Displaying publications 101 - 120 of 241 in total

Abstract:
Sort:
  1. Gul A, Khan I, Shafie S, Khalid A, Khan A
    PLoS One, 2015;10(11):e0141213.
    PMID: 26550837 DOI: 10.1371/journal.pone.0141213
    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
    Matched MeSH terms: Viscosity
  2. Mat Noor NA, Shafie S, Admon MA
    PLoS One, 2021;16(5):e0250402.
    PMID: 33956793 DOI: 10.1371/journal.pone.0250402
    The heat and mass transfer on time dependent hydrodynamic squeeze flow of Jeffrey nanofluid across two plates over permeable medium in the slip condition with heat generation/absorption, thermal radiation and chemical reaction are investigated. The impacts of Brownian motion and thermophoresis is examined in the Buongiorno's nanofluid model. Conversion of the governing partial differential equations to the ordinary differential equations is conducted via similarity transformation. The dimensionless equations are solved by imposing numerical method of Keller-box. The outputs are compared with previous reported works in the journals for the validation of the present outputs and found in proper agreement. The behavior of velocity, temperature, and nanoparticles concentration profiles by varying the pertinent parameters are examined. Findings portray that the acceleration of the velocity profile and the wall shear stress is due to the squeezing of plates. Furthermore, the velocity, temperature and concentration profile decline with boost in Hartmann number and ratio of relaxation to retardation times. It is discovered that the rate of heat transfer and temperature profile increase when viscous dissipation, thermophoresis and heat source/sink rises. In contrast, the increment of thermal radiation reduces the temperature and enhances the heat transfer rate. Besides, the mass transfer rate decelerates for increasing Brownian motion in nanofluid, while it elevates when chemical reaction and thermophoresis increases.
    Matched MeSH terms: Viscosity
  3. Razavi M, Nyamathulla S, Karimian H, Moghadamtousi SZ, Noordin MI
    Molecules, 2014;19(9):13909-31.
    PMID: 25197930 DOI: 10.3390/molecules190913909
    The gastroretentive dosage form of famotidine was modified using tamarind seed powders to prolong the gastric retention time. Tamarind seeds were used in two different forms having different swelling and gelling properties: with husk (TSP) or without husk (TKP). TKP (TKP1 to TKP 6) and TSP (TSP1 to TSP 6) series were prepared using tamarind powder:xanthan in the ratios of 5:0, 4:1, 3:2, 2:3, 1:4, 0:5, respectively. The matrix tablets were prepared by the wet granulation method and evaluated for pharmacopoeial requirements. TKP2 was the optimum formulation as it had a short floating lag time (FLT<30 s) and more than 98.5% drug release in 12 h. The dissolution data were fitted to popular mathematical models to assess the mechanism of drug release, and the optimum formulation showed a predominant first order release and diffusion mechanism. It was concluded that the TKP2 prepared using tamarind kernel powder:xanthan (4:1) was the optimum formulation with shortest floating lag time and more than 90% release in the determined period of time.
    Matched MeSH terms: Viscosity
  4. Lethesh KC, Evjen S, Raj JJ, Roux DCD, Venkatraman V, Jayasayee K, et al.
    Front Chem, 2019;7:625.
    PMID: 31620423 DOI: 10.3389/fchem.2019.00625
    Structurally modified hydroxyl functionalized pyridinium ionic liquids (ILs), liquid at room temperature, were synthesized and characterized. Alkylated N-(2-hydroxyethyl)-pyridinium ILs were prepared from alkylpyridines via corresponding bromide salts by N-alkylation (65-93%) and final anion exchange (75-96%). Pyridinium-alkylation strongly influenced the IL physicochemical and electrochemical properties. Experimental values for the ILs physicochemical properties (density, viscosity, conductivity, and thermal decomposition temperature), were in good agreement with corresponding predicted values obtained by theoretical calculations. The pyridinium ILs have electrochemical window of 3.0-5.4 V and were thermally stable up to 405°C. The IL viscosity and density were measured over a wide temperature range (25-80°C). Pyridine alkyl-substitution strongly affected the partial positive charge on the nitrogen atom of the pyridinium cations, as shown by charge distribution calculations. On-going studies on Mg complexes of the new ILs demonstrate promising properties for high current density electrodeposition of magnesium.
    Matched MeSH terms: Viscosity
  5. Ali, M.A., Daud, A.S.M., Latip, R.A., Othman, N.H., Islam, M.A.
    MyJurnal
    The aim of the present study was to evaluate the effect of chicken nuggets addition on the degradation of canola oil during frying compared to the changes occurring when the same frying medium was simply heated at frying temperature as control. Heating or frying test was carried out at 185±5oC using electric fryer for 8 h/day for 3 consecutive days and the oil sample was collected every 4 h. The changes in fatty acids composition and physicochemical properties of the oil samples during frying and controlled heating experiments were monitored. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, polar compounds and viscosity of the oils all increased, whereas iodine value and C18:2/C16:0 ratio decreased as heating or frying progressed. The percentage of linoleic acid tended to decrease, whereas the percentages of palmitic acid increased. Gas chromatography analysis revealed that adding chicken nuggets to heated canola oil led to higher decrease in the ratio of C18.2/C16:0 compared to what was measured when the fat alone was heated at frying temperature. The presence of chicken nuggets accelerates the formation of polymerization products and polar compounds in canola oil during frying.
    Matched MeSH terms: Viscosity
  6. Noranizan, M., Pean, L. F., Li, J. W., Aadil, R. M., Ahmad, T., Rosli, S. Z., et al.
    MyJurnal
    The present work investigated the impact of several juice extraction methods (blender,
    centrifugal juicer, and slow juicer) and thermal pasteurisation (72°C, 15 s) on the different
    properties [physicochemical, polyphenol oxidase (PPO) activity, and functional] of
    Clinacanthus nutans juice mix during storage (28 d, 4°C). Regardless of juicing technique, all
    juices had similar colour and antioxidants [tested using 2,2-diphenyl-1-picrylhydrazyl
    (DPPH) and ferric reducing antioxidant power (FRAP) methods]. The juices also had similar
    PPO activity and sensory acceptance in terms of colour, aroma, flavour, mouthfeel, and
    overall acceptability. The blender yielded juice with higher pH, soluble solids, and relative
    viscosity than other methods. The slow juicer was the best at retaining ascorbic acid (39.33 ±
    3.06 mg/100 mL), while the blender was best at retaining phenolic compounds (11.82 ± 0.12
    mg gallic acid equivalents/100 mL) and chlorophyll (6.95 ± 0.31 μg/mL). Pasteurisation
    negatively affected the colour, functional properties, and sensory characteristics (colour,
    aroma, flavour, and mouthfeel) of the juice.
    Matched MeSH terms: Viscosity
  7. M. Abbas Ali, Rafiqqah binti Mohamad Sabri, Khu Say Li, Nik Azmi Nik Mahmood
    Sains Malaysiana, 2015;44:1159-1166.
    The efficacy of pandan leaf extract (PLE) addition on the oxidative degradation of sunflower oil (SFO) during microwave heating was studied. 80% of methanol extract showed better antioxidant action than the 100% methanol or ethanol extract and the total phenolic contents, DPPH radical scavenging activity and linoleic acid system of PLE were found to be 1845.50 mg GAE/100 g, 60.62-89.87% and 82.21%, respectively. 80% of methanolic extracts at different concentrations (0.1, 0.2 and 0.4 wt. %) were added to SFO. The antioxidant treated and control oil samples were subjected to microwave heating and were analyzed at regular intervals for the extent of oxidative changes following the measurements of peroxide value, p-anisidine value, TOTOX, free fatty acid, specific extinction, iodine value, viscosity, polar compounds and fatty acid composition. The PLE were found to be quite effective towards suppressing the primary and secondary oxidation products in the tested oil. The order of effectiveness (p<0.05) was BHA > 0.4% PLE > 0.2% PLE > 0.1% PLE > control. The present results suggested that antioxidant extract from pandan leaf might be used to protect vegetable oils from oxidation.
    Matched MeSH terms: Viscosity
  8. Ng SK, Nyam KL, Nehdi IA, Chong GH, Lai OM, Tan CP
    Food Sci Biotechnol, 2016;25(Suppl 1):15-21.
    PMID: 30263481 DOI: 10.1007/s10068-016-0093-8
    β-Lactoglobulin (β-lg) can produce fibrils that have multi-functional properties. Impacts of different stirring speeds on characteristics of β-lg fibrils as a stable form in β-lg fibril solutions were investigated. Fibril concentration, fibril morphology, turbidity, particle size distribution, zeta potential, and rheological behavior of solutions were studied. Stirring enhanced fibril formation and stability of a fibril solution, in comparison with unstirred solutions. Increasing the stirring speed produced more turbidity and a greater distribution of particle sizes, higher viscosity values, but no differences in zeta potential values of β-lg fibril solutions. However, a high stirring speed is not feasible due to reduction of the fibril yield and changes in fibril morphology.
    Matched MeSH terms: Viscosity
  9. Das L, Habib K, Saidur R, Aslfattahi N, Yahya SM, Rubbi F
    Nanomaterials (Basel), 2020 Jul 14;10(7).
    PMID: 32674465 DOI: 10.3390/nano10071372
    In recent years, solar energy technologies have developed an emerging edge. The incessant research to develop a power source alternative to fossil fuel because of its scarcity and detrimental effects on the environment is the main driving force. In addition, nanofluids have gained immense interest as superior heat transfer fluid in solar technologies for the last decades. In this research, a binary solution of ionic liquid (IL) + water based ionanofluids is formulated successfully with two dimensional MXene (Ti3C2) nano additives at three distinct concentrations of 0.05, 0.10, and 0.20 wt % and the optimum concentration is used to check the performance of a hybrid solar PV/T system. The layered structure of MXene and high absorbance of prepared nanofluids have been perceived by SEM and UV-vis respectively. Rheometer and DSC are used to assess the viscosity and heat capacity respectively while transient hot wire technique is engaged for thermal conductivity measurement. A maximum improvement of 47% in thermal conductivity is observed for 0.20 wt % loading of MXene. Furthermore, the viscosity is found to rise insignificantly with addition of Ti3C2 by different concentrations. Conversely, viscosity decreases substantially as the temperature increases from 20 °C to 60 °C. However, based on their thermophysical properties, 0.20 wt % is found to be the optimum concentration. A comparative analysis in terms of heat transfer performance with three different nanofluids in PV/T system shows that, IL+ water/MXene ionanofluid exhibits highest thermal, electrical, and overall heat transfer efficiency compared to water/alumina, palm oil/MXene, and water alone. Maximum electrical efficiency and thermal efficiency are recorded as 13.95% and 81.15% respectively using IL + water/MXene, besides that, heat transfer coefficients are also noticed to increase by 12.6% and 2% when compared to water/alumina and palm oil/MXene respectively. In conclusion, it can be demonstrated that MXene dispersed ionanofluid might be great a prospect in the field of heat transfer applications since they can augment the heat transfer rate considerably which improves system efficiency.
    Matched MeSH terms: Viscosity
  10. Salimon J, Salih N, Abdullah BM
    J Biomed Biotechnol, 2011;2011:196565.
    PMID: 22131799 DOI: 10.1155/2011/196565
    For environmental reasons, a new class of environmentally acceptable and renewable biolubricant based on vegetable oils is available. In this study, oxirane ring opening reaction of monoepoxide linoleic acid (MEOA) was done by nucleophilic addition of oleic acid (OA) with using p-toluene sulfonic acid (PTSA) as a catalyst for synthesis of 9(12)-hydroxy-10(13)-oleoxy-12(9)-octadecanoic acid (HYOOA) and the physicochemical properties of the resulted HYOOA are reported to be used as biolubricant base oils. Optimum conditions of the experiment using D-optimal design to obtain high yield% of HYOOA and lowest OOC% were predicted at OA/MEOA ratio of 0.30 : 1 (w/w), PTSA/MEOA ratio of 0.50 : 1 (w/w), reaction temperature at 110°C, and reaction time at 4.5 h. The results showed that an increase in the chain length of the midchain ester resulted in the decrease of pour point (PP) -51°C, increase of viscosity index (VI) up to 153, and improvement in oxidative stability (OT) to 180.94°C.
    Matched MeSH terms: Viscosity
  11. Izadiyan Z, Basri M, Fard Masoumi HR, Abedi Karjiban R, Salim N, Kalantari K
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:841-849.
    PMID: 30423770 DOI: 10.1016/j.msec.2018.10.015
    Nanoemulsions have been used as a drug carrier system, particularly for poorly water-soluble drugs. Sorafenib is a poorly soluble drug and also there is no parenteral treatment. The aim of this study is the development of nanoemulsions for intravenous administration of Sorafenib. The formulations were prepared by high energy emulsification method and optimized by using Response Surface Methodology (RSM). Here, the effect of independent composition variables of lecithin (1.16-2.84%, w/w), Medium-Chain Triglycerides (2.32-5.68%, w/w) and polysorbate 80 (0.58-1.42%, w/w) amounts on the properties of Sorafenib-loaded nanoemulsion was investigated. The three responses variables were particle size, zeta potential, and polydispersity index. Optimization of the conditions according to the three dependent variables was performed for the preparation of the Sorafenib-loaded nanoemulsions with the minimum value of particle size, suitable rage of zeta potential, and polydispersity index. A formulation containing 0.05% of Sorafenib kept its properties in a satisfactory range over the evaluated period. The composition with 3% Medium-Chain Triglycerides, 2.5% lecithin and 1.22% polysorbate 80 exhibited the smallest particle size and polydispersity index (43.17 nm and 0.22, respectively) with the zeta potential of -38.8 mV was the optimized composition. The fabricated nanoemulsion was characterized by the transmission electron microscope (TEM), viscosity, and stability assessment study. Also, the cytotoxicity result showed that the optimum formulations had no significant effect on a normal cell in a low concentration of the drug but could eliminate the cancer cells. The dose-dependent toxicity made it a suitable candidate for parenteral applications in the treatment of breast cancer. Furthermore, the optimized formulation indicated good storage stability for 3 months at different temperatures (4 ± 2 °C, 25 ± 2 °C and 45 ± 2 °C).
    Matched MeSH terms: Viscosity
  12. Toopkanloo SP, Tan TB, Abas F, Azam M, Nehdi IA, Tan CP
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322600 DOI: 10.3390/molecules25245873
    In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280-320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.
    Matched MeSH terms: Viscosity
  13. Suseno, S.H., Tajul, A.Y
    MyJurnal
    This study was aimed at improving the quality of fish oil. A synthetic filter aid (Magnesol XL) was used at various concentration (1, 3 and 5%) and time levels (5, 10, 15 and 20 minutes) to adsorb the polar compound products of the oil. Some physical and chemical properties (viscosity, colour, density, acid value, peroxide value and free fatty acid) of the treated oil were determined. Results indicate that Magnesol XL at 1 and 3% levels significantly reduced the acid value, peroxide value and free fatty acid contents of the treated oil.
    Treatment of the fish oil with Magnesol XL at 1 and 3% levels was also better than treatment with 5% Magnesol XL on improving the fish oil quality. The fatty acid profile for Σ n3 at untreated and treatment adsorbent showed significant at 0.05 level but not significant at Magnesol XL adsorbent concentration 1-5%.
    Matched MeSH terms: Viscosity
  14. Chachuli SH, Nawaz A, Shah K, Naharudin I, Wong TW
    Pharm Res, 2016 06;33(6):1497-508.
    PMID: 26951565 DOI: 10.1007/s11095-016-1893-5
    PURPOSE: Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages.

    METHODS: Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques.

    RESULTS: The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary.

    CONCLUSION: Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.

    Matched MeSH terms: Viscosity
  15. Sheshala R, Hong GC, Yee WP, Meka VS, Thakur RRS
    Drug Deliv Transl Res, 2019 04;9(2):534-542.
    PMID: 29484530 DOI: 10.1007/s13346-018-0491-y
    The objectives of this study were to develop biodegradable poly-lactic-co-glycolic acid (PLGA) based injectable phase inversion in situ forming system for sustained delivery of triamcinolone acetonide (TA) and to conduct physicochemical characterisation including in vitro drug release of the prepared formulations. TA (at 0.5%, 1% and 2.5% w/w loading) was dissolved in N-methyl-2-pyrrolidone (NMP) solvent and then incorporated 30% w/w PLGA (50/50 and 75/25) polymer to prepare homogenous injectable solution. The formulations were evaluated for rheological behaviour using rheometer, syringeability by texture analyser, water uptake and rate of implant formation by optical coherence tomography (OCT) microscope. Phase inversion in situ forming formulations were injected into PBS pH 7.3 to form an implant and release samples were collected and analysed for drug content using a HPLC method. All formulations exhibited good syringeability and rheological properties (viscosity: 0.19-3.06 Pa.s) by showing shear thinning behaviour which enable them to remain as free-flowing solution for ease administration. The results from OCT microscope demonstrated that thickness of the implants were increased with the increase in time and the rate of implant formation indicated the fast phase inversion. The drug release from implants was sustained over a period of 42 days. The research findings demonstrated that PLGA/NMP-based phase inversion in situ forming implants can improve compliance in patient's suffering from ocular diseases by sustaining the drug release for a prolonged period of time and thereby reducing the frequency of ocular injections.
    Matched MeSH terms: Viscosity
  16. Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A
    Heliyon, 2020 Nov;6(11):e05365.
    PMID: 33251348 DOI: 10.1016/j.heliyon.2020.e05365
    Background: Conventional drug delivery systems have some major drawbacks such as low bioavailability, short residence time and rapid precorneal drainage. An in situ gel drug delivery system provides several benefits, such as prolonged pharmacological duration of action, simpler production techniques, and low cost of manufacturing. This research aims to get the optimum formula of chloramphenicol in situ gel based on the physical evaluation.

    Methods: The effects of independent variables (poloxamer 407 and hydroxypropyl methyl cellulose (HPMC) concentration) on various dependent variables (gelling capacity, pH and viscosity) were investigated by using 32 factorial design and organoleptic evaluation was done with descriptive analysis.

    Results: The optimized formula of chloramphenicol in situ gel yielded 9 variations of poloxamer 407 and HPMC bases composition in % w/v as follows, F1 (5; 0.45), F2 (7.5; 0.45), F3 (10; 0.45), F4 (5; 0.725), F5 (7.5; 0.725), F6 (10; 0.725), F7 (5; 1), F8 (7.5; 1), F9 (10; 1). The results indicated that the organoleptic, pH, and gelling capacity parameters matched all formulas (F1-F9), however, the viscosity parameter only matched F3, F6, F8, and F9. Based on factorial design, F6 had the best formula with desirability value of 0.54, but the design recommended that formula with the composition bases of poloxamer 407 and HPMC at the ratio of 8.16 % w/v and 0.77 % w/v, respectively, was the optimum formula with a desirability value of 0.69.

    Conclusion: All formulas have met the Indonesian pharmacopoeia requirements based on the physical evaluation, especially formula 6 (F6), which was supported by the result of factorial design analysis.

    Matched MeSH terms: Viscosity
  17. Raju Y P, N H, Chowdary V H, Nair RS, Basha D J, N T
    Artif Cells Nanomed Biotechnol, 2017 Dec;45(8):1539-1547.
    PMID: 27887040 DOI: 10.1080/21691401.2016.1260579
    Research was aimed on microemulsion-based hydrogel for voriconazole. Oleic acid and isopropyl myristate as lipid phases; tween 20: tween 80 as surfactants and PEG600 as cosurfactant were selected to formulate voriconazole microemulsions. The promising microemulsions in terms of zeta potential, pH, viscosity, and drug release were selected and developed into hydrogels using carbopol 934. Resulting microemulsion-based hydrogel (MBH) of voriconazole were evaluated for in vitro diffusion and ex vivo permeation. Antifungal potentials of MBH were assessed against selected fungal strains. Optimal MBH formulations, O6 and O8 had displayed their antifungal potentials with enlarged zone of inhibition against selected fungal strains.
    Matched MeSH terms: Viscosity
  18. Nair A, Gupta R, Vasanti S
    Pharm Dev Technol, 2007;12(6):621-5.
    PMID: 18161635
    The present study is an attempt to formulate a controlled-release matrix tablet formulation for alfuzosin hydrochloride by using low viscous hydroxy propyl methyl cellulose (HPMC K-100 and HPMC 15cps) and its comparison with marketed product. Different batches of tablets containing 10 mg of alfuzosin were prepared by direct compression technique and evaluated for their physical properties, drug content, and in vitro drug release. All the formulations had a good physical integrity, and the drug content between the batches did not vary by more than 1%. Drug release from the matrix tablets was carried out for 12 hr and showed that the release rate was not highly significant with different ratios of HPMC K-100 and HPMC15cps. Similar dissolution profiles were observed between formulation F3 and the marketed product throughout the study period. The calculated regression coefficients showed a higher r2 value with zero-order kinetics and Higuchi model in all the cases. Although both the models could be applicable, zero-order kinetics seems to be better. Hence, it can be concluded that the use of low viscous hydrophilic polymer of different grades (HPMC K-100 and HPMC 15cps) can control the alfuzosin release for a period of 12 hr and was comparable to the marketed product.
    Matched MeSH terms: Viscosity
  19. Sabet M, Soleimani H
    Heliyon, 2019 Jul;5(7):e02053.
    PMID: 31334378 DOI: 10.1016/j.heliyon.2019.e02053
    The spread of graphene in low-density polyethylene (LDPE) improves LDPE/graphene nanocompounds' thermal/mechanical/electrical characteristics. The images of scanning electron microscopy (SEM) verify full graphene exfoliation at 1000 °C. Inclusion graphene develops crystallinity; increases the local order of lattice and thermal stability of LDPE/graphene nanocompounds. The consistent distributions and further inclusion of graphene caused the great heat breakdown strength, increasing heat breakdown activation energy and a superior melting point (Tm) for LDPE nanocompounds. Percolation occurs with the graphene incorporation of 0.5 wt%. The complex viscosity test showed Newtonian behavior for LDPE at a very low frequency. But, graphene inclusion to LDPE changed the viscosity performance from liquid-like to solid-like which caused a decrease in the melt flow rate (MFR) values for all LDPE/graphene nanocompounds.
    Matched MeSH terms: Viscosity
  20. Abdul Azam F', Razak Z, Md Radzi MKF, Muhamad N, Che Haron CH, Sulong AB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933225 DOI: 10.3390/polym12092083
    The incorporation of kenaf fiber fillers into a polymer matrix has been pronounced in the past few decades. In this study, the effect of multiwalled carbon nanotubes (MWCNTs) with a short kenaf fiber (20 mesh) with polypropylene (PP) added was investigated. The melt blending process was performed using an internal mixer to produce polymer composites with different filler contents, while the suitability of this melt composite for the injection molding process was evaluated. Thermogravimetric analysis (TGA) was carried out to investigate the thermal stability of the raw materials. Rheological analyses were conducted by varying the temperature, load factor, and filler content. The results demonstrate a non-Newtonian pseudoplastic behavior in all samples with changed kenaf fillers (10 to 40 wt %) and MWCNT contents (1 to 4 wt %), which confirm the suitability of the feedstock for the injection molding process. The addition of MWCNTs had an immense effect on the viscosity and an enormous reduction in the feedstock flow behavior. The main contribution of this work is the comprehensive observation of the rheological characteristics of newly produced short PP/kenaf composites that were altered after MWCNT additions. This study also presented an adverse effect on the composites containing MWCNTs, indicating a hydrophilic property with improved water absorption stability and the low flammability effect of PP/kenaf/MWCNT composites. This PP/kenaf/MWCNT green composite produced through the injection molding technique has great potential to be used as car components in the automotive industry.
    Matched MeSH terms: Viscosity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links