther, 2015;9:3405-12.
    PMID: 26170625 DOI: 10.2147/DDDT.S83144
    Obesity is well associated as being an interfering factor in metabolic diseases such as hypertension and diabetes by increasing the secretion of proinflammatory markers from adipose tissue. Having healthy effects, vitamin C could work as an anti-inflammatory agent through its antioxidant capacity.
    Matched MeSH terms: Blood Glucose/metabolism
  18. Elsayed EA, Farid MA, El-Enshasy HA
    BMC Biotechnol, 2019 07 16;19(1):46.
    PMID: 31311527 DOI: 10.1186/s12896-019-0546-2
    BACKGROUND: Natamycin is an antifungal polyene macrolide antibiotic with wide applications in health and food industries. Currently, it is the only antifungal food additive with the GRAS status (Generally Regarded as Safe).

    RESULTS: Natamycin production was investigated under the effect of different initial glucose concentrations. Maximal antibiotic production (1.58 ± 0.032 g/L) was achieved at 20 g/L glucose. Under glucose limitation, natamycin production was retarded and the produced antibiotic was degraded. Higher glucose concentrations resulted in carbon catabolite repression. Secondly, intermittent feeding of glucose improved natamycin production due to overcoming glucose catabolite regulation, and moreover it was superior to glucose-beef mixture feeding, which overcomes catabolite regulation, but increased cell growth on the expense of natamycin production. Finally, the process was optimized in 7.5 L stirred tank bioreactor under batch and fed-batch conditions. Continuous glucose feeding for 30 h increased volumetric natamycin production by about 1.6- and 1.72-folds in than the batch cultivation in bioreactor and shake-flasks, respectively.

    CONCLUSIONS: Glucose is a crucial substrate that significantly affects the production of natamycin, and its slow feeding is recommended to alleviate the effects of carbon catabolite regulation as well as to prevent product degradation under carbon source limitation. Cultivation in bioreactor under glucose feeding increased maximal volumetric enzyme production by about 72% from the initial starting conditions.

    Matched MeSH terms: Glucose/metabolism
  19. Erejuwa OO
    Int J Mol Sci, 2012;13(3):2965-72.
    PMID: 22489136 DOI: 10.3390/ijms13032965
    The primary aim of the current management of diabetes mellitus is to achieve and/or maintain a glycated hemoglobin level of ≤6.5%. However, recent evidence indicates that intensive treatment of hyperglycemia is characterized by increased weight gain, severe hypoglycemia and higher mortality. Besides, evidence suggests that it is difficult to achieve and/or maintain optimal glycemic control in many diabetic patients; and that the benefits of intensively-treated hyperglycemia are restricted to microvascular complications only. In view of these adverse effects and limitations of intensive treatment of hyperglycemia in preventing diabetic complications, which is linked to oxidative stress, this commentary proposes a hypothesis that "simultaneous targeting of hyperglycemia and oxidative stress" could be more effective than "intensive treatment of hyperglycemia" in the management of diabetes mellitus.
    Matched MeSH terms: Blood Glucose/metabolism
  20. Ergün UGO, Oztüzün S, Seydaoglu G
    Med J Malaysia, 2004 Aug;59(3):406-10.
    PMID: 15727389
    To examine a possible association between lipoprotein(a) [Lp(a)] levels and diabetic retinopathy in patients with type 2 diabetes mellitus. 100 type 2 diabetic patients were assessed with the following parameters: age, body mass index, duration of diabetes, blood pressure, fasting plasma glucose, total cholesterol, HDL-cholesterol, triglycerides, blood urea nitrogen, creatinine, Lp(a), and albumin excretion rate (AER). Retinopathy was classified as normal retina (NR), non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR) by an ophthalmologist. The PDR group had higher cholesterol (t=-2.24, p<0.05) and creatinine (z=-2.547, p<0.05) levels than the NPDR group. The PDR group had a higher value of AER (z=-2.439, p<0.01) than the NR group. The possibility of developing diabetic retinopathy after 10 years of diabetes was found to be 6.5 fold high (OR; 6.57, 95% CI 1.74-24.79; p<0.05). The Lp(a) levels were similar in the patients with retinopathy and those without retinopathy. In the study, there was no evidence for a relationship between the serum Lp(a) levels and diabetic retinopathy in type 2 diabetic patients.
    Study site: diabetic outpatient clinic at Haydarpasa Numune Education and Research Hospital in Istanbul, Turkey.
    Matched MeSH terms: Blood Glucose/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links