Displaying publications 81 - 100 of 1075 in total

Abstract:
Sort:
  1. Hossan MS, Break MKB, Bradshaw TD, Collins HM, Wiart C, Khoo TJ, et al.
    Molecules, 2021 Apr 09;26(8).
    PMID: 33918814 DOI: 10.3390/molecules26082166
    Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  2. Mohebali N, Pandurangan AK, Mustafa MR, Anandasadagopan SK, Alagumuthu T
    J Biochem Mol Toxicol, 2020 Dec;34(12):e22587.
    PMID: 32726518 DOI: 10.1002/jbt.22587
    Colorectal cancer is one of the most leading death-causing cancers in the world. Vernodalin, a cytotoxic sesquiterpene, has been reported to possess anticancer properties against human breast cancer cells. We aimed to examine the anticancer mechanism of vernodalin on human colon cancer cells. Vernodalin was used on human colon cancer cells, HT-29 and HCT116. The cytotoxicity of vernodalin on human colon cancer cells was determined through in vitro 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Small interfering RNA was used to analyze the cascade activation of mitogen-activated protein kinase (MAPK) pathway, c-Jun N-terminal kinase (JNK) in HT-29, and HCT116 cells against vernodalin treatment. The protein expressions of caspase 3, Bcl-2, and Bax were examined through Western blot analysis. Immunoblot analysis on the JNK, ERK, and p38 MAPK pathways showed increased activation due to vernodalin treatment. It was proven from the JNK and p38 inhibition test that both pathways are significantly activated by vernodalin to induce apoptosis. Our results, collectively, showed the apoptosis-induced anticancer mechanism of vernodalin on human colon cancer cells that was mediated through the activation of JNK pathway and apoptotic regulator proteins. These results suggest that vernodalin could be developed as a potent chemotherapeutic agent for human colorectal cancer treatment.
    Matched MeSH terms: Reactive Oxygen Species/metabolism*
  3. Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, et al.
    FEBS Lett., 2011 Oct 20;585(20):3250-8.
    PMID: 21925500 DOI: 10.1016/j.febslet.2011.09.002
    Hell's Gate globin I (HGbI), a heme-containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O(2) and shows barely detectable autoxidation in the pH range of 5.2-8.6 and temperature range of 25-50°C. Examination of the heme pocket by X-ray crystallography and molecular dynamics showed that conformational movements of Tyr29(B10) and Gln50(E7), as well as structural flexibility of the GH loop and H-helix, may play a role in modulating its ligand binding behavior. Bacterial HGbI's unique resistance to the sort of extreme acidity that would extract heme from any other hemoglobin makes it an ideal candidate for comparative structure-function studies of the expanding globin superfamily.
    Matched MeSH terms: Oxygen/chemistry
  4. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Alam MZ
    Food Chem, 2015 Feb 15;169:439-47.
    PMID: 25236249 DOI: 10.1016/j.foodchem.2014.08.019
    Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  5. Kalid N, Zaidan AA, Zaidan BB, Salman OH, Hashim M, Albahri OS, et al.
    J Med Syst, 2018 Mar 02;42(4):69.
    PMID: 29500683 DOI: 10.1007/s10916-018-0916-7
    This paper presents a new approach to prioritize "Large-scale Data" of patients with chronic heart diseases by using body sensors and communication technology during disasters and peak seasons. An evaluation matrix is used for emergency evaluation and large-scale data scoring of patients with chronic heart diseases in telemedicine environment. However, one major problem in the emergency evaluation of these patients is establishing a reasonable threshold for patients with the most and least critical conditions. This threshold can be used to detect the highest and lowest priority levels when all the scores of patients are identical during disasters and peak seasons. A practical study was performed on 500 patients with chronic heart diseases and different symptoms, and their emergency levels were evaluated based on four main measurements: electrocardiogram, oxygen saturation sensor, blood pressure monitoring, and non-sensory measurement tool, namely, text frame. Data alignment was conducted for the raw data and decision-making matrix by converting each extracted feature into an integer. This integer represents their state in the triage level based on medical guidelines to determine the features from different sources in a platform. The patients were then scored based on a decision matrix by using multi-criteria decision-making techniques, namely, integrated multi-layer for analytic hierarchy process (MLAHP) and technique for order performance by similarity to ideal solution (TOPSIS). For subjective validation, cardiologists were consulted to confirm the ranking results. For objective validation, mean ± standard deviation was computed to check the accuracy of the systematic ranking. This study provides scenarios and checklist benchmarking to evaluate the proposed and existing prioritization methods. Experimental results revealed the following. (1) The integration of TOPSIS and MLAHP effectively and systematically solved the patient settings on triage and prioritization problems. (2) In subjective validation, the first five patients assigned to the doctors were the most urgent cases that required the highest priority, whereas the last five patients were the least urgent cases and were given the lowest priority. In objective validation, scores significantly differed between the groups, indicating that the ranking results were identical. (3) For the first, second, and third scenarios, the proposed method exhibited an advantage over the benchmark method with percentages of 40%, 60%, and 100%, respectively. In conclusion, patients with the most and least urgent cases received the highest and lowest priority levels, respectively.
    Matched MeSH terms: Oxygen/blood
  6. Manickam S, Abidin Nb, Parthasarathy S, Alzorqi I, Ng EH, Tiong TJ, et al.
    Ultrason Sonochem, 2014 Jul;21(4):1519-26.
    PMID: 24485395 DOI: 10.1016/j.ultsonch.2014.01.002
    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.
    Matched MeSH terms: Biological Oxygen Demand Analysis*
  7. Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y, Ali F
    Inflammopharmacology, 2016 Feb;24(1):1-10.
    PMID: 26750181 DOI: 10.1007/s10787-015-0255-y
    Atherosclerotic cardiovascular disease (CVD) is a collective term comprising of a group of disorders of the heart and blood vessels. These diseases are the largest cause of morbidity and premature death worldwide. Coronary heart disease and cerebrovascular disease (stroke) are the most frequently occurring diseases. The two major initiators involved in the development of atherosclerotic CVD are vascular production of reactive oxygen species (ROS) and lipid oxidation. In atherosclerosis development, ROS is associated with rapid loss of anti-inflammatory and anti-atherogenic activities of the endothelium-derived nitric oxide (NO(·)) resulting in endothelial dysfunction. In part involving activation of the transcription factor NF-κB, ROS have been involved in signaling cascades leading to vascular pro-inflammatory and pro-thrombotic gene expression. ROS is also a potent activator of matrix metalloproteinases (MMPs), which indicate plaque destabilization and rupture. The second initiator involved in atherosclerotic CVD is the oxidation of low-density lipoproteins (LDL). Oxidation of LDL in vessel wall leads to an inflammatory cascade that activates atherogenic pathway leading to foam cell formation. The accumulation of foam cells leads to fatty streak formation, which is the earliest visible atherosclerotic lesion. In contrast, the cardiac sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) and hepatic apolipoprotein E (apoE) expression can improve cardiovascular function. SERCA2a regulates the cardiac contractile function by lowering cytoplasmic calcium levels during relaxation, and affecting NO(·) action in vascular cells, while apoE is a critical ligand in the plasma clearance of triglyceride- and cholesterol-rich lipoproteins.
    Matched MeSH terms: Reactive Oxygen Species/metabolism*
  8. Amir S. A. Hamzah, Ali H. M. Murid
    MATEMATIKA, 2018;34(2):293-311.
    MyJurnal
    This study presents a mathematical model examining wastewater pollutant removal through
    an oxidation pond treatment system. This model was developed to describe the reaction
    between microbe-based product mPHO (comprising Phototrophic bacteria (PSB)), dissolved
    oxygen (DO) and pollutant namely chemical oxygen demand (COD). It consists
    of coupled advection-diffusion-reaction equations for the microorganism (PSB), DO and
    pollutant (COD) concentrations, respectively. The coupling of these equations occurred
    due to the reactions between PSB, DO and COD to produce harmless compounds. Since
    the model is nonlinear partial differential equations (PDEs), coupled, and dynamic, computational
    algorithm with a specific numerical method, which is implicit Crank-Nicolson
    method, was employed to simulate the dynamical behaviour of the system. Furthermore,
    numerical results revealed that the proposed model demonstrated high accuracy when
    compared to the experimental data.
    Matched MeSH terms: Oxygen; Biological Oxygen Demand Analysis
  9. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Kamalidehghan B, Ghaderian M, et al.
    Drug Des Devel Ther, 2014;8:1629-47.
    PMID: 25302018 DOI: 10.2147/DDDT.S66105
    Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  10. Mojiri A, Ziyang L, Tajuddin RM, Farraji H, Alifar N
    J Environ Manage, 2016 Jan 15;166:124-30.
    PMID: 26496842 DOI: 10.1016/j.jenvman.2015.10.020
    Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domingensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and zeolite. Response surface methodology and central composite design have been utilized to analyze experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-accumulator plant.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  11. Subramani T, Yeap SK, Ho WY, Ho CL, Omar AR, Aziz SA, et al.
    J Cell Mol Med, 2014 Feb;18(2):305-13.
    PMID: 24266867 DOI: 10.1111/jcmm.12188
    Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF-7 cells and induces apoptosis by activation of pro-caspase-8 followed by downstream events, including an increase in reactive oxygen species and the release of pro-apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti-oestrogen-binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM-mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro-oxidant effects of ascorbic acid. Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by acridine-orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose-dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real-time PCR analysis, an impressive increase in FasL and tumour necrosis factor-α (TNF-α) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  12. Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, et al.
    Oncol Lett, 2015 Jan;9(1):335-340.
    PMID: 25435988
    Tamoxifen (TAM) is the mainline drug treatment for breast cancer, despite its side effects and the development of resistance. As an alternative approach, in the present study a novel combination therapy was established through combining TAM with nordamnacanthal (NDAM) in order to investigate the additive effect of these drugs in MCF-7 human breast cancer cells. A significant dose-dependent reduction in cell viability and an increase in apoptosis were observed in the MCF-7 cells cotreated with TAM and NDAM compared with the untreated control cells or the cells treated with TAM and NDAM alone (P<0.05). The cytotoxic influence of the combination of TAM and NDAM was found to be two-fold that of the individual agents. Annexin V/propidium iodide double-staining revealed the typical nuclear features of apoptosis. Furthermore, an increase in the proportion of apoptotic, Annexin V-positive cells was observed with the combination therapy. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and the generation of reactive oxygen species. To the best of our knowledge, the findings of the present study are the first to suggest that combining TAM with NDAM may be a potential combination therapy for the treatment of breast cancer and may have the potential to minimize or eliminate the side effects associated with high doses of TAM.
    Matched MeSH terms: Reactive Oxygen Species
  13. Ait Abderrahim L, Taïbi K, Abderrahim NA, Alomery AM, Abdellah F, Alhazmi AS, et al.
    Toxicon, 2019 Aug 26;169:38-44.
    PMID: 31465783 DOI: 10.1016/j.toxicon.2019.08.005
    Microcystin Leucine-Arginine (MC-LR) is a toxin produced by the cyanobacteria Microcystis aeruginosa. It is the most encountered and toxic type of cyanotoxins. Oxidative stress was shown to play a role in the pathogenesis of microcystin LR by the induction of intracellular reactive oxygen species (ROS) formation that oxidize and damage cellular macromolecules. In the present study we examined the effect of acute MC-LR dose on the cardiac muscle of BALB/c mice. Afterwards, melatonin and N-acetyl cysteine (NAC) were assayed and evaluated as potential protective and antioxidant agents against damages generated by MC-LR. For this purpose, thirty mice were assigned into six groups of five mice each. The effect of MC-LR was first compared to the control group supplied with distilled water, then compared to the other groups supplied with melatonin and NAC. The experiment lasted 10 days after which animals were euthanized. Biomarkers of toxicity such as alkaline phosphatase activity, lipid peroxidation, protein carbonyl content, reduced glutathione content, serum lactate dehydrogenase and serum sorbitol dehydrogenase were assayed. Results showed that toxin treated mice have experienced significant oxidative damage in their myocardial tissue as revealed by noticeable levels of oxidative stress biomarkers and by the reduction in alkaline phosphatase activity. Whereas, melatonin and NAC treated mice manifested lesser oxidative damages. Our findings suggest a potential therapeutic use of melatonin and N-acetyl cysteine as antioxidant protective agents against oxidative damage induced by MC-LR.
    Matched MeSH terms: Reactive Oxygen Species
  14. Adzaly NZ, Jackson A, Kang I, Almenar E
    Meat Sci, 2016 Mar;113:116-23.
    PMID: 26656870 DOI: 10.1016/j.meatsci.2015.11.023
    The goal of this study was to validate the commercial feasibility of a novel casing formed from chitosan containing cinnamaldehyde (2.2%, w/v), glycerol (50%, w/w) and Tween 80 (0.2% w/w) under traditional sausage manufacturing conditions. Meat batter was stuffed into both chitosan and collagen (control) casings and cooked in a water bath. Before and after cooking, both casings were compared for mechanical, barrier, and other properties. Compared to collagen, the chitosan casing was a better (P≤0.05) barrier to water, oxygen, liquid smoke, and UV light. In mechanical and other properties, the chitosan casing had higher (P≤0.05) tensile strength, lower (P≤0.05) elongation at break and tensile energy to break, and better (P≤0.05) transparency whereas a similar (P>0.05) water solubility to the collagen casing. Overall, the chitosan casing was less affected by sausage manufacturing conditions than the collagen casing, indicating that chitosan casing has potential as an alternative to the current collagen casing in the manufacture of sausages.
    Matched MeSH terms: Oxygen
  15. Albishtue AA, Yimer N, Zakaria MZA, Haron AW, Babji AS, Abubakar AA, et al.
    Vet World, 2019 Jul;12(7):1013-1021.
    PMID: 31528026 DOI: 10.14202/vetworld.2019.1013-1021
    Aim: This study aimed to evaluate the protective effect of edible bird's nest (EBN) supplement on the uteri of rats exposed to lead acetate (LA) toxicity.

    Materials and Methods: Five treatment groups were established as follows: Group 1 (C), which was given distilled water; Group 2 (T0), which was administered with LA (10 mg/kg body weight [BW]); and Groups 3 (T1), 4 (T2), and 5 (T3), which were given LA (10 mg/kg BW) plus graded concentrations of 30, 60, and 120 mg/kg BW of EBN, respectively. Rats were euthanized at week 5 to collect blood for superoxide dismutase (SOD) assay, and uterus for histomorphological study and expression analyses of epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and proliferating cell nuclear antigen (PCNA).

    Results: Results revealed that LA causes destruction of uterine lining cells and necrosis of uterine glands of exposed rats without EBN supplement while the degree of damage decreased among EBN treated groups; T3 showed the highest ameliorating effect against LA toxicity, as well as an increased number of uterine glands. Increased levels of SOD were also achieved in EBN supplemented groups than the controls. Results of immunohistochemistry showed significantly higher expressions of EGF, VEGF, and PCNA levels (p<0.05) in T3 compared to other treatments. EBN maintained upregulation of antioxidant - reactive oxygen species balance.

    Conclusion: The findings showed that EBN could ameliorate the detrimental effects of LA toxicity on the uterus possibly by enhancing enzymatic antioxidant (SOD) activity as well as expressions of EGF, VEGF, and PCNA with cell proliferation roles.

    Matched MeSH terms: Reactive Oxygen Species
  16. Badroon NA, Abdul Majid N, Alshawsh MA
    Nutrients, 2020 Jun 12;12(6).
    PMID: 32545423 DOI: 10.3390/nu12061757
    Liver cancer is the sixth most common cancer in terms of incidence and the fourth in terms of mortality. Hepatocellular carcinoma (HCC) represents almost 90% of primary liver cancer and has become a major health problem globally. Cardamonin (CADMN) is a natural bioactive chalcone found in several edible plants such as cardamom and Alpinia species. Previous studies have shown that CADMN possesses anticancer activities against breast, lung, prostate and colorectal cancer. In the present study, the mechanisms underlying the anti-hepatocellular carcinoma effects of CADMN were investigated against HepG2 cells. The results demonstrated that CADMN has anti-proliferative effects and apoptotic action on HepG2 cells. CADMN showed potent cytotoxicity against HepG2 cells with an IC50 of 17.1 ± 0.592 μM at 72 h. Flow cytometry analysis demonstrated that CADMN arrests HepG2 cells in G1 phase and induces a significant increase in early and late apoptosis in a time-dependent manner. The mechanism by which CADMN induces apoptotic action was via activation of both extrinsic and intrinsic pathways. Moreover, the findings of this study showed the involvement of reactive oxygen species (ROS), which inhibit the NF-κB pathway and further enhance the apoptotic process. Together, our findings further support the potential anticancer activity of CADMN as an alternative therapeutic agent against HCC.
    Matched MeSH terms: Reactive Oxygen Species
  17. Ravera S, Ferrando S, Agas D, De Angelis N, Raffetto M, Sabbieti MG, et al.
    J Biophotonics, 2019 09;12(9):e201900101.
    PMID: 31033186 DOI: 10.1002/jbio.201900101
    Photobiomodulation (PBM) is a non-plant-cell manipulation through a transfer of energy by means of light sources at the non-ablative or thermal intensity. Authors showed that cytochrome-c-oxidase (complex IV) is the specific chromophore's target of PBM at the red (600-700 nm) and NIR (760-900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in the β-oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2 . Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe-S proteins and Cu-centers of respiratory complexes and with the water molecules could be supposed.
    Matched MeSH terms: Oxygen/chemistry
  18. Zahedifard M, Faraj FL, Paydar M, Yeng Looi C, Hajrezaei M, Hasanpourghadi M, et al.
    Sci Rep, 2015 Jun 25;5:11544.
    PMID: 26108872 DOI: 10.1038/srep11544
    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  19. Balasubramaniam V, June Chelyn L, Vimala S, Mohd Fairulnizal MN, Brownlee IA, Amin I
    Heliyon, 2020 Aug;6(8):e04654.
    PMID: 32817893 DOI: 10.1016/j.heliyon.2020.e04654
    Three species of Malaysian edible seaweed (Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera) were analyzed for their carotenoid composition using a combination of high-performance thin layer chromatography (HPTLC) and ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS), while the antioxidant capacities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays. The HPTLC analysis exhibited a distinct carotenoid pattern among the three seaweed groups. The UHPLC-ESI-MS/MS analysis showed fucoxanthin as the major carotenoid present in S. polycystum while lutein and zeaxanthin in E. denticulatum. For C. lentillifera, β-carotene and canthaxanthin were the major carotenoids. Some of the carotenoids, such as rubixanthin, dinoxanthin, diatoxanthin and antheraxanthin, were also tentatively detected in E. denticulatum and S. polycystum. For antioxidant activity, S. polycystum (20 %) and E. denticulatum (1128 μmol TE/g) showed the highest activity in the DPPH and ORAC assays, respectively. The findings suggest the three edible varieties of seaweeds may provide a good dietary source with a potential to reduce antioxidative stress.
    Matched MeSH terms: Oxygen Radical Absorbance Capacity
  20. Shazreen Shaharuddin, Fathinul Fikri Ahmad Saad, Aminuddin Abdul Hamid Karim
    MyJurnal
    Training at high altitude for prolonged periods can cause low oxygen tension which can developed complication of hypoxia. Hypoxia is a cascade activity from a level of down regulation and function of cell’s nucleus. Early detection of biomarker and physiological changes are important in prevent the hypoxia at high altitude. Hyperbaric medicine is a new treatment that were used an oxygen therapy to treat hypoxic and inflammatory driven conditions which patients are treated with 100% oxygen at pressure greater than atmospheric pressure. The review discusses physiological changes associated with hypoxia, the response of biomarker hypoxia changes in high altitude and the role of hyperbaric oxygen therapy can play as part of the treatment for pilots and athletes training at high altitudes that suffering from disease with underlying hypoxia.
    Matched MeSH terms: Hyperbaric Oxygenation; Oxygen; Oxygen Inhalation Therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links