Displaying publications 81 - 100 of 1191 in total

Abstract:
Sort:
  1. Kamaruzaman S, Sanagi MM, Endud S, Wan Ibrahim WA, Yahaya N
    PMID: 24140656 DOI: 10.1016/j.jchromb.2013.09.017
    Mesoporous silica material, MCM-41, was utilized for the first time as an adsorbent in solid phase membrane tip extraction (SPMTE) of non-steroidal anti-inflammatory drugs (NSAIDs) in urine prior to high performance liquid chromatography-ultraviolet (HPLC-UV) analysis. The prepared MCM-41 material was enclosed in a polypropylene membrane tip and used as an adsorbent in SPMTE. Four NSAIDs namely ketoprofen, diclofenac, mefenamic acid and naproxen were selected as model analytes. Several important parameters, such as conditioning solvent, sample pH, salting-out effect, sample volume, extraction time, desorption solvent and desorption time were optimized. Under the optimum extraction conditions, the MCM-41-SPMTE method showed good linearity in the range of 0.01-10μg/mL with excellent correlation coefficients (r=0.9977-0.9995), acceptable RSDs (0.4-9.4%, n=3), good limits of detection (5.7-10.6μg/L) and relative recoveries (81.4-108.1%). The developed method showed a good tolerance to biological sample matrices.
    Matched MeSH terms: Hydrogen-Ion Concentration
  2. Mat Yasin NMF, Hossain MS, H P S AK, Zulkifli M, Al-Gheethi A, Asis AJ, et al.
    Polymers (Basel), 2020 Oct 14;12(10).
    PMID: 33066451 DOI: 10.3390/polym12102353
    The refining of the crude palm oil (CPO) generates the palm oil refinery effluent (PORE). The presence of high contents of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity, and suspended solids (SS) in PORE encourages the determination of an effective treatment process to minimize the environmental pollution and preserve aquatic life. In the present study, a biodegradable natural polymer, namely tannin, was utilized as a coagulant to treat PORE. The coagulation experiment was conducted using a jar test apparatus. The tannin coagulation efficiency was evaluated based on the BOD, COD, turbidity, and SS removal from PORE by varying the tannin dose (50-300 mg/L), pH (pH 4-10), treatment time (15-90 min), and sedimentation time (15-90 min). It was found that the maximum removal of BOD, COD, turbidity, and SS was 97.62%, 88.89%, 93.01%, and 90.21%, respectively, at pH 6, a tannin dose of 200 mg/L, 60 min of coagulation time, and 60 min of sedimentation time. Analyses of isotherm models revealed that the Freundlich isotherm model was well fitted with the coagulation study. Kinetics studies show that the pseudo-second-order kinetics model was the well-fitted kinetics model for the BOD, COD, turbidity, and SS removal from PORE using tannin as a polymeric coagulant. The determination of thermodynamics parameters analyses revealed that BOD, COD, turbidity, and SS removal from PORE was spontaneous, exothermic, and chemical in nature. The finding of the present study shows that tannin as a natural polymeric coagulant would be utilized in PORE treatment to avoid toxic sludge generation.
    Matched MeSH terms: Hydrogen-Ion Concentration
  3. Khalid AM, Hossain MS, Ismail N, Khalil NA, Balakrishnan V, Zulkifli M, et al.
    Polymers (Basel), 2020 Dec 30;13(1).
    PMID: 33396583 DOI: 10.3390/polym13010112
    In the present study, magnetic oil palm empty fruits bunch cellulose nanofiber (M-OPEFB-CNF) composite was isolated by sol-gel method using cellulose nanofiber (CNF) obtained from oil palm empty fruits bunch (OPEFB) and Fe3O4 as magnetite. Several analytical methods were utilized to characterize the mechanical, chemical, thermal, and morphological properties of the isolated CNF and M-OPEFB-CNF. Subsequently, the isolated M-OPEFB-CNF composite was utilized for the adsorption of Cr(VI) and Cu(II) from aqueous solution with varying parameters, such as pH, adsorbent doses, treatment time, and temperature. Results showed that the M-OPEFB-CNF as an effective bio-sorbent for the removal of Cu(II) and Cr(VI) from aqueous solution. The adsorption isotherm modeling revealed that the Freundlich equation better describes the adsorption of Cu(II) and Cr(VI) on M-OPEFB-CNF composite. The kinetics studies revealed the pseudo-second-order kinetics model was a better-described kinetics model for the removal of Cu(II) and Cr(VI) using M-OPEFB-CNF composite as bio-sorbent. The findings of the present study showed that the M-OPEFB-CNF composite has the potential to be utilized as a bio-sorbent for heavy metals removal.
    Matched MeSH terms: Hydrogen-Ion Concentration
  4. Rusul G, Yaacob NH
    Int J Food Microbiol, 1995 Apr;25(2):131-9.
    PMID: 7547144
    Enterotoxigenic Bacillus cereus was detected in cooked foods (17), rice noodles (3), wet wheat noodles (2), dry wheat noodles (10), spices (8), grains (4), legumes (11) and legume products (3). One hundred ninety-four (42.3%), 70 (15.3%) and 23 (5.2%) of the 459 presumptive B. cereus colonies isolated from PEMBA agar were identified as B. cereus, Bacillus thuringiensis and B. mycoides, respectively. B. cereus isolates were examined for growth temperature, pH profile and enterotoxin production using both TECRA-VIA and BCET-RPLA kits. One hundred seventy-eight (91.8%) and 164 (84%) of the strains were enterotoxigenic as determined using TECRA-VIA and BCET-RPLA, respectively. Eighty-two (50%) of the enterotoxigenic strains were capable of growing at 5 degrees C, and 142 (86.6%) grew at 7 degrees C within 7 days of incubation. The enterotoxigenic strains did not grow at pH 4.0 but 69 (42.0%) of the strains were able to grow at pH 4.5 within 7 days at 37 degrees C. The isolates were resistant to ampicillin (98.8%), cloxallin (100%) and tetracycline (61.0%), and susceptible to chloroamphenicol (87%), erythromycin (77.4%), gentamycin (100%) and streptomycin (98.7%).
    Matched MeSH terms: Hydrogen-Ion Concentration
  5. Shafiei Z, Rahim ZHA, Philip K, Thurairajah N, Yaacob H
    Arch Oral Biol, 2020 Jan;109:104554.
    PMID: 31563709 DOI: 10.1016/j.archoralbio.2019.104554
    OBJECTIVE: Psidium sp., Mangifera sp. and Mentha sp. and its mixture (PEM) are known to have antimicrobial and anti-adherence effects.

    DESIGN: Here, we have investigated these individual plant extracts and its synergistic mixture (PEM) for its anti-cariogenic effect to reduce populations of single and mixed-species of Streptococcus sanguinis and Streptococcus mutans in a planktonic or/and biofilm and their others reduced virulence. Bacterial populations in the biofilm after 24 h, hydrophobic cell surface activity to n-hexadecane and pH changes at 5 min' intervals until 90 min of incubation were recorded. Total phenolic content and bioactive compounds in the crude aqueous plant extracts were analysed. Regulatory gene expressions of S. mutans adhesins genes (gtfB, gtfC, gbpB and spaP) upon treatment with PEM were investigated in planktonic and biofilm conditions.

    RESULTS: All plant extracts strongly reduced S. mutans in the biofilm compared to S. sanguinis in single and mixed-species. PEM reduced S. mutans by 84% with S. sanguinis 87% in the mixed population. Psidium sp. and PEM highly reduced cell-surface hydrophobicity of the two bacteria thus reducing adherence and biofilm formation. PEM and Mangifera sp. lowered initial pH change in the mixed populations of S. sanguinis and S. mutans. PEM downregulated the S. mutans gtfB gene expression in the single species planktonic and mixed-species biofilms.

    CONCLUSIONS: The effectiveness of PEM in reducing S. mutans within the biofilm, cell-surface hydrophobicity, acid production and adhesin gene (gtfB) expression in mixed-species with S. sanguinis indicates its potential as an antibacterial agent against dental caries. This is attributed to the phenolic content in the PEM.

    Matched MeSH terms: Hydrogen-Ion Concentration
  6. Zhang X, Zheng Y, Zhou C, Cao J, Zhang Y, Wu Z, et al.
    Ultrason Sonochem, 2024 May;105:106857.
    PMID: 38552299 DOI: 10.1016/j.ultsonch.2024.106857
    This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 μg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.
    Matched MeSH terms: Hydrogen-Ion Concentration
  7. Huang L, Wen X, Wang Y, Zou Y, Ma B, Liao X, et al.
    J Environ Sci (China), 2014 Oct 1;26(10):2001-6.
    PMID: 25288543 DOI: 10.1016/j.jes.2014.07.012
    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester.
    Matched MeSH terms: Hydrogen-Ion Concentration
  8. Yan Q, Li X, Ma B, Zou Y, Wang Y, Liao X, et al.
    Front Microbiol, 2018;9:3129.
    PMID: 30619199 DOI: 10.3389/fmicb.2018.03129
    Antibiotic residues that enter the soil through swine manure could disturb the number, community structure and functions of microbiota which could also degrade antibiotics in soil. Five different concentrations of doxycycline (DOX) incorporated into swine manure were added to soil to explore the effects of DOX on microbiota in soil and degradation itself. The results showed that the soil microbiome evolved an adaptation to the soil containing DOX by generating resistance genes. Moreover, some of the organisms within the soil microbiome played crucial roles in the degradation of DOX. The average degradation half-life of DOX in non-sterile groups was 13.85 ± 0.45 days, which was significantly shorter than the 29.26 ± 0.98 days in the group with sterilized soil (P < 0.01), indicating that the soil microbiome promoted DOX degradation. DOX addition affected the number of tetracycline resistance genes, depending on the type of gene and the DOX concentration. Among these genes, tetA, tetM, tetW, and tetX had significantly higher copy numbers when the concentration of DOX was higher. In contrast, a lower concentration of DOX had an inhibitory effect on tetG. At the same time, the microbial compositions were affected by the initial concentration of DOX and the different experimental periods. The soil chemical indicators also affected the microbial diversity changes, mainly because some microorganisms could survive in adversity and become dominant bacterial groups, such as the genera Vagococcus and Enterococcus (which were associated with electrical conductivity) and Caldicoprobacter spp. (which were positively correlated with pH). Our study mainly revealed soil microbiota and DOX degradation answered differently under variable concentrations of DOX mixed with swine manure in soil.
    Matched MeSH terms: Hydrogen-Ion Concentration
  9. Yusof AM, Rahman NA, Wood AK
    Biol Trace Elem Res, 1994;43-45:239-49.
    PMID: 7710833
    Trace elements, such as As, Co, Cr, Hg, Sb, and Zn, were determined by neutron activation analysis (NAA), whereas Cd, Cu, and Pb were determined by graphite furnace atomic absorption spectroscopy (GFAAS) in clam, crab, prawn, swamp cerith, and mussel samples after digestion by microwave heating under controlled conditions before eluting the solutions through a column of a chelating resin, Chelex-100. The standard used in the determination of percentage volatile elements retained by microwave digestion and also in the activation process was Lobster Hepatopancreas TORT-1, whereas known mixed standards were prepared from nitrate salts to determine the efficiency of the separation procedure at a controlled pH. Mercury and lead detected in crabs exceeded the maximum permissible level. Some species also showed a high affinity toward certain elements, and their levels of accumulation in the tissues of these species corresponded with the concentration of these elements in sediments, especially at sites in the vicinity of an industrial zone.
    Matched MeSH terms: Hydrogen-Ion Concentration
  10. Nurulaini H, Wong TW
    J Pharm Sci, 2011 Jun;100(6):2248-57.
    PMID: 21213311 DOI: 10.1002/jps.22459
    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation.
    Matched MeSH terms: Hydrogen-Ion Concentration
  11. Jamaluddin N, Ariff AB, Wong FWF
    Biotechnol Prog, 2019 01;35(1):e2719.
    PMID: 30299004 DOI: 10.1002/btpr.2719
    Aqueous micellar two-phase system (AMTPS) is an extractive technique of biomolecule, where it is based on the differential partitioning behavior of biomolecule between a micelle-rich and a micelle-poor phase. In this study, an AMTPS composed of a nonionic surfactant, Triton X-100 (TX-100) was used for purifying a bacteriocin-like inhibitory substance (BLIS) derived from Pediococcus acidilactici Kp10. The influences of the surfactant concentration and the effect of additives on the partitioning behavior and activity yield of the BLIS were investigated. The obtained coexistence curves showed that the mixtures of solutions composed of different surfactant concentrations (5-30% w/w) and 50% w/w crude load were able to separate into two phases at temperatures of above 60 °C. The optimum conditions for BLIS partitioning using the TX-100-based AMTPS were: TX-100 concentration of 22.5% w/w, CFCS load of 50% w/w, incubation time of 30 min at 75 °C, and back-extraction using acetone precipitation. This optimal partitioning resulted in an activity yield of 64.3% and a purification factor of 5.8. Moreover, the addition of several additives, such as sorbitol, KCl, dioctyl sulfosuccinate sodium salt, and Coomassie® Brilliant Blue, demonstrated no improvement in the BLIS separation, except for Amberlite® resin XAD-4, where the activity yield was improved to 70.3% but the purification factor was reduced to 2.3. Results from this study have demonstrated the potential and applicability of TX-100-based AMTPS as a primary recovery method for the BLIS from a complex fermentation broth of P. acidilactici Kp10. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2719, 2019.
    Matched MeSH terms: Hydrogen-Ion Concentration
  12. Chai TT, Xiao J, Mohana Dass S, Teoh JY, Ee KY, Ng WJ, et al.
    Food Chem, 2021 Mar 15;340:127876.
    PMID: 32871354 DOI: 10.1016/j.foodchem.2020.127876
    Jackfruit is a sweet tropical fruit with very pleasant aroma, and the ripe seeds are edible. In this study, jackfruit seed proteins were isolated and subjected to trypsin digestion. The resultant protein hydrolysate was then subjected to antioxidant assay-guided purification, using centrifugal filtration, C18 reverse-phase and strong cation exchange (SCX) fractionations. The purified SCX fraction was further analyzed by de novo peptide sequencing, and two peptide sequences were identified and synthesized. Peptide JFS-2 (VGPWQK) was detected with antioxidant potential, with EC50 value comparable to that of commercial GSH antioxidant peptide. Additionally, the identified peptides were tested with protein protection potential, in an albumin protein denaturation inhibitory assay. Concurrently, we also investigated the pH, temperature, and gastrointestinal-digestion stability profiles for the identified peptide. With further research efforts, the identified peptides could potentially be developed into preservative agent for protein-rich food systems or as health-promoting diet supplements.
    Matched MeSH terms: Hydrogen-Ion Concentration
  13. Lin H, Ng AWR, Wong CW
    Food Sci Biotechnol, 2016;25(Suppl 1):91-96.
    PMID: 30263491 DOI: 10.1007/s10068-016-0103-x
    Purification and characterization of polyphenol oxidase (PPO) from Chinese parsley (Coriandrum sativum) were achieved. Crude PPO exhibited an enzyme activity of 1,952.24 EU/mL. PPO was partially purified up to 6.52x with a 10.89% yield using gel filtration chromatography. Maximal PPO activity was found at 35°C, pH 8.0 for 4-methylcatechol and at 40°C, pH 7.0 for catechol. PPO showed a higher affinity towards 4-methylcatechol, but a higher thermal stability when reacting with catechol. LCysteine was a better inhibitor than citric acid for reducing PPO activity at concentrations of 1 and 3mM in the presence of either substrate. Two 46 kDa isoenzymes were identified using SDS-PAGE. Isolation and characterization of Chinese parsley serves as a guideline for prediction of enzyme behavior leading to effective prevention of enzymatic browning during processing and storage, including inhibition and inactivation of PPO.
    Matched MeSH terms: Hydrogen-Ion Concentration
  14. Rahman RN, Salleh AB, Basri M, Wong CF
    Int J Mol Sci, 2011;12(9):5797-814.
    PMID: 22016627 DOI: 10.3390/ijms12095797
    Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3) was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.
    Matched MeSH terms: Hydrogen-Ion Concentration
  15. Peh KK, Wong CF
    Drug Dev Ind Pharm, 2000 Jul;26(7):723-30.
    PMID: 10872090
    Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f2* values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.
    Matched MeSH terms: Hydrogen-Ion Concentration
  16. Reghioua A, Jawad AH, Selvasembian R, ALOthman ZA, Wilson LD
    Int J Phytoremediation, 2023;25(14):1988-2000.
    PMID: 37291893 DOI: 10.1080/15226514.2023.2216304
    This research aims to convert pomegranate peel (PP) into microporous activated carbon (PPAC) using a microwave assisted K2CO3 activation method. The optimum activation conditions were carried out with a 1:2 PP/K2CO3 impregnation ratio, radiation power 800 W, and 15 min irradiation time. The statistical Box-Behnken design (BBD) was employed as an effective tool for optimizing the factors that influence the adsorption performance and removal of methylene blue (MB) dye. The output data of BBD with a desirability function indicate a 94.8% removal of 100 mg/L MB at the following experimental conditions: PPAC dose of 0.08 g, solution pH of 7.45, process temperature of 32.1 °C, and a time of 30 min. The pseudo-second order (PSO) kinetic model accounted for the contact time for the adsorption of MB. At equilibrium conditions, the Freundlich adsorption isotherm describes the adsorption results, where the maximum adsorption capacity of PPAC for MB dye was 291.5 mg g-1. This study supports the utilization of biomass waste from pomegranate peels and conversion into renewable and sustainable adsorbent materials. As well, this work contributes to the management of waste biomass and water pollutant sequestration.
    Matched MeSH terms: Hydrogen-Ion Concentration
  17. Arni LA, Hapiz A, Jawad AH, Abdulhameed AS, ALOthman ZA, Wilson LD
    Int J Biol Macromol, 2023 Sep 01;248:125943.
    PMID: 37482164 DOI: 10.1016/j.ijbiomac.2023.125943
    Herein, a novel nanohybrid composite of magnetic chitosan-salicylaldehyde/nanoclay (MCH-SAL/NCLA) was hydrothermally synthesized for removal of azo dye (acid red 88, AR88) from simulated wastewater. Response surface methodology combined with the Box-Behnken design (RSM-BBD) was applied with 29 experiments to assess the impact of adsorption variables, that include A: % NCLA loading (0-50), B: MCH-SAL/NCLA dose (0.02-0.1 g/100 mL), C: pH (4-10), and time D: (10-90 min) on AR88 dye adsorption. The highest AR88 removal (75.16 %) as per desirability function was attained at the optimum conditions (NCLA loading = 41.8 %, dosage = 0.06 g/100 mL, solution pH = 4, and time = 86. 17 min). The kinetic and equilibrium adsorption results of AR88 by MCH-SAL/NCLA reveal that the process follows the pseudo-first-order and Temkin models. The MCH-SAL/NCLA composite has a maximum adsorption capacity (173.5 mg/g) with the AR88 dye. The adsorption of AR88 onto the MCH-SAL/NCLA surface is determined by a variety of processes, including electrostatic, hydrogen bonding, n-π, and n-π interactions. This research revealed that MCH-SAL/NCLA can be used as a versatile and efficient bio-adsorbent for azo dye removal from contaminated wastewater.
    Matched MeSH terms: Hydrogen-Ion Concentration
  18. Mohammed Shafit H, Williams SK
    Poult Sci, 2010 Mar;89(3):594-602.
    PMID: 20181879 DOI: 10.3382/ps.2009-00412
    Research was conducted to manufacture and evaluate a restructured turkey breast product using the Fibrimex cold-set binding system, sodium diacetate (NaD), and sodium lactate (NaL) and to ascertain effects of the treatments on proximate composition, pH, psychrotrophic organisms, water activity, onset of rancidity (TBA), thaw loss, cooking yields, and objective color, and sensory characteristics. Whole turkey breasts were cut into 5-cm-thick strips; treated with either water only (control), 1.5% NaL, 2.0% NaL, 0.1% NaD, 1.5% NaL + 0.1% NaD, or 2.0% NaL + 0.1% NaD; blended with Fibrimex ingredients; stuffed into casings; and stored at -30 degrees C for 0, 1, 2, and 3 mo. After each storage period, frozen chubs were tempered at 4 degrees C, sliced into 1-cm-thick steaks, packaged in retail trays, stored at 0 degrees C to simulate retail storage, and analyzed after 0, 2, 4, 6, 8, and 10 d. Sodium diacetate used alone or in combination with NaL reduced (P < 0.05) growth of psychrotrophic organisms and had no adverse effects on water activity, pH, cooking yield, fat, moisture, protein, objective color, onset of rancidity, and sensory characteristics (juiciness, turkey flavor intensity, and tenderness). Panelists reported slight off-flavor in all steaks treated with NaL. Treating steaks with NaL alone or in combination with NaD resulted in increased (P < 0.05) ash content. Sodium lactate also functioned to minimize thaw loss in the frozen restructured turkey product.
    Matched MeSH terms: Hydrogen-Ion Concentration
  19. Campion KL, McCormick WD, Warwicker J, Khayat ME, Atkinson-Dell R, Steward MC, et al.
    J Am Soc Nephrol, 2015 Sep;26(9):2163-71.
    PMID: 25556167 DOI: 10.1681/ASN.2014070653
    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo.
    Matched MeSH terms: Hydrogen-Ion Concentration
  20. Segaran TC, Azra MN, Lananan F, Wang Y
    Mar Environ Res, 2023 Jul;189:106015.
    PMID: 37291004 DOI: 10.1016/j.marenvres.2023.106015
    Microbes, or microorganisms, have been the foundation of the biosphere for over 3 billion years and have played an essential role in shaping our planet. The available knowledge on the topic of microbes associated with climate change has the potential to reshape upcoming research trends globally. As climate change impacts the ocean or marine ecosystem, the responses of these "unseen life" will heavily influence the achievement of a sustainable evolutionary environment. The present study aims to identify microbial-related research under changing climate within the marine environment through the mapping of visualized graphs of the available literature. We used scientometric methods to retrieve documents from the Web of Science platform in the Core Collection (WOSCC) database, analyzing a total of 2767 documents based on scientometric indicators. Our findings show that this research area is growing exponentially, with the most influential keywords being "microbial diversity," "bacteria," and "ocean acidification," and the most cited being "microorganism" and "diversity." The identification of influential clusters in the field of marine science provides insight into the hot spots and frontiers of research in this area. Prominent clusters include "coral microbiome," "hypoxic zone," "novel Thermoplasmatota clade," "marine dinoflagellate bloom," and "human health." Analyzing emerging trends and transformative changes in this field can inform the creation of special issues or research topics in selected journals, thus increasing visibility and engagement among the scientific community.
    Matched MeSH terms: Hydrogen-Ion Concentration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links