Displaying publications 81 - 100 of 153 in total

Abstract:
Sort:
  1. Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR
    Asian Pac J Trop Biomed, 2013 Aug;3(8):604-10; discussion 609-10.
    PMID: 23905016 DOI: 10.1016/S2221-1691(13)60123-9
    To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  2. Chang YT, Coombs G, Ling T, Balaji V, Rodrigues C, Mikamo H, et al.
    Int J Antimicrob Agents, 2017 Jun;49(6):734-739.
    PMID: 28435019 DOI: 10.1016/j.ijantimicag.2017.01.030
    This study was conducted to investigate the epidemiology and antimicrobial susceptibility patterns of Gram-negative bacilli (GNB) isolated from intra-abdominal infections (IAIs) in the Asia-Pacific region (APR) from 2010-2013. A total of 17 350 isolates were collected from 54 centres in 13 countries in the APR. The three most commonly isolated GNB were Escherichia coli (46.1%), Klebsiella pneumoniae (19.3%) and Pseudomonas aeruginosa (9.8%). Overall, the rates of extended-spectrum β-lactamase (ESBL)-producing E. coli and K. pneumoniae were 38.2% and 24.3%, respectively, and they were highest in China (66.6% and 38.7%, respectively), Thailand (49.8% and 36.5%, respectively) and Vietnam (47.9% and 30.4%, respectively). During 2010-2013, the rates of ESBL-producing E. coli and K. pneumoniae isolates causing community-associated (CA) IAIs (collected <48 h after admission) were 26.0% and 13.5%, respectively, and those causing hospital-associated (HA) IAIs were 48.0% and 30.6%, respectively. Amikacin, ertapenem and imipenem were the most effective agents against ESBL-producing isolates. Piperacillin/tazobactam displayed good in vitro activity (91.4%) against CA ESBL-producing E. coli. For other commonly isolated Enterobacteriaceae, fluoroquinolones, cefepime and carbapenems exhibited better in vitro activities than third-generation cephalosporins. Amikacin possessed high in vitro activity against all GNB isolates (>80%) causing IAIs, except for Acinetobacter calcoaceticus-baumannii (ACB) complex (30.9% for HA-IAI isolates). All of the antimicrobial agents tested exhibited <45% in vitro activity against ACB complex. Antimicrobial resistance is a persistent threat in the APR and continuous monitoring of evolutionary trends in the susceptibility patterns of GNB causing IAIs in this region is mandatory.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*; Gram-Negative Bacteria/isolation & purification; Gram-Negative Bacterial Infections/microbiology*; Gram-Negative Bacterial Infections/epidemiology*
  3. Suwantarat N, Carroll KC
    PMID: 27148448 DOI: 10.1186/s13756-016-0115-6
    Multidrug-resistant Gram-negative bacteria (MDRGN), including extended-spectrum β-lactamases (ESBLs) and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters), have emerged and spread throughout Southeast Asia.
    Matched MeSH terms: Gram-Negative Bacteria; Gram-Negative Bacterial Infections
  4. Fayyaz Z, Farrukh MA, Ul-Hamid A, Chong KK
    Microsc Res Tech, 2024 May;87(5):957-976.
    PMID: 38174385 DOI: 10.1002/jemt.24487
    The present exploration demonstrates the efficient, sustainable, cost-effective, and environment-friendly green approach for the synthesis of silver (Ag)-doped copper oxide (CuO) embedded with reduced graphene oxide (rGO) nanocomposite using the green one-pot method and the green deposition method. Leaf extracts of Ficus carica and Azadirachta indica were used for both methods as reducing and capping agents. The effect of methodology and plant extract was analyzed through different characterization techniques such as UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM). The lowest band gap of 3.0 eV was observed for the Ag/CuO/rGO prepared by the green one-pot method using F. carica. The reduction of graphene oxide (GO) and the formation of metal oxide was confirmed through functional group detection using FT-IR. Calculation of thermodynamic parameters showed that all reactions involved were nonspontaneous and endothermic which shows the stability of nanocomposites. XRD studies revealed the crystallinity, phase purity and small average crystallite size of 32.67 nm. SEM images disclosed that the morphology of the nanocomposites was spherical with agglomeration and rough texture. The particle size of the nanocomposites calculated through HRTEM was found in agreement with the XRD results. The numerous properties of the synthesized nanocomposites enhanced their potential against the degradation of methylene blue, rhodamine B, and ciprofloxacin. The highest percentage degradation of Ag/CuO/rGO was found to be 97%, synthesized using the green one-pot method with F. carica against ciprofloxacin, which might be due to the lowest band gap, delayed electron-hole pair recombination, and large surface area available. The nanocomposites were also tested against the Gram-positive and Gram-negative bacteria. RESEARCH HIGHLIGHTS: Facile synthesis of Ag/CuO/rGO nanocomposite using a green one-pot method and the green deposition method. The lowest band gap of 3.0 eV was observed for nanocomposite prepared by a green one-pot method using Ficus carica. Least average crystallite size of 32.67 nm was found for nanocomposite prepared by a green one-pot method using F. carica. Highest antibacterial and catalytic activity (97%) was obtained against ciprofloxacin with nanocomposite prepared through green one-pot method using F. carica. A mechanism of green synthesis is proposed.
    Matched MeSH terms: Gram-Negative Bacteria
  5. Darah I, Lim SH, Nithianantham K
    Indian J Pharm Sci, 2013 Sep;75(5):533-9.
    PMID: 24403653
    The antibacterial activity of the methanol extract of Wedelia chinensis leave was studied and tested against three pathogenic Gram positive bacteria (Bacillus cereus, B. subtilis and Stapylococcus aureus) and three pathogenic Gram negative bacteria (Escherichia coli, Proteus rettgeri and Pseudomonas aeruginosa) by the disk diffusion assay and broth dilution methods. The extract exhibited favourable antibacterial activity against the bacterial cells but was more potent against Gram positive bacteria with the minimum inhibition concentration of 3.12 to 6.25 mg/ml compared to the Gram negative bacteria which had minimum inhibition concentration values of 25 mg/ml. The time-kill study suggested that the extract possessed bactericidal properties at higher concentrations and eradicated the growth of bacterial cells. The major abnormalities occurred to the bacterial cells after exposed to the extract were complete alterations in their morphology and collapsed of the cells beyond repair. The methanol extract of W. chinensis may be an effective antibacterial agent to treat bacterial infections.
    Matched MeSH terms: Gram-Negative Bacteria
  6. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, et al.
    PMID: 27318600 DOI: 10.1016/j.jphotobiol.2016.06.007
    The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  7. Mohamed AF, Kristoffersson AN, Karvanen M, Nielsen EI, Cars O, Friberg LE
    J Antimicrob Chemother, 2016 May;71(5):1279-90.
    PMID: 26850719 DOI: 10.1093/jac/dkv488
    Combination therapy can be a strategy to ensure effective bacterial killing when treating Pseudomonas aeruginosa, a Gram-negative bacterium with high potential for developing resistance. The aim of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model that describes the in vitro bacterial time-kill curves of colistin and meropenem alone and in combination for one WT and one meropenem-resistant strain of P. aeruginosa.
    Matched MeSH terms: Gram-Negative Bacteria
  8. Aldawsari MF, Ahmed MM, Fatima F, Anwer MK, Katakam P, Khan A
    Mar Drugs, 2021 Aug 20;19(8).
    PMID: 34436306 DOI: 10.3390/md19080467
    The objective of this work was to develop sustained-release Ca-alginate beads of apigenin using sodium alginate, a natural polysaccharide. Six batches were prepared by applying the ionotropic gelation technique, wherein calcium chloride was used as a crosslinking agent. The beads were evaluated for particle size, drug loading, percentage yield, and in vitro drug release. Particle size was found to decrease, and drug entrapment efficiency was enhanced with an increase in the polymer concentration. The dissolution study showed sustained drug release from the apigenin-loaded alginate beads with an increase in the polymer proportion. Based on the dissolution profiles, BD6 formulation was optimized and characterized for FTIR, DSC, XRD, and SEM, results of which indicated successful development of apigenin-loaded Ca alginate beads. MTT assay demonstrated a potential anticancer effect against the breast cancer MCF-7 cell lines. The antimicrobial activity exhibited effective inhibition in the bacterial and fungal growth rate. The DPPH measurement revealed that the formulation had substantial antioxidant activity, with EC50 value slightly lowered compared to pure apigenin. A stability study demonstrated that the BD6 was stable with similar (f2) drug release profiles in harsh condition. In conclusion, alginate-based beads could be used for sustaining the drug release of poorly water-soluble apigenin while also improving in vitro antitumor, antimicrobial, and antioxidant activity.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  9. Ara B, Urmi UL, Haque TA, Nahar S, Rumnaz A, Ali T, et al.
    Expert Rev Clin Pharmacol, 2021 Apr;14(4):513-522.
    PMID: 33691556 DOI: 10.1080/17512433.2021.1901577
    Background: Currently, colistin-resistant pathogens emerged has become a global health concern. This study assessed the distribution of mcr-1 to mcr-5 variants with the phenotypic colistin-resistance in bacterial isolates from urinary tract infection (UTI) patients in Bangladesh.Methods: A cross-sectional study was conducted between April 2017 and March 2018 to enroll uncomplicated UTI patients, and 142 urine samples were analyzed. Uropathogens were identified using the API-20E biochemical panel and 16s rRNA gene sequencing. Polymerase chain reactions detected the mcr gene variants in the UTI isolates. The phenotypic colistin-susceptibility was determined by the Kirby-Bauer disc-diffusion method and the minimal inhibitory concentration (MIC) measurement.Results: The combined carriage of mcr-1 and mcr-2 genes in 11.4% (14/123) of urinary tract pathogens. The mcr-positive pathogens include five Escherichia coli, three Klebsiella pneumoniae, three Pseudomonas putida, two Enterobacter cloacae, and one Enterobacter hormaechei. The mcr-positive variant showed significantly higher phenotypic colistin resistance with MIC between >16 µg/mL and >128 µg/mL (p
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/genetics; Gram-Negative Bacteria/isolation & purification; Gram-Negative Bacterial Infections/drug therapy*; Gram-Negative Bacterial Infections/microbiology
  10. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Drug Dev Res, 2019 02;80(1):179-186.
    PMID: 30570767 DOI: 10.1002/ddr.21508
    In the quest for discovering potent antimicrobial agents with lower toxicity, we envisioned the design and synthesis of nalidixic acid-D-(+)-glucosamine conjugates. The novel compounds were synthesized and evaluated for their in vitro antimicrobial activity against Gram positive bacteria, Gram negative bacteria and fungi. Cytotoxicity using MTT assay over L6 skeletal myoblast cell line, ATCC CRL-1458 was carried out. In vitro antimicrobial assay revealed that 1-ethyl-7-methyl-4-oxo-N-(1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose-2-yl)-[1,8]-naphthyridine-3-carboxamide (5) and 1-ethyl-7-methyl-4-oxo-N-(2-deoxy-D-glucopyranose-2-yl)-[1,8]-naphthyridine-3-carboxamide(6) possess growth inhibitory activity against resistant Escherichia coli NCTC, 11954 (MIC 0.1589 mM) and Methicillin resistant Staphylococcus aureus ATCC, 33591 (MIC 0.1589 mM). Compound (5) was more active against Listeria monocytogenes ATCC 19115 (MIC 0.1113 mM) in comparison with the reference nalidixic acid (MIC 1.0765 mM). Interestingly, compound (6) had potential antifungal activity against Candida albicans ATCC 10231 (MIC <0.0099 mM). Remarkably, the tested compounds had low cytotoxic effect. This study indicated that glucosamine moiety inclusion into the chemical structure of the marketed nalidixic acid enhances antimicrobial activity and safety.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects; Gram-Negative Bacteria/physiology
  11. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Eur J Med Chem, 2020 Sep 15;202:112513.
    PMID: 32623216 DOI: 10.1016/j.ejmech.2020.112513
    Herein we report the design, synthesis and biological evaluation of structurally modified ciprofloxacin, norfloxacin and moxifloxacin standard drugs, featuring amide functional groups at C-3 of the fluoroquinolone scaffold. In vitro antimicrobial testing against various Gram-positive bacteria, Gram-negative bacteria and fungi revealed potential antibacterial and antifungal activity. Hybrid compounds 9 (MIC 0.2668 ± 0.0001 mM), 10 (MIC 0.1358 ± 00025 mM) and 13 (MIC 0.0898 ± 0.0014 mM) had potential antimicrobial activity against a fluoroquinolone-resistant Escherichia coli clinical isolate, compared to ciprofloxacin (MIC 0.5098 ± 0.0024 mM) and norfloxacin (MIC 0.2937 ± 0.0021 mM) standard drugs. Interestingly, compound 10 also exerted potential antifungal activity against Candida albicans (MIC 0.0056 ± 0.0014 mM) and Penicillium chrysogenum (MIC 0.0453 ± 0.0156 mM). Novel derivatives and standard fluoroquinolone drugs exhibited near-identical cytotoxicity levels against L6 muscle cell-line, when measured using the MTT assay.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  12. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2020;20(15):1559-1571.
    PMID: 30179132 DOI: 10.2174/1389557518666180903151849
    BACKGROUND: Various analogues of benzimidazole are found to be biologically and therapeutically potent against several ailments. Benzimidazole when attached with heterocyclic rings has shown wide range of potential activities. So, from the above provided facts, we altered benzimidazole derivatives so that more potent antagonists could be developed. In the search for a new category of antimicrobial and anticancer agents, novel azomethine of 2-mercaptobenzimidazole derived from 3-(2- (1H-benzo[d]imidazol-2-ylthio)acetamido)benzohydrazide were synthesized.

    RESULTS AND DISCUSSION: The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug.

    CONCLUSION: In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.

    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  13. Nie J, Aweya JJ, Yu Z, Zhou H, Wang F, Yao D, et al.
    J Immunol, 2022 Aug 01;209(3):476-487.
    PMID: 35851542 DOI: 10.4049/jimmunol.2200078
    Although invertebrates' innate immunity relies on several immune-like molecules, the diversity of these molecules and their immune response mechanisms are not well understood. Here, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes specific deacetylation under Vibrio parahaemolyticus and LPS challenge. In vitro deacetylation of PvHMC increases its binding capacity with LPS and antibacterial activity against Gram-negative bacteria. Lysine residues K481 and K484 on the Ig-like domain of PvHMC are the main acetylation sites modulated by the acetyltransferase TIP60 and deacetylase HDAC3. Deacetylation of PvHMC on K481 and K484 allows PvHMC to form a positively charged binding pocket that interacts directly with LPS, whereas acetylation abrogates the positive charge to decrease PvHMC-LPS attraction. Besides, V. parahaemolyticus and LPS challenge increases the expression of Pvhdac3 to induce PvHMC deacetylation. This work indicates that, during bacterial infections, deacetylation of hemocyanin is crucial for binding with LPS to clear Gram-negative bacteria in crustaceans.
    Matched MeSH terms: Gram-Negative Bacteria
  14. Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, et al.
    J Nat Prod, 2016 Apr 22;79(4):784-91.
    PMID: 26974604 DOI: 10.1021/acs.jnatprod.5b00810
    Four new 2,3-secodammarane triterpenoids, stellatonins A-D (3-6), together with a new 3,4-secodammarane triterpenoid, stellatonin E (7), and the known silvestrol (1), 5‴-episilvestrol (2), and β-sitosterol, were isolated from a methanol extract of the stems of Aglaia stellatopilosa through bioassay-guided fractionation. The structures of the new compounds were elucidated using spectroscopic and chemical methods. The compounds were evaluated for their cytotoxic activity against three human cancer cell lines and for their antimicrobial activity using a microtiter plate assay against a panel of Gram-positive and Gram-negative bacteria and fungi.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects
  15. Hooi SH, Hooi ST
    Med J Malaysia, 2005 Dec;60(5):614-23.
    PMID: 16515113
    One hundred patients (101 eyes) with culture-proven bacterial keratitis were treated in the Department of Ophthalmology, Hospital Sultanah Aminah, Johor Bahru, over a 4-year period. The majority of patients was male (63%), Malay (60%), from the Johor Bahru district (62%) and aged between 41 to 50 years (20%). The ocular predisposing factors were ocular trauma (41 eyes), ocular surface disease (28 eyes) and contact lens wear (26 eyes). The corneal ulcers were mainly large (50.5%), central (59.4%) and colonized by Gram-negative bacteria (78.1%). The most frequently isolated microorganisms were Pseudomonas aeruginosa (67 eyes), Staphylococcus aureus (12 eyes), Acinetobacter baumanii (6 eyes), Klebsiella pneumoniae (5 eyes), Corynebacterium sp. (3 eyes:) and Streptococcus pneumonliae (3 eyes). Twelve eyes (11.8%) had polymicrobial infection. A good visual outcome occurred in 52.5% of eyes analysed. Prognostic factors for visual outcome include presenting Snellen visual acuity, time to presentation after onset of ocular symptoms, ocular predisposing factor, corneal ulcer location and corneal ulcer size.
    Matched MeSH terms: Gram-Negative Bacteria/isolation & purification*
  16. Saud SN, Hosseinian S R, Bakhsheshi-Rad HR, Yaghoubidoust F, Iqbal N, Hamzah E, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:687-694.
    PMID: 27524069 DOI: 10.1016/j.msec.2016.06.048
    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development
  17. Marilyn Charlene Montini Maluda, Michelle May D. Goroh, Tan, Eric Chee How, Syed Sharizman Syed Abdul Rahim, Richard Avoi, Mohammad Saffree Jeffree, et al.
    MyJurnal
    Introduction: Melioidosis, also known as Whitmore disease, is caused by the gram-negative bacillus, Burkholderia pseudomallei and remains a public health concern in Southeast Asia and northern parts of Australia. This study attempts to identify all possible complications of melioidosis and its outcomes.
    Methods: Literature search was conducted from databases such as PubMed, Science Direct and Scopus from 1st January 2000 to 31st August 2019. Medical Subject Headings (MeSH) search strategy was used with the terms ‘Melioidosis’ or ‘Burkholderia pseudomallei’ and ‘Complications’.
    Results: A total of 162 titles were identified and 22 articles were included in the review. Findings showed that among the 22 articles, the ratio of male to female melioidosis incidence was 2.3 to 1, with most cases (86.4%) aged older than 14 years old and showed a mean age of 46 years old. A third (7/22) of the papers reported the involvement of the nervous system as a complication of melioidosis followed by cardiovascular complications. Among the 23 cases reported, 13 had underlying medical conditions with most of them (84.6%) having diabetes mellitus or newly diagnosed with diabetes mellitus. Overall, only one case (4.3%) had resulted in mortality, while 17.4% developed complications and 78.3% managed a full recovery after undergoing treatment for melioidosis.
    Conclusion: The most commonly found complication of melioidosis involved the nervous system but patient outcomes were favourable. Rare complications included mycotic aneurysm that can be fatal. Melioidosis can affect almost any organ leading to various complications.
    Matched MeSH terms: Gram-Negative Bacteria
  18. Yusof NY, Muhammad Yusoff F, Muhammad Harish S, Ahmad MN, Khalid MF, Mohd Nor F, et al.
    Microbiol Resour Announc, 2019 Jul 11;8(28).
    PMID: 31296668 DOI: 10.1128/MRA.00015-19
    The Gram-negative pathogenic spirochetal bacteria Leptospira spp. cause leptospirosis in humans and livestock animals. Leptospira kmetyi strain LS 001/16 was isolated from a soil sample associated with a leptospirosis patient in Kelantan, which is among the states in Malaysia with a high reported number of disease cases. Here, we report the complete genome sequence of Leptospira kmetyi strain LS 001/16.
    Matched MeSH terms: Gram-Negative Bacteria
  19. Khosravi Y, Rehvathy V, Wee WY, Wang S, Baybayan P, Singh S, et al.
    Gut Pathog, 2013;5:25.
    PMID: 23957912 DOI: 10.1186/1757-4749-5-25
    Helicobacter pylori is a Gram-negative bacterium that persistently infects the human stomach inducing chronic inflammation. The exact mechanisms of pathogenesis are still not completely understood. Although not a natural host for H. pylori, mouse infection models play an important role in establishing the immunology and pathogenicity of H. pylori. In this study, for the first time, the genome sequences of clinical H. pylori strain UM032 and mice-adapted derivatives, 298 and 299, were sequenced using the PacBio Single Molecule, Real-Time (SMRT) technology.
    Matched MeSH terms: Gram-Negative Bacteria
  20. Nusrat T, Akter N, Haque M, Rahman NAA, Dewanjee AK, Ahmed S, et al.
    Pathogens, 2019 Sep 12;8(3).
    PMID: 31547453 DOI: 10.3390/pathogens8030151
    BACKGROUND: Ventilator-associated pneumonia (VAP) is the most common nosocomial infection in intensive care units (ICU), which accounts for 25% of all ICU infection. Documenting carbapenem-resistant gram-negative bacilli is very important as these strains may often cause outbreaks in the ICU setting and are responsible for the increased mortality and morbidity or limiting therapeutic options. The classical phenotypic method cannot provide an efficient means of diagnosis of the metallo-β-lactamases (MBLs) producer. Polymerase chain reaction (PCR) assays have lessened the importance of the phenotypic approach by detecting metallo-β-lactamase resistance genes such as New Delhi metallo-β-lactamase (NDM), Imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), Sao Paulo metallo-β-lactamase (SPM), Germany Imipenemase (GIM).

    OBJECTIVE: To compare the results of the Combined Disc Synergy Test (CDST) with that of the multiplex PCR to detect MBL-producing gram-negative bacilli.

    MATERIALS AND METHOD: A total of 105 endotracheal aspirates (ETA) samples were collected from the ICU of a public school in Bangladesh. This cross-sectional study was carried out in the Department of Microbiology, Chittagong for quantitative culture, CDST test, and multiplex PCR for blaIMP, blaVIM, blaNDM genes of MBL producers.

    RESULTS: Among the 105 clinically suspected VAP cases, the quantitative culture was positive in 95 (90%) and among 95 g-negative bacilli isolated from VAP patients, 46 (48.42%) were imipenem resistant, 30 (65.22%) were MBL producers by CDST, 21 (45.65%) were identified as MBL producers by multiplex PCR.

    CONCLUSION: PCR was highly sensitive and specific for the detection of MBL producers.

    Matched MeSH terms: Gram-Negative Bacteria
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links