Displaying publications 101 - 120 of 169 in total

Abstract:
Sort:
  1. Sheikh KA, Baie SH, Khan GM
    Pak J Pharm Sci, 2005 Jan;18(1):1-5.
    PMID: 16431376
    Topical emulsions stabilized with non-ionic emulsifiers have been an attractive alternative as vehicles for drug delivery, particularly for the patients suffering from dermatological problems. Haruan (a natural wound healer) creams were formulated with different types of emulsifiers (Tween 80 and Span 80) using different grades of Malaysian Palm-oleins (DFPL 56, 60, 62 and 65). The stability (at room temperature and accelerated stability testing) of the various creams was evaluated at different temperatures (5, 25 and 45 degrees C) for a period of 6 months by measuring changes in droplet size, viscosity and percentage oil separation. The emulsifier type and concentration showed pronounced effect on the physicochemical properties of the cream, whereas storage time did not. This study suggested that the choice of emulsifiers and concentration of haruan extract are the most important factors in the stability of the haruan creams.
    Matched MeSH terms: Drug Compounding
  2. Kamari A, Aljafree NF, Yusoff SN
    Int J Biol Macromol, 2016 Jul;88:263-72.
    PMID: 27041651 DOI: 10.1016/j.ijbiomac.2016.03.071
    In this study, an amphiphilic chitosan derivative namely N,N-dimethylhexadecyl carboxymethyl chitosan (DCMC) was synthesised and applied for the first time as a carrier agent for rotenone. The physical and chemical properties of DCMC were characterised by using Fourier Transform Infrared Spectrometer (FTIR), Proton Nuclear Magnetic Resonance Spectrometer ((1)H NMR), CHN-O Elemental Analyser, Thermogravimetric Analyser (TGA) and Differential Scanning Calorimeter (DSC). DCMC was soluble in acidic (except pH 4), neutral and basic media with percent of transmittance (%T) values ranged from 67.2 to 99.4%. The critical micelle concentration (CMC) was determined as 0.095mg/mL. Transmission Electron Microscopy (TEM) analysis confirmed that DCMC has formed self-aggregates and exhibited spherical shape with the size of 65.5-137.0nm. The encapsulation efficiency (EE) and loading capacity (LC) of DCMC micelles with different weight ratios (DCMC:rotenone; 5:1, 50:1 and 100:1) were determined by using High Performance Liquid Chromatography (HPLC). The weight ratio of 100:1 gave the best EE with the value of more than 95.0%. DCMC micelles performed an excellent ability to control the release of rotenone, of which 99.0% of rotenone was released within 48h. Overall, DCMC has several key features to be an effective carrier agent for pesticide formulations.
    Matched MeSH terms: Drug Compounding
  3. Sheshala R, Kok YY, Ng JM, Thakur RR, Dua K
    Recent Pat Drug Deliv Formul, 2015;9(3):237-48.
    PMID: 26205681
    Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of new ophthalmic dosage forms for existing drugs to improve efficacy and bioavailability, patient compliance and convenience has become one of the main trend in the pharmaceuticals industry. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization and recent research in this area. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye are also covered in this review.
    Matched MeSH terms: Drug Compounding
  4. Vythilingam I, Zainal AR, Hamidah T
    PMID: 10695808
    Two formulations of lambda-cyhalothrin (EC-Emulsion concentrate and MC-Microencapsulated) were impregnated into bednets made of polyethylene and polyester. The nets were treated at a dosage of 15 mg/m2. For bioassay of insecticidal efficacy, female Anopheles maculatus and Aedes aegypti were exposed to the nets for two minutes and mortality was scored 24 hours later. The nets were also tested after repeated washings with water and with soap and water. Microencapsulated (2.5CS) formulation was more effective than emulsion concentrate (2.5EC) formulation on both net materials--polyethylene and polyester. Repeated washing with water and soap reduces the efficacy of all bednet treatment combinations. Microencapsulated formulation on polyethylene gave best results; it could sustain up to five washes with water and two with soap and water.
    Matched MeSH terms: Drug Compounding
  5. Tan YT, Heng PW, Wan LS
    Pharm Dev Technol, 1999;4(4):561-70.
    PMID: 10578511
    Modified-release drug spheroids coated with an aqueous mixture of high-viscosity hydroxypropylmethylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC) were formulated. The preparation of core drug spheroids and the coating procedures were performed using the rotary processor and a bottom-spray fluidized bed, respectively. Dissolution studies indicated that incorporation of suitable additives, such as poly(vinylpyrrolidone) (PVP) and poly(ethylene glycol) 400 (PEG) improved the flexibility and integrity of the coat layer by retarding the drug release. An increase in coating levels applied generally retarded the release rate of the drug. However, the ratio of HPMC to NaCMC in the mixed, plasticized polymeric coat played a more dominant role in determining the dissolution T50% values. The optimal ratio of HPMC to NaCMC for prolonged drug release was found to be 3:1, whereas an increase in the amount of NaCMC in the mixed polymer coat only increased drug release. The synergistic viscosity effect of HPMC and NaCMC in retarding drug release rate was greater in distilled water than in dissolution media of pH 1 and 7.2. Cross-sectional view of the scanning electron micrograph showed that all of the coated spheroids exhibited a well-fused, continuous, and distinct layer of coating film. The drug release kinetics followed a biexponential first-order kinetic model.
    Matched MeSH terms: Drug Compounding
  6. Lee PM, Lee KH, Siaw YS
    PMID: 8260581
    Aminoacylase I (E.C.3.5.1.14) was immobilized by entrapment in calcium alginate beads coated with polyethyleneimine for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The operational stability in terms of batch operation and continuous reaction in packed-bed bioreactor were studied. Kinetic constants, Km and Vmax values of free and immobilized enzymes were studied. Polyethyleneimine treatment was found to enhance the operational stability of the enzyme though its activity was substantially reduced. When polyethyleneimine-coated calcium alginate beads were packed into packed bed bioreactor, it was stable for at least 25 days under continuous operation without appreciable loss of activity.
    Matched MeSH terms: Drug Compounding
  7. Tengku Shafazila Tengku Saharuddin, Lailatun Nazirah Ozair, Ayuni Shahira Zulkifli, Nursarah Syazwani Hairul Shah, Nur Syafiqah Sahidan
    MyJurnal
    Ginger essential oils (GEO) are natural products with antibacteria properties consisting of many different volatile
    compounds have high potential to be used in many applications. In this study, the ginger GEO was successfully
    encapsulated in chitosan as a carrier agent using a spray drying technique. The extraction of Zingiber officinale
    (ginger) essential oil is performed by steam distillation method. The GEO was encapsulated in chitosan as a carrier
    agents at 1:3, GEO:chitosan ratio by using spray drying technique. GEO together with encapsulated GEO were
    further assayed for antimicrobial activity by disc-diffusion method. For characterization of encapsulated GEO,
    Fourier transform infrared spectroscopy (FTIR) and Field emission scanning electron microscopy (FESEM) were
    used. FTIR analysis revealed that there was no existence of a new functional group in the encapsulated GEO
    showing that there is only physical interaction between GEO and chitosan. Besides, FESEM analysis showed the
    encapsulated GEO were in micro in sizes and possessed spherical shape with smooth and porous surface.
    Furthermore, Both GEO and encapsulated GEO showed in vitro antimicrobial activity against Escheriachia coli,
    Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhi with encapsulated GEO possessed higher in
    the activities for all studied bacteria compared to GEO. The encapsulated GEO demonstrated a superior performance
    against Salmonella typhi with the inhibition zone of 22.5 mm compared to GEO only 13.5 mm. The results obtained
    indicated that due to the volatility and instability of the GEO when exposed to environmental factors, its encapsulation considerably improve and enhanced its performance.
    Matched MeSH terms: Drug Compounding
  8. Pandey P, Chellappan DK, Tambuwala MM, Bakshi HA, Dua K, Dureja H
    Int J Biol Macromol, 2019 Dec 01;141:596-610.
    PMID: 31494160 DOI: 10.1016/j.ijbiomac.2019.09.023
    The most common cause of deaths due to cancers nowadays is lung cancer. The objective of this study was to prepare erlotinib loaded chitosan nanoparticles for their anticancer potential. To study the effect of formulation variables on prepared nanoparticles using central composite design. Erlotinib loaded chitosan nanoparticles were prepared by ionic gelation method using probe sonication technique. It was found that batch NP-7 has a maximum loading capacity and entrapment efficiency with a particle size (138.5 nm) which is ideal for targeting solid tumors. Analysis of variance was applied to the particle size, entrapment efficiency and percent cumulative drug release to study the fitting and the significance of the model. The batch NP-7 showed 91.57% and 39.78% drug release after 24 h in 0.1 N hydrochloric acid and Phosphate Buffer (PB) pH 6.8, respectively. The IC50 value of NP-7 evaluated on A549 Lung cancer cells was found to be 6.36 μM. The XRD of NP-7 displayed the existence of erlotinib in the amorphous pattern. The optimized batch released erlotinib slowly in comparison to the marketed tablet formulation. Erlotinib loaded chitosan nanoparticles were prepared successfully using sonication technique with suitable particle size, entrapment efficiency and drug release. The formulated nanoparticles can be utilized for the treatment of lung cancer.
    Matched MeSH terms: Drug Compounding
  9. Nair RS, Morris A, Billa N, Leong CO
    AAPS PharmSciTech, 2019 Jan 10;20(2):69.
    PMID: 30631984 DOI: 10.1208/s12249-018-1279-6
    Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
    Matched MeSH terms: Drug Compounding
  10. Zin CS, Nozid NR, Razak AA, Hashim SN, Mazlan NA, Daud N, et al.
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S707-S710.
    PMID: 33828365 DOI: 10.4103/jpbs.JPBS_282_19
    Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common analgesics used for pain relief. Adverse effects of NSAIDs range from gastrointestinal tract disturbances to increased risk of bleeding, renal injury, and myocardial infarction. In Malaysia, the research productivity of NSAIDs is not well explored.

    Objective: This study examined research productivity of NSAIDs in Malaysia.

    Materials and Methods: This bibliometric study included all published research articles on NSAIDs from 1979 to 2018, which were conducted in Malaysia. The search databases such as Google Scholar, PubMed, ScienceDirect, and Scopus were used. Search terms included NSAIDs and specific drug names such as ibuprofen, celecoxib, and naproxen. Growth of publication, authorship pattern, citation analysis, journal index, type of studies, and geographical distribution of institutions publishing articles on NSAIDs were measured.

    Results: Overall, 111 articles were retrieved from 1979 to 2018. The annual productivity of articles throughout the study fluctuated in which the highest productivity was in 2018, 12.61% (n = 14). Majority of articles were multiple authored, 99.10% (n = 109), and University of Science Malaysia (USM) produced the highest number of articles (30 articles). Most of the articles were International Scientific Indexing-indexed, 52.25% (n = 58), and the main issue studied in most of the articles was the drug formulation of NSAIDs.

    Conclusion: The growth of NSAID research in Malaysia was slow, and the majority of research involved laboratory studies. Clinical studies evaluating the clinical outcomes of NSAIDs in patients, particularly using large healthcare databases are still lacking.

    Matched MeSH terms: Drug Compounding
  11. Ang LF, Darwis Y, Koh RY, Gah Leong KV, Yew MY, Por LY, et al.
    Pharmaceutics, 2019 May 01;11(5).
    PMID: 31052413 DOI: 10.3390/pharmaceutics11050205
    Curcuminoids have been used for the management of burns and wound healing in traditional Chinese medicine practices but the wide application of curcuminoids as a healing agent for wounds has always been a known problem due to their poor solubility, bioavailability, colour staining properties, as well as due to their intense photosensitivity and the need for further formulation approaches to maximise their various properties in order for them to considerably contribute towards the wound healing process. In the present study, a complex coacervation microencapsulation was used to encapsulate curcuminoids using gelatin B and chitosan. This study also focused on studying and confirming the potential of curcuminoids in a microencapsulated form as a wound healing agent. The potential of curcuminoids for wound management was evaluated using an in vitro human keratinocyte cell (HaCaT) model and the in vivo heater-inflicted burn wound model, providing evidence that the antioxidant activities of both forms of curcuminoids, encapsulated or not, are higher than those of butylated hydroxyanisole and butylated hydroxytoluene in trolox equivalent antioxidant capacity (TEAC) and (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) studies. However, curcuminoids did not have much impact towards cell migration and proliferation in comparison with the negative control in the in vitro HaCaT study. The micoencapsulation formulation was shown to significantly influence wound healing in terms of increasing the wound contraction rate, hydroxyproline synthesis, and greater epithelialisation, which in turn provides strong justification for the incorporation of the microencapsulated formulation of curcuminoids as a topical treatment for burns and wound healing management as it has the potential to act as a crucial wound healing agent in healthcare settings.
    Matched MeSH terms: Drug Compounding
  12. Sheshala R, Khan N, Darwis Y
    Chem Pharm Bull (Tokyo), 2011;59(8):920-8.
    PMID: 21804234
    The aims of the present research were to mask the intensely bitter taste of sumatriptan succinate and to formulate orally disintegrating tablets (ODTs) of the taste masked drug. Taste masking was performed by coating sumatriptan succinate with Eudragit EPO using spray drying technique. The resultant microspheres were evaluated for thermal analysis, yield, particle size, entrapment efficiency and in vitro taste masking. The tablets were formulated by mixing the taste masked microspheres with different types and concentrations of superdisintegrants and compressed using direct compression method followed by sublimation technique. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. All the tablet formulations disintegrated in vitro within 37-410 s. The optimized formulation containing 5% Kollidon CL-SF released more than 90% of the drug within 15 min and the release was comparable to that of commercial product (Suminat®). In human volunteers, the optimized formulation was found to have a pleasant taste and mouth feel and disintegrated in the oral cavity within 41 s. The optimized formulation was found to be stable and bioequivalent with Suminat®.
    Matched MeSH terms: Drug Compounding
  13. Yuen KH
    Int J Pharm, 2010 Aug 16;395(1-2):9-16.
    PMID: 20478371 DOI: 10.1016/j.ijpharm.2010.04.045
    The human small intestine, with its enormous absorptive surface area, is invariably the principal site of drug absorption. Hence, the residence time of a dosage form in this part of the gut can have a great influence on the absorption of the contained drug. Various methods have been employed to monitor the gastrointestinal transit of pharmaceutical dosage forms, but the use of gamma-scintigraphy has superceded all the other methods. However, careful consideration of the time interval for image acquisition and proper analysis of the scintigraphic data are important for obtaining reliable results. Most studies reported the mean small intestinal transit time of various dosage forms to be about 3-4h, being closely similar to that of food and water. The value does not appear to be influenced by their physical state nor the presence of food, but the timing of food intake following administration of the dosage forms can influence the small intestinal transit time. While the mean small intestinal transit time is quite consistent among dosage forms and studies, individual values can vary widely. There are differing opinions regarding the effect of density and size of dosage forms on their small intestinal transit properties. Some common excipients employed in pharmaceutical formulations can affect the small intestinal transit and drug absorption. There is currently a lack of studies regarding the effects of excipients, as well as the timing of food intake on the small intestinal transit of dosage forms and drug absorption.
    Matched MeSH terms: Drug Compounding
  14. Edueng K, Mahlin D, Larsson P, Bergström CAS
    J Control Release, 2017 06 28;256:193-202.
    PMID: 28412224 DOI: 10.1016/j.jconrel.2017.04.015
    We developed a step-by-step experimental protocol using differential scanning calorimetry (DSC), dynamic vapour sorption (DVS), polarized light microscopy (PLM) and a small-scale dissolution apparatus (μDISS Profiler) to investigate the mechanism (solid-to-solid or solution-mediated) by which crystallization of amorphous drugs occurs upon dissolution. This protocol then guided how to stabilize the amorphous formulation. Indapamide, metolazone, glibenclamide and glipizide were selected as model drugs and HPMC (Pharmacoat 606) and PVP (K30) as stabilizing polymers. Spray-dried amorphous indapamide, metolazone and glibenclamide crystallized via solution-mediated nucleation while glipizide suffered from solid-to-solid crystallization. The addition of 0.001%-0.01% (w/v) HPMC into the dissolution medium successfully prevented the crystallization of supersaturated solutions of indapamide and metolazone whereas it only reduced the crystallization rate for glibenclamide. Amorphous solid dispersion (ASD) formulation of glipizide and PVP K30, at a ratio of 50:50% (w/w) reduced but did not completely eliminate the solid-to-solid crystallization of glipizide even though the overall dissolution rate was enhanced both in the absence and presence of HPMC. Raman spectroscopy indicated the formation of a glipizide polymorph in the dissolution medium with higher solubility than the stable polymorph. As a complementary technique, molecular dynamics (MD) simulations of indapamide and glibenclamide with HPMC was performed. It was revealed that hydrogen bonding patterns of the two drugs with HPMC differed significantly, suggesting that hydrogen bonding may play a role in the greater stabilizing effect on supersaturation of indapamide, compared to glibenclamide.
    Matched MeSH terms: Drug Compounding
  15. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
    Matched MeSH terms: Drug Compounding
  16. Amarnath Praphakar R, Jeyaraj M, Ahmed M, Suresh Kumar S, Rajan M
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1627-1638.
    PMID: 29981824 DOI: 10.1016/j.ijbiomac.2018.07.008
    Recently, drug functionalized biodegradable polymers have been appreciated to be imperative to fabricate multi-drug delivery nanosystems for sustainable drug release. In this work, amphiphilic chitosan-grafted-(cetyl alcohol-maleic anhydride-pyrazinamide) (CS-g-(CA-MA-PZA)) was synthesized by multi-step reactions. The incorporation of rifampicin (RF) and entrapment of silver nanoparticles (Ag NPs) on CS-g-(CA-MA-PZA) polymer was carried out by dialysis technique. From the FT-IR experiment, the polymer modification, incorporation of drugs and the entrapment of Ag NPs on micelles were confirmed. The surface morphology of Ag NPs, polymeric system and drug loaded micelles was described by SEM, TEM and AFM techniques. In addition, the controlled release behaviour of CS-g-(CA-MA-PZA) micelles was studied by UV-Vis spectroscopy. In vitro cell viability, cell apoptosis and cellular uptake experiments shows that multi-drug delivery system could enhance the biocompatibility and higher the cytotoxicity effect on the cells. Since the prepared amphiphilic polymeric micelles exhibit spotty features and the system is a promising strategy for a novel candidate for immediate therapeutically effects for alveolar macrophages.
    Matched MeSH terms: Drug Compounding
  17. Lai JML, Yang SL, Avoi R
    J Glob Infect Dis, 2019 3 1;11(1):2-6.
    PMID: 30814828 DOI: 10.4103/jgid.jgid_50_18
    Introduction: Conventionally, a combination of four separate drugs (ethambutol, isoniazid, rifampicin, and pyrazinamide [EHRZ]) is the first-line pharmacotherapy for pulmonary tuberculosis (TB). In recent years, fixed-dose combination (FDC) formulation, where a single tablet contains the active ingredients of four aforementioned drugs, is gaining popularity due to its ease of administration.

    Objective: To compare the real-world effectiveness of EHRZ and FDC treatment groups on a cohort registry by investigating the sputum conversion rate and treatment outcomes of both groups.

    Methods: A total of 11,489 patients' data were extracted from the Sabah TB registry between January 2012 and June 2016, including EHRZ (n = 4188) and FDC (n = 7301) patients. Then, 1:1 propensity score matching was adopted to reduce the baseline bias. Caliper matching was conducted with maximum tolerance score set at 0.001. Confounders included in the propensity score matching were gender, nationality, diabetes, HIV status, smoking status, and chest X-ray status. Successful matching provided 4188 matched pairs (n = 8376) for final analysis.

    Results: In this matched cohort of 4188 pairs, the 2-month sputum conversion rate of FDC group was significantly higher than the EHRZ group (96.3% vs. 94.3%; P < 0.001) whereas 6-month sputum conversion of both groups showed no significant difference. Treatment outcomes such as noncompliance rate, failure rate, and success rate have no significant difference (P > 0.05) in both the treatment groups. There was an incidental finding of reduced death rate among FDC group compared to the EHRZ group (0.2% vs. 0.5%; P = 0.034).

    Conclusion: The FDC formulation has better sputum conversion rate at 2 months compared to conventional EHRZ regime as separate-drug formulation. It was also observed that FDC has a slight protective effect against all-cause death among TB patients. This protective effect of FDC, however, still needs to be proven further.

    Matched MeSH terms: Drug Compounding
  18. Teoh XY, Yeoh Y, Yoong LK, Chan SY
    Pharm Res, 2020 Jan 07;37(2):28.
    PMID: 31912250 DOI: 10.1007/s11095-019-2734-0
    PURPOSE: This study aims to conduct an impact investigation in the hydrophobic-hydrophilic balance as an important factor for dissolution improvement of a hydrophilic carrier-based solid dispersion system.

    METHODS: Polymeric carriers with different hydrophobic to hydrophilic ratios were used to prepare several electrospun solid dispersion formulations. Physicochemical properties and surface morphology of the samples were assessed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarized light microscopy, Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRPD) and Scanning Electron Microscopy (SEM). Dissolution study was conducted in a non-sink condition to assess the drug release.

    RESULTS: Incorporation of a higher amount of hydrophilic component showed an improvement in formulating a fully amorphous system based on XRPD, yet the dissolution rate increment showed no significant difference from the lower. Hence, the degree of crystallinity is proven not to be the crucial factor contributing to dissolution rate improvement. The presence of a concomitant hydrophobic component, however, showed ability in resisting precipitation and sustaining supersaturation.

    CONCLUSION: Hydrophobicity in a binary carrier system plays an important role in achieving and maintaining the supersaturated state particularly for an amorphous solid dispersion. Graphical Abstract.

    Matched MeSH terms: Drug Compounding
  19. Billa N, Yuen KH, Peh KK
    Drug Dev Ind Pharm, 1998 Jan;24(1):45-50.
    PMID: 15605596
    Ethyl acrylate-methyl methacrylate copolymer (Eudragit NE40D) was evaluated as matrix material for preparing controlled-release tablets of diclofenac sodium. Drug release could be modified in a predictable manner by varying the Eudragit NE40D content, but was pH dependent, being markedly reduced at lower pH. This could be attributed to the low solubility of the drug at these pH values. Thermal treatment of the tablets at 60 degrees C was also found to affect the rate of drug release, which was found to decrease with an increase in the treatment duration, but could be stabilized after 96 hr of treatment. This was also associated with a corresponding increase in the tablet tensile strength. However, treatment of the granules for 5 hr prior to compaction into tablets could shorten the stabilizing time of the drug release to 48 hr and that of the tensile strength to 24 hr. The effect of thermal treatment may be ascribed to better coalescence of the Eudragit particles to form a fine network, resulting in matrix of higher tortuosity and lower porosity.
    Matched MeSH terms: Drug Compounding
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links