Displaying publications 81 - 100 of 509 in total

Abstract:
Sort:
  1. Lee FC, Hakim SL, Kamaluddin MA, Thong KL
    PMID: 23082563
    Clostridium perfringens (CP) and sulphite reducing clostridia (SRC) densities in the Selangor River, Bernam River and Tengi River Canal were examined between April 2007 and January 2008. Water samples were taken from two or three locations along each river, using either depth-integration or grab sampling methods. The downstream sampling site of the Selangor River, Rantau Panjang, reported the highest arithmetic mean of CP and SRC densities (583.45 and 8,120.08 cfu/100 ml, respectively). Both CP and SRC densities in the Selangor River increased further downstream, but the reverse was true in the Bernam River. The SRC densities in these rivers were significantly different from each other (p < 0.05) when comparing upstream and downstream results, but CP densities were not significantly different (p > 0.05). SRC densities were significantly correlated (p < 0.05) in different locations along the Selangor River and the Bernam River. The CP densities did not show such pattern (p > 0.05). River discharge had no significant correlation with SRC or CP densities by study site (p > 0.05). Since the Selangor River has a denser human population along its banks, this study confirms CP as a suitable indicator of human fecal contamination. However, tracing CP distribution along the river is more difficult than SRC. To our knowledge, this is the first study of CP and SRC densities from Malaysian rivers. CP densities found in this study were within the range of general water bodies reported from other countries.
    Matched MeSH terms: Rivers/microbiology*
  2. Osman R, Saim N, Juahir H, Abdullah MP
    Environ Monit Assess, 2012 Jan;184(2):1001-14.
    PMID: 21494831 DOI: 10.1007/s10661-011-2016-8
    Increasing urbanization and changes in land use in Langat river basin lead to adverse impacts on the environment compartment. One of the major challenges is in identifying sources of organic contaminants. This study presented the application of selected chemometric techniques: cluster analysis (CA), discriminant analysis (DA), and principal component analysis (PCA) to classify the pollution sources in Langat river basin based on the analysis of water and sediment samples collected from 24 stations, monitored for 14 organic contaminants from polycyclic aromatic hydrocarbons (PAHs), sterols, and pesticides groups. The CA and DA enabled to group 24 monitoring sites into three groups of pollution source (industry and urban socioeconomic, agricultural activity, and urban/domestic sewage) with five major discriminating variables: naphthalene, pyrene, benzo[a]pyrene, coprostanol, and cholesterol. PCA analysis, applied to water data sets, resulted in four latent factors explaining 79.0% of the total variance while sediment samples gave five latent factors with 77.6% explained variance. The varifactors (VFs) obtained from PCA indicated that sterols (coprostanol, cholesterol, stigmasterol, β-sitosterol, and stigmastanol) are strongly correlated to domestic and urban sewage, PAHs (naphthalene, acenaphthene, pyrene, benzo[a]anthracene, and benzo[a]pyrene) from industrial and urban activities and chlorpyrifos correlated to samples nearby agricultural sites. The results demonstrated that chemometric techniques can be used for rapid assessment of water and sediment contaminations.
    Matched MeSH terms: Rivers/chemistry*
  3. Wan Ibrahim WA, Veloo KV, Sanagi MM
    J Chromatogr A, 2012 Mar 16;1229:55-62.
    PMID: 22326188 DOI: 10.1016/j.chroma.2012.01.022
    A novel sol-gel hybrid methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was produced and applied as sorbent for solid phase extraction (SPE). Five selected organophosphorus pesticides (OPPs) were employed as model compounds to evaluate the extraction performance of the synthesized sol-gel organic-inorganic hybrid MTMOS-TEOS. Analysis was performed using gas chromatography-mass spectrometry. Several important SPE parameters were optimized. Under the optimum extraction conditions, the method using the sol-gel organic-inorganic hybrid MTMOS-TEOS as SPE sorbent showed good linearity in the range of 0.001-1 μg L(-1), good repeatability (RSD 2.1-3.1%, n=5), low limits of detection at S/N=3 (0.5-0.9 pg mL(-1)) and limit of quantification (1-3 pg mL(-1), S/N=10). The performance of the MTMOS-TEOS SPE was compared to commercial C18 Supelclean SPE since C18 SPE is widely used for OPPs. The MTMOS-TEOS SPE method LOD was 500-600 × lower than the LOD of commercial C18 SPE. The LOD achieved with the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent allowed the detection of these OPPs in drinking water well below the level set by European Union (EU) at 0.1 μg L(-1) of each pesticides. The developed MTMOS-TEOS SPE method was successfully applied to real sample analysis of the selected OPPs from several water samples and its application extended to the analysis of several fruits samples. Excellent recoveries and RSDs of the OPPs were obtained from the various water samples (recoveries: 97-111%, RSDs 0.4-2.8%, n=3) and fruit samples (recoveries: 96-111%), RSDs 1-4%, n=5) using the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent. Recoveries and RSDs of OPPs from river water samples and fruit samples using C18 Supelclean SPE sorbent were 91-97%, RSD 0.9-2.6, n=3 and 86-96%, RSD 3-8%, n=5, respectively). The novel sol-gel hybrid MTMOS-TEOS SPE sorbent demonstrate the potential as an alternative inexpensive extraction sorbent for OPPs with higher sensitivity for the OPPs.
    Matched MeSH terms: Rivers/chemistry
  4. Gazzaz NM, Yusoff MK, Ramli MF, Aris AZ, Juahir H
    Mar Pollut Bull, 2012 Apr;64(4):688-98.
    PMID: 22330076 DOI: 10.1016/j.marpolbul.2012.01.032
    This study employed three chemometric data mining techniques (factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA)) to identify the latent structure of a water quality (WQ) dataset pertaining to Kinta River (Malaysia) and to classify eight WQ monitoring stations along the river into groups of similar WQ characteristics. FA identified the WQ parameters responsible for variations in Kinta River's WQ and accentuated the roles of weathering and surface runoff in determining the river's WQ. CA grouped the monitoring locations into a cluster of low levels of water pollution (the two uppermost monitoring stations) and another of relatively high levels of river pollution (the mid-, and down-stream stations). DA confirmed these clusters and produced a discriminant function which can predict the cluster membership of new and/or unknown samples. These chemometric techniques highlight the potential for reasonably reducing the number of WQVs and monitoring stations for long-term monitoring purposes.
    Matched MeSH terms: Rivers*
  5. Santhi VA, Sakai N, Ahmad ED, Mustafa AM
    Sci Total Environ, 2012 Jun 15;427-428:332-8.
    PMID: 22578698 DOI: 10.1016/j.scitotenv.2012.04.041
    This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI).
    Matched MeSH terms: Rivers/chemistry
  6. Nadirah M, Ruhil HH, Jalal KC, Najiah M
    Pak J Biol Sci, 2012 Jun 15;15(12):600-3.
    PMID: 24191623
    A total of 182 isolates of Plesiomonas shigelloides were identified from 40 healthy red hybrid tilapia, Oreochromis niloticus cultured at two important rivers in Terengganu, Malaysia namely Como River and Terengganu River from east coast Malaysia. P. shigelloides count in Digestive Tract Content (DTC) and Muscle (MUS) of red hybrid tilapia cultured at Terengganu River was 1000-fold higher than Como River. Antibiotic susceptibility test was also performed on Plesiomonas shigelloides isolates. The incidence of antibiotic resistance was higher in Plesiomonas shigelloides isolated from red hybrid tilapia cultured at Terengganu River compared to Como river. Thus, the findings of the study indicate that P. shigelloides from tilapia muscle and an intestine could be an alarming for serious public health risk to consumers.
    Matched MeSH terms: Rivers
  7. Jinggut T, Yule CM, Boyero L
    Sci Total Environ, 2012 Oct 15;437:83-90.
    PMID: 22922133 DOI: 10.1016/j.scitotenv.2012.07.062
    In common with most of Borneo, the Bakun region of Sarawak is currently subject to heavy deforestation mainly due to logging and, to a lesser extent, traditional slash-and-burn farming practices. This has the potential to affect stream ecosystems, which are integrators of environmental change in the surrounding terrestrial landscape. This study evaluated the effects of both types of deforestation by using functional and structural indicators (leaf litter decomposition rates and associated detritivores or 'shredders', respectively) to compare a fundamental ecosystem process, leaf litter decomposition, within logged, farmed and pristine streams. Slash-and-burn agricultural practices increased the overall rate of decomposition despite a decrease in shredder species richness (but not shredder abundance) due to increased microbial decomposition. In contrast, decomposition by microbes and invertebrates was slowed down in the logged streams, where shredders were less abundant and less species rich. This study suggests that shredder communities are less affected by traditional agricultural farming practices, while modern mechanized deforestation has an adverse effect on both shredder communities and leaf breakdown.
    Matched MeSH terms: Rivers*
  8. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF
    Mar Pollut Bull, 2012 Nov;64(11):2409-20.
    PMID: 22925610 DOI: 10.1016/j.marpolbul.2012.08.005
    This article describes design and application of feed-forward, fully-connected, three-layer perceptron neural network model for computing the water quality index (WQI)(1) for Kinta River (Malaysia). The modeling efforts showed that the optimal network architecture was 23-34-1 and that the best WQI predictions were associated with the quick propagation (QP) training algorithm; a learning rate of 0.06; and a QP coefficient of 1.75. The WQI predictions of this model had significant, positive, very high correlation (r=0.977, p<0.01) with the measured WQI values, implying that the model predictions explain around 95.4% of the variation in the measured WQI values. The approach presented in this article offers useful and powerful alternative to WQI computation and prediction, especially in the case of WQI calculation methods which involve lengthy computations and use of various sub-index formulae for each value, or range of values, of the constituent water quality variables.
    Matched MeSH terms: Rivers/chemistry
  9. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2012 Nov 2;1262:43-8.
    PMID: 23021646 DOI: 10.1016/j.chroma.2012.09.007
    Agarose film liquid phase microextraction (AF-LPME) procedure for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water has been investigated. Agarose film was used for the first time as an interface between donor and acceptor phases in liquid phase microextraction which allowed for selective extraction of the analytes prior to gas chromatography-mass spectrometry. Using 1-octanol as acceptor phase, high enrichment factors in the range of 57-106 for the targeted analytes (fluorene, phenanthrene, fluoranthene and pyrene) were achieved. Under the optimum extraction conditions, the method showed good linearity in the range of 0.1-200 μgL(-1), good correlation coefficients in the range of 0.9963-0.9999, acceptable reproducibility (RSD 6.1-9.2%, n=3), low limits of detection (0.01-0.04 μgL(-1)) and satisfactory relative recoveries (92.9-104.7%). As the AF-LPME device was non-expensive, reuse or recycle of the film was not required, thus eliminating the possibility of analytes carry-over between runs. The AF-LPME technique is environment-friendly and compatible with the green chemistry concept as agarose is biodegradable polysaccharide extracted from seaweed and the procedure requires small volume of organic solvent and generates little waste. The validated method was successfully applied to the analysis of the four analytes in river water samples.
    Matched MeSH terms: Rivers/chemistry
  10. Koh MK, Sathiamurthy E, Suratman S, Tahir NM
    Environ Monit Assess, 2012 Dec;184(12):7653-64.
    PMID: 22302401
    Influences of river hydrodynamic behaviours on hydrochemistry (salinity, pH, dissolved oxygen saturations and dissolved phosphorus) were evaluated through high spatial and temporal resolution study of a sandbar-regulated coastal river. River hydrodynamic during sandbar-closed event was characterized by minor dependency on tidal fluctuations, very gradual increase of water level and continual low flow velocity. These hydrodynamic behaviours established a hydrochemistry equilibrium, in which water properties generally were characterized by virtual absence of horizontal gradients while vertical stratifications were significant. In addition, the river was in high trophic status as algae blooms were visible. Conversely, river hydrodynamic in sandbar-opened event was tidal-controlled and showed higher flow velocity. Horizontal gradients of water properties became significant while vertically more homogenised and with lower trophic status. In essence, this study reveals that estuarine sandbar directly regulates river hydrodynamic behaviours which in turn influences river hydrochemistry.
    Matched MeSH terms: Rivers/chemistry*
  11. Othman F, M E AE, Mohamed I
    J Environ Monit, 2012 Dec;14(12):3164-73.
    PMID: 23128415 DOI: 10.1039/c2em30676j
    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.
    Matched MeSH terms: Rivers
  12. Shahrudin S, Jaafar I
    Trop Life Sci Res, 2012 Dec;23(2):49-57.
    PMID: 24575233 MyJurnal
    The study on the amphibian fauna of Bukit Jana, Taiping, Perak was carried out from January 2009 until December 2010 with a total of 12 nights of observation. Twenty four species of frogs from 14 genera and 6 families were recorded to inhabit the Bukit Jana areas. Seven commensal species were found around human habitations near the foothill whereas the others are typical forest frogs found mostly near the rivers, streams and forest floor. This is the first amphibian checklist of Bukit Jana, Perak and it contributed 22% out of 107 species of frogs that are recorded to inhabit Peninsular Malaysia.
    Matched MeSH terms: Rivers
  13. Seena S, Duarte S, Pascoal C, Cássio F
    PLoS One, 2012;7(4):e35884.
    PMID: 22558256 DOI: 10.1371/journal.pone.0035884
    The worldwide-distributed aquatic fungus Articulospora tetracladia Ingold is a dominant sporulating species in streams of the Northwest Iberian Peninsula. To elucidate the genetic diversity of A. tetracladia, we analyzed isolates collected from various types of plant litter or foam in streams from North and Central Portugal and North Spain, between 2000 and 2010. Genetic diversity of these fungal populations was assessed by denaturing gradient gel electrophoresis (DGGE) fingerprints and by using ITS1-5.8S-ITS2 barcodes. Moreover, ITS1-5.8S-ITS2 barcodes of A. tetracladia reported in other parts of the world (Central Europe, United Kingdom, Canada, Japan and Malaysia) were retrieved from the National Center for Biotechnology (NCBI) and the National Institute of Technology and Evaluation Biological Resource Center (NBRC) to probe into genetic diversity of A. tetracladia. PCR-DGGE of ITS2 region of 50 Iberian fungal isolates distinguished eight operational taxonomic units (OTUs), which were similar to those obtained from neighboring trees based on ITS2 gene sequences. On the other hand, ITS1-5.8S-ITS2 barcodes of 68 fungal isolates yielded nine OTUs, but five fungal isolates were not assigned to any of these OTUs. Molecular diversity was highest for OTU-8, which included only European isolates. Two haplotypes were observed within OTU-8 and OTU-9, while only one haplotype was found within each of the remaining OTUs. Malaysia did not share haplotypes with other countries. Overall results indicate that, apart from the Malaysian genotypes, A. tetracladia genotypes were geographically widespread irrespective of sampling time, sites or substrates. Furthermore, PCR-DGGE appeared to be a rapid tool for assessing intraspecific diversity of aquatic hyphomycetes.
    Matched MeSH terms: Rivers/microbiology
  14. Mustapha A, Aris AZ
    PMID: 22571534 DOI: 10.1080/10934529.2012.673305
    Multivariate statistical techniques such as hierarchical Agglomerated cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and factor analysis (FA) were applied to identify the spatial variation and pollution sources of Jakara River, Kano, Nigeria. Thirty surface water samples were collected: 23 along Getsi River and 7 along the main channel of River Jakara. Twenty-three water quality parameters, namely pH, temperature, turbidity, electrical conductivity (EC), dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), Faecal coliform, total solids (TS), nitrates (NO(3)(-)), phosphates (PO(4)(3-)), cobalt (Co), iron (Fe), nickel (Ni), manganese (Mn), copper (Cu), sodium (Na), potassium (K), mercury (Hg), chromium (Cr), cadmium (Cd), lead (Pb), magnesium (Mg), and calcium(Ca) were analysed. HACA grouped the sampling points into three clusters based on the similarities of river water quality characteristics: industrial, domestic, and agricultural water pollution sources. Forward and backward DA effectively discriminated 5 and 15 water quality variables, respectively, each assigned with 100% correctness from the original 23 variables. PCA and FA were used to investigate the origin of each water quality parameter due to various land use activities, 7 principal components were obtained with 77.5% total variance, and in addition PCA identified 3 latent pollution sources to support HACA. From this study, one can conclude that the application of multivariate techniques derives meaningful information from water quality data.
    Matched MeSH terms: Rivers/microbiology; Rivers/chemistry*
  15. Mustapha A, Aris AZ, Ramli MF, Juahir H
    PMID: 22702815 DOI: 10.1080/10934529.2012.680415
    The pollution status of the downstream section of the Jakara River was investigated. Dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), suspended solids (SS), pH, conductivity, salinity, temperature, nitrogen in the form of ammonia (NH(3)), turbidity, dissolved solids (DS), total solids (TS), nitrates (NO(3)), chloride (Cl) and phosphates (PO(3-)(4)) were evaluated, using both dry and wet season samples, as a measure of variation in surface water quality in the area. The results obtained from the analyses were correlated using Pearson's correlation matrix, principal component analysis (PCA) and paired sample t-tests. Positive correlations were observed for BOD(5), NH(3), COD, and SS, turbidity, conductivity, salinity, DS, TS for dry and wet seasons, respectively. PCA was used to investigate the origin of each water quality parameter, and yielded 5 varimax factors for each of dry and wet seasons, with 70.7 % and 83.1 % total variance, respectively. A paired sample t-test confirmed that the surface water quality varies significantly between dry and wet season samples (P < 0.01). The source of pollution in the area was concluded to be of anthropogenic origin in the dry season and natural origins in the wet season.
    Matched MeSH terms: Rivers/chemistry*
  16. Lee LI, Chye TT, Karmacharya BM, Govind SK
    Parasit Vectors, 2012;5:130.
    PMID: 22741573 DOI: 10.1186/1756-3305-5-130
    Blastocystis sp. is a common intestinal parasite found in faecal sample surveys. Several studies have implicated human-to-human, zoonotic and waterborne transmissions by Blastocystis sp. However, there has been no study providing evidence interlinking these three transmissions in a community. We have previously shown a high prevalence of Blastocystis sp. subtype 4 amongst village dwellers in Bahunipati, Nepal, and the present study extends the observation to assess if the same subtype of Blastocystis sp. occurs in animals they rear and rivers they frequent.
    Matched MeSH terms: Rivers/parasitology*
  17. Hasan ZA, Hamidon N, Yusof MS, Ghani AA
    Water Sci Technol, 2012;66(10):2170-6.
    PMID: 22949248 DOI: 10.2166/wst.2012.432
    Bukit Merah Reservoir is the main potable and irrigation water source for Kerian District, Perak State, Malaysia. For the past two decades, the reservoir has experienced water stress. Land-use activities have been identified as the contributor of the sedimentation. The Soil and Water Assessment Tool (SWAT) was used to simulate and quantify the impacts of land-use change in the reservoir watershed. The SWAT was calibrated and two scenarios were constructed representing projected land use in the year 2015 and hypothetical land use to represent extensive land-use change in the catchment area. The simulation results based on 17 years of rainfall records indicate that average water quantity will not be significantly affected but the ground water storage will decrease and suspended sediment will increase. Ground water decrease and sediment yield increase will exacerbate the Bukit Merah Reservoir operation problem.
    Matched MeSH terms: Rivers/chemistry*
  18. Maznah WO, Al-Fawwaz AT, Surif M
    J Environ Sci (China), 2012;24(8):1386-93.
    PMID: 23513679
    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.
    Matched MeSH terms: Rivers/microbiology
  19. Adnan NH, Zakaria MP, Juahir H, Ali MM
    J Environ Sci (China), 2012;24(9):1600-8.
    PMID: 23520867
    The Langat River in Malaysia has been experiencing anthropogenic input from urban, rural and industrial activities for many years. Sewage contamination, possibly originating from the greater than three million inhabitants of the Langat River Basin, were examined. Sediment samples from 22 stations (SL01-SL22) along the Langat River were collected, extracted and analysed by GC-MS. Six different sterols were identified and quantified. The highest sterol concentration was found at station SL02 (618.29 ng/g dry weight), which situated in the Balak River whereas the other sediment samples ranged between 11.60 and 446.52 ng/g dry weight. Sterol ratios were used to identify sources, occurrence and partitioning of faecal matter in sediments and majority of the ratios clearly demonstrated that sewage contamination was occurring at most stations in the Langat River. A multivariate statistical analysis was used in conjunction with a combination of biomarkers to better understand the data that clearly separated the compounds. Most sediments of the Langat River were found to contain low to mid-range sewage contamination with some containing 'significant' levels of contamination. This is the first report on sewage pollution in the Langat River based on a combination of biomarker and multivariate statistical approaches that will establish a new standard for sewage detection using faecal sterols.
    Matched MeSH terms: Rivers/chemistry*
  20. Bong, C.H.J., Mah, D.Y.S, Putuhena, F.J., Said, S., Bustami, R.A.
    ASM Science Journal, 2012;6(1):47-60.
    MyJurnal
    Hydraulics simulation can be used as a supporting tool for planning and developing a framework, such as Integrated Flood Management for river management. To demonstrate this, a hydraulics model for the Sarawak River Basin was run using InfoWorks RS software by Wallingford Software, UK. InfoWorks River Simulation (RS) was chosen because its applicability has been proven and widely used to model Malaysian rivers. The extraction of computed floodwater level and flood maps for different time intervals would produce the rate of floodplain submergence from river bank level. This information could be incorporated into a logical framework to support decisions on flood management measures. Thus, hydraulics models can be used as tools to provide the necessary decision parameters for developing logical frameworks which would act as to guide the planning when it involved various stakeholders’ participation.
    Matched MeSH terms: Rivers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links