Displaying publications 81 - 100 of 126 in total

Abstract:
Sort:
  1. Tan HY, Yong YK, Shankar EM, Paukovics G, Ellegård R, Larsson M, et al.
    J Immunol, 2016 05 15;196(10):4052-63.
    PMID: 27076678 DOI: 10.4049/jimmunol.1502203
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS.
    Matched MeSH terms: Inflammation/drug therapy
  2. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al.
    Oxid Med Cell Longev, 2016;2016:5276130.
    PMID: 27803762
    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
    Matched MeSH terms: Inflammation/drug therapy*
  3. Bonsu KO, Reidpath DD, Kadirvelu A
    Cardiovasc Ther, 2015 Dec;33(6):338-46.
    PMID: 26280110 DOI: 10.1111/1755-5922.12150
    Statins are known to prevent heart failure (HF). However, it is unclear whether statins as class or type (lipophilic or hydrophilic) improve outcomes of established HF.
    Matched MeSH terms: Inflammation/drug therapy*
  4. Siti HN, Kamisah Y, Kamsiah J
    Vascul. Pharmacol., 2015 Aug;71:40-56.
    PMID: 25869516 DOI: 10.1016/j.vph.2015.03.005
    The concept of mild chronic vascular inflammation as part of the pathophysiology of cardiovascular disease, most importantly hypertension and atherosclerosis, has been well accepted. Indeed there are links between vascular inflammation, endothelial dysfunction and oxidative stress. However, there are still gaps in our understanding regarding this matter that might be the cause behind disappointing results of antioxidant therapy for cardiovascular risk factors in large-scale long-term randomised controlled trials. Apart from the limitations of our knowledge, limitations in methodology and assessment of the body's endogenous and exogenous oxidant-antioxidant status are a serious handicap. The pleiotropic effects of antioxidant and anti-inflammation that are shown by some well-established antihypertensive agents and statins partly support the idea of using antioxidants in vascular diseases as still relevant. This review aims to provide an overview of the links between oxidative stress, vascular inflammation, endothelial dysfunction and cardiovascular risk factors, importantly focusing on blood pressure regulation and atherosclerosis. In view of the potential benefits of antioxidants, this review will also examine the proposed role of vitamin C, vitamin E and polyphenols in cardiovascular diseases as well as the success or failure of antioxidant therapy for cardiovascular diseases in clinical trials.
    Matched MeSH terms: Inflammation/drug therapy
  5. Rehman K, Aluwi MF, Rullah K, Wai LK, Mohd Amin MC, Zulfakar MH
    Int J Pharm, 2015 Jul 25;490(1-2):131-41.
    PMID: 26003416 DOI: 10.1016/j.ijpharm.2015.05.045
    Imiquimod is a chemotherapeutic agent for many skin-associated diseases, but it has also been associated with inflammatory side effects. The aim of this study was to prevent the inflammatory effect of commercial imiquimod (Aldara(®)) by controlled release of imiquimod through a hydrogel/oleogel colloidal mixture (CA bigel) containing fish oil as an anti-inflammatory agent. Imiquimod permeability from Aldara® cream and bigel through mice skin was evaluated, and the drug content residing in the skin via the tape stripping technique was quantified. The fish oil fatty acid content in skin along with its lipophilic environment was also determined. An inflammation study was conducted using animal models, and Aldara(®) cream was found to potentially cause psoriasis-like inflammation, which could be owing to prolonged application and excessive drug permeation. Controlled release of imiquimod along with fish oil through CA bigel may have caused reduced imiquimod inflammation. NMR studies and computerized molecular modeling were also conducted to observe whether the fish oil and imiquimod formed a complex that was responsible for improving imiquimod transport and reducing its side effects. NMR spectra showed dose-dependent chemical shifts and molecular modeling revealed π-σ interaction between EPA and imiquimod, which could help reduce imiquimod inflammation.
    Matched MeSH terms: Inflammation/drug therapy
  6. Khalatbari-Soltani S, Tabibi H
    Clin Exp Nephrol, 2015 Jun;19(3):331-5.
    PMID: 25446285 DOI: 10.1007/s10157-014-1061-3
    Inflammation is a common complication in hemodialysis (HD) patients with no valid treatment strategy. In addition, carnitine deficiency occurs frequently in HD patients because of intradialytic loss of carnitine, impaired de novo carnitine renal synthesis, and reduced dietary intake. It appears that carnitine deficiency is related to inflammation in HD patients. A few clinical trials have investigated the effect of L-carnitine supplement on inflammatory markers in HD patients. All studies in this field, except one, showed that L-carnitine could significantly reduce C-reactive protein and serum amyloid A, as two systemic inflammation markers, in HD patients. Therefore, considering high prevalence of inflammation and carnitine deficiency in HD patients, L-carnitine therapy is a reasonable approach for reducing systemic inflammation and its complications in these patients.
    Matched MeSH terms: Inflammation/drug therapy*
  7. Phan CS, Ng SY, Kim EA, Jeon YJ, Palaniveloo K, Vairappan CS
    Mar Drugs, 2015 May;13(5):3103-15.
    PMID: 25996100 DOI: 10.3390/md13053103
    Two new bicyclogermacrenes, capgermacrenes A (1) and B (2), were isolated with two known compounds, palustrol (3) and litseagermacrane (4), from a population of Bornean soft coral Capnella sp. The structures of these metabolites were elucidated based on spectroscopic data. Compound 1 was found to inhibit the accumulation of the LPS-induced pro-inflammatory IL-1b and NO production by down-regulating the expression of iNOS protein in RAW 264.7 macrophages.
    Matched MeSH terms: Inflammation/drug therapy
  8. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.
    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.
    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.
    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.
    Matched MeSH terms: Inflammation/drug therapy*
  9. Chan PM, Tan YS, Chua KH, Sabaratnam V, Kuppusamy UR
    PLoS One, 2015;10(10):e0139593.
    PMID: 26427053 DOI: 10.1371/journal.pone.0139593
    Amauroderma rugosum, commonly known as "Jiǎzī" in China, is a wild mushroom traditionally used by the Chinese to reduce inflammation, to treat diuretic and upset stomach, and to prevent cancer. It is also used by the indigenous communities in Malaysia to prevent epileptic episodes and incessant crying by babies. The aim of this study was to compare the wild and domesticated basidiocarps of A. rugosum for antioxidant and in vitro anti-inflammatory effects in LPS-stimulated RAW264.7 cells. The wild basidiocarps of A. rugosum were collected from the Belum Forest, Perak, Malaysia and the domesticated basidiocarps of A. rugosum were cultivated in the mushroom house located in the University of Malaya, Kuala Lumpur, Malaysia. Both the wild and domesticated basidiocarps were subjected to ethanolic extraction and the extracts were tested for antioxidant and anti-inflammatory activities. In this study, the crude ethanolic extract of wild (WB) and domesticated (DB) basidiocarps of A. rugosum had comparable total phenolic content and DPPH scavenging activity. However, WB (EC50 = 222.90 μg/mL) displayed a better ABTS cation radical scavenging activity than DB (EC50 = 469.60 μg/mL). Both WB and DB were able to scavenge nitric oxide (NO) radical and suppress the NO production in LPS-stimulated RAW264.7 cells and this effect was mediated through the down-regulation of inducible nitric oxide synthase (iNOS) gene. In addition, both WB and DB caused down-regulation of the inflammatory gene TNF-α and the up-regulation of the anti-inflammatory gene IL-10. There was no inhibitory effect of WB and DB on nuclear translocation of NF-κB p65. In conclusion, the wild and domesticated basidiocarps of A. rugosum possessed antioxidant and in vitro anti-inflammatory properties. WB and DB inhibited downstream inflammatory mediators (TNF-α and NO) and induced anti-inflammatory cytokine IL-10 production. No inhibitory effects shown on upstream nuclear translocation of NF-κB p65. WB and DB exhibited antioxidant activity and attenuation of proinflammatory mediators and therefore, A. rugosum may serve as a potential therapeutic agent in the management of inflammation.
    Matched MeSH terms: Inflammation/drug therapy
  10. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
    Matched MeSH terms: Inflammation/drug therapy*
  11. Ellulu MS, Rahmat A, Patimah I, Khaza'ai H, Abed Y
    Drug Des Devel Ther, 2015;9:3405-12.
    PMID: 26170625 DOI: 10.2147/DDDT.S83144
    Obesity is well associated as being an interfering factor in metabolic diseases such as hypertension and diabetes by increasing the secretion of proinflammatory markers from adipose tissue. Having healthy effects, vitamin C could work as an anti-inflammatory agent through its antioxidant capacity.
    Matched MeSH terms: Inflammation/drug therapy*
  12. Tahir AA, Sani NF, Murad NA, Makpol S, Ngah WZ, Yusof YA
    Nutr J, 2015;14:31.
    PMID: 25889965 DOI: 10.1186/s12937-015-0015-2
    The interconnected Ras/ERK and PI3K/AKT pathways play a central role in colorectal tumorigenesis, and they are targets for elucidating mechanisms involved in attempts to induce colon cancer cell death. Both ginger (Zingiber officinale) and honey have been shown to exhibit anti-tumor and anti-inflammation properties against many types of cancer, including colorectal cancer. However, there are currently no reports showing the combined effect of these two dietary compounds in cancer growth inhibition. The aim of this study was to evaluate the synergistic effect of crude ginger extract and Gelam honey in combination as potential cancer chemopreventive agents against the colorectal cancer cell line HT29.
    Matched MeSH terms: Inflammation/drug therapy
  13. Subramanian P, Jayakumar M, Jayapalan JJ, Hashim OH
    Pharmacol Rep, 2014 Dec;66(6):1037-42.
    PMID: 25443732 DOI: 10.1016/j.pharep.2014.06.018
    BACKGROUND: Elevated blood ammonia leads to hyperammonaemia that affects vital central nervous system (CNS) functions. Fisetin, a naturally occurring flavonoid, exhibits therapeutic benefits, such as anti-cancer, anti-diabetic, anti-oxidant, anti-angiogenic, neuroprotective and neurotrophic effects.

    METHODS: In this study, the chronotherapeutic effect of fisetin on ammonium chloride (AC)-induced hyperammonaemic rats was investigated, to ascertain the time point at which the maximum drug effect is achieved. The anti-hyperammonaemic potential of fisetin (50mg/kg b.w. oral) was analysed when administered to AC treated (100mg/kg b.w. i.p.) rats at 06:00, 12:00, 18:00 and 00:00h. Amelioration of pathophysiological conditions by fisetin at different time points was measured by analysing the levels of expression of liver urea cycle enzymes (carbamoyl phosphate synthetase-I (CPS-I), ornithine transcarbamoylase (OTC) and argininosuccinate synthetase (ASS)), nuclear transcription factor kappaB (NF-κB p65), brain glutamine synthetase (GS) and inducible nitric oxide synthase (iNOS) by Western blot analysis.

    RESULTS: Fisetin increased the expression of CPS-I, OTC, ASS and GS and decreased iNOS and NF-κB p65 in hyperammonaemic rats. Fisetin administration at 00:00h showed more significant effects on the expression of liver and brain markers, compared with other time points.

    CONCLUSIONS: Fisetin could exhibit anti-hyperammonaemic effect owing to its anti-oxidant and cytoprotective influences. The temporal variation in the effect of fisetin could be due to the (i) chronopharmacological, chronopharmacokinetic properties of fisetin and (ii) modulations in the endogenous circadian rhythms of urea cycle enzymes, brain markers, redox enzymes and renal clearance during hyperammonaemia by fisetin. However, future studies in these lines are necessitated.

    Matched MeSH terms: Inflammation/drug therapy
  14. Lourdesamy Anthony AI, Muthukumaru U
    Respirology, 2014 Nov;19(8):1178-82.
    PMID: 25183304 DOI: 10.1111/resp.12375
    We evaluated the efficacy of a 12-week oral treatment with azithromycin in adult patients with bronchiectasis. The objectives were to demonstrate that this treatment reduces sputum volume, improves quality of life and to assess the lengths of effects after cessation of therapy.
    Matched MeSH terms: Inflammation/drug therapy
  15. Chua LS
    Phytother Res, 2014 Nov;28(11):1589-98.
    PMID: 25043965 DOI: 10.1002/ptr.5193
    Till to date, the advancement of medical science and technology is still unable to provide inclusive treatment to liver inflammation caused by neither microbial invasion nor antibiotics nor environmental toxins. Therefore, this article provides the basic knowledge of liver inflammation up to the cellular level and its current medical treatment for inflammatory symptom suppression. Because of the adverse effects of drug treatment, people start looking for comprehensive alternative nowadays. Herbal medicine is believed to be the best of choice because it is being practiced until now for centuries. Although numerous herbal plants have been reported for their efficacies in liver protection, Andrographis paniculata is the most widely used herb for hepatoprotection, particularly in Ayurveda and traditional Chinese medicine. This review covers the significant observation on the biochemical responses due to the experimental induction of liver damage in vitro and in vivo using the marker compound of the herb, namely andrographolide and its derivatives. The standardized extract of A. paniculata with the right phytochemical composition of diterpenic labdanes is likely to have tremendous potential for the development of hepatoprotective medicine. This standardized herbal medicine may not provide immediate remedy, but it can be considered as a comprehensive therapy for liver inflammation.
    Matched MeSH terms: Inflammation/drug therapy*
  16. Hajjouli S, Chateauvieux S, Teiten MH, Orlikova B, Schumacher M, Dicato M, et al.
    Molecules, 2014 Sep 16;19(9):14649-66.
    PMID: 25230121 DOI: 10.3390/molecules190914649
    Eurycomanone and eurycomanol are two quassinoids from the roots of Eurycoma longifolia Jack. The aim of this study was to assess the bioactivity of these compounds in Jurkat and K562 human leukemia cell models compared to peripheral blood mononuclear cells from healthy donors. Both eurycomanone and eurycomanol inhibited Jurkat and K562 cell viability and proliferation without affecting healthy cells. Interestingly, eurycomanone inhibited NF-κB signaling through inhibition of IκBα phosphorylation and upstream mitogen activated protein kinase (MAPK) signaling, but not eurycomanol. In conclusion, both quassinoids present differential toxicity towards leukemia cells, and the presence of the α,β-unsaturated ketone in eurycomanone could be prerequisite for the NF-κB inhibition.
    Matched MeSH terms: Inflammation/drug therapy*
  17. Ali F, Ismail A, Kersten S
    Mol Nutr Food Res, 2014 Jan;58(1):33-48.
    PMID: 24259381 DOI: 10.1002/mnfr.201300277
    Obesity and related metabolic diseases (e.g., type 2 diabetes, cardiovascular diseases, and hypertension) are the most prevailing nutrition-related issues in the world. An emerging feature of obesity is their relationship with chronic inflammation that begins in white adipose tissue and eventually becomes systemic. One potential dietary strategy to reduce glucose intolerance and inflammation is consumption of polyphenol-rich cocoa-like cocoa or their by-products. In vitro as well as in vivo data indicate that cocoa polyphenols (CPs) may exhibit antioxidant and anti-inflammatory properties. Polyphenols commonly found in cocoa have been reported to regulate lipid metabolism via inducing metabolic gene expression or activating transcription factors that regulate the expression of numerous genes, many of which play an important role in energy metabolism. Currently, several molecular targets (e.g., nuclear factor Kappa B, activated protein-1, peroxisome proliferator-activated receptors, liver X receptors, and adiponectin gene) have been identified, which may explain potential beneficial obesity-associated diseases effects of CPs. Further studies have been performed regarding the protective effects of CPs against metabolic diseases by suppressing transcription factors that antagonize lipid accumulation. Thus, polyphenols-rich cocoa products may diminish obesity-mediated metabolic diseases by multiple mechanisms, thereby attenuating chronic inflammation.
    Matched MeSH terms: Inflammation/drug therapy
  18. Hamsin DE, Hamid RA, Yazan LS, Taib CN, Yeong LT
    PMID: 24641961 DOI: 10.1186/1472-6882-14-102
    In our previous studies conducted on Ardisia crispa roots, it was shown that Ardisia crispa root inhibited inflammation-induced angiogenesis in vivo. The present study was conducted to identify whether the anti-angiogenic properties of Ardisia crispa roots was partly due to either cyclooxygenase (COX) or/and lipoxygenase (LOX) activity inhibition in separate in vitro studies.
    Matched MeSH terms: Inflammation/drug therapy*
  19. Elsayed EA, El Enshasy H, Wadaan MA, Aziz R
    Mediators Inflamm, 2014;2014:805841.
    PMID: 25505823 DOI: 10.1155/2014/805841
    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents.
    Matched MeSH terms: Inflammation/drug therapy*
  20. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Inflammation/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links