METHODS: The antioxidant property of methanolic extract (ME) of C. ternatea leaf was investigated by employing an established in vitro antioxidant assay. The hepatoprotective effect against paracetamol-induced liver toxicity in mice of ME of C. ternatea leaf was also studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and billirubin along with histopathological analysis.
RESULTS: The amount of total phenolics and flavonoids were estimated to be 358.99 ± 6.21 mg/g gallic acid equivalent and 123.75 ± 2.84 mg/g catechin equivalent, respectively. The antioxidant activity of C. ternatea leaf extract was 67.85% at a concentration of 1 mg/mL and was also concentration dependant, with an IC(50) value of 420.00 µg/mL. The results of the paracetamol-induced liver toxicity experiments showed that mice treated with the ME of C. ternatea leaf (200 mg/kg) showed a significant decrease in ALT, AST, and bilirubin levels, which were all elevated in the paracetamol group (p < 0.01). C. ternatea leaf extract therapy also protective effects against histopathological alterations. Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen.
CONCLUSIONS: The current study confirmed the hepatoprotective effect of C. ternatea leaf extract against the model hepatotoxicant paracetamol. The hepatoprotective action is likely related to its potent antioxidative activity.
AIM OF THE STUDY: The present study was carried out to examine the potential modulatory effects of three commercially available active components (asiaticoside, asiatic acid and madecassic acid) and four extracts (aqueous, ethanol, dichloromethane and hexane) of CA on three major cDNA-expressed human cytochrome P450 (CYP) isoforms.
MATERIALS AND METHODS: High-performance liquid chromatography (HPLC)-based enzyme assays, namely tolbutamide 4-methyhydroxylase, dextromethorphan O-demethylase and testosterone 6beta-hydroxylase assays were developed to probe activities of CYP2C9, CYP2D6 and CYP3A4, respectively. Probe substrates were incubated with or without each active component and extract for each isoform, followed by examination of the kinetics parameters, IC(50) and K(i), to characterize modulatory effects.
RESULTS: CYP2C9 was more susceptible to inhibitory effects by CA extracts compared to CYP2D6 and CYP3A4. Moderate degree of inhibition was observed in ethanol (K(i)=39.1 microg/ml) and dichloromethane (K(i)=26.6 microg/ml) extracts implying potential risk of interaction when CYP2C9 substrates are consumed with CA products. The two extracts however showed negligible inhibition towards CYP2D6 and CYP3A4 (IC(50)'s of 123.3 microg/ml and above). Similarly CA aqueous and hexane extracts did not significantly inhibit all three isoforms investigated (IC(50)'s of 117.9 microg/ml and above). Among the active constituents investigated, asiatic acid and madecassic acid appeared to selectively inhibit CYP2C9 and CYP2D6 more than CYP3A4. Of particular interest is the potent inhibitory effect of asiatic acid on CYP2C9 (K(i)=9.1 microg/ml). This signifies potential risk of interaction when substrates for this isoform are taken together with CA products with high asiatic acid content. Inhibitions of asiatic acid with the other isoforms and that of madecassic acid with all isoforms were only moderate (K(i)'s ranged from 17.2 to 84.4 microg/ml). On the other hand, the IC(50) values for asiaticoside were high (1070.2 microg/ml or above) for all three isoforms, indicating negligible or low potential of this compound to modulate CYP enzymatic activity.
CONCLUSION: Centella asiatica extracts and active constituents inhibited CYP2C9, CYP2D6 and CYP3A4 activities with varying potency with CYP2C9 being the most susceptible isoform to inhibition. Significant inhibition was observed for asiatic acid and CA ethanol and dichloromethane extracts, implying involvement of semipolar constituents from CA in the effect. This study suggested that CA could cause drug-herb interactions through CYP2C9 inhibition.