Displaying publications 1261 - 1280 of 9214 in total

Abstract:
Sort:
  1. Shahfiza N, Osman H, Hock TT, Abdel-Hamid AZ
    Acta Biochim. Pol., 2017;64(2):215-219.
    PMID: 28350402 DOI: 10.18388/abp.2015_1224
    BACKGROUND: Dengue is one of the major public health problems in the world, affecting more than fifty million cases in tropical and subtropical region every year. The metabolome, as pathophysiological end-points, provide significant understanding of the mechanism and progression of dengue pathogenesis via changes in the metabolite profile of infected patients. Recent developments in diagnostic technologies provide metabolomics for the early detection of infectious diseases.

    METHODS: The mid-stream urine was collected from 96 patients diagnosed with dengue fever at Penang General Hospital (PGH) and 50 healthy volunteers. Urine samples were analyzed with proton nuclear magnetic resonance (1H NMR) spectroscopy, followed by chemometric multivariate analysis. NMR signals highlighted in the orthogonal partial least square-discriminant analysis (OPLS-DA) S-plots were selected and identified using Human Metabolome Database (HMDB) and Chenomx Profiler. A highly predictive model was constructed from urine profile of dengue infected patients versus healthy individuals with the total R2Y (cum) value 0.935, and the total Q2Y (cum) value 0.832.

    RESULTS: Data showed that dengue infection is related to amino acid metabolism, tricarboxylic acid intermediates cycle and β-oxidation of fatty acids. Distinct variations in certain metabolites were recorded in infected patients including amino acids, various organic acids, betaine, valerylglycine, myo-inositol and glycine.

    CONCLUSION: Metabolomics approach provides essential insight into host metabolic disturbances following dengue infection.

    Matched MeSH terms: Amino Acids/metabolism; Dengue/metabolism*; Dengue Virus/metabolism*; Fatty Acids/metabolism
  2. Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A
    World J Microbiol Biotechnol, 2017 Jan;33(1):4.
    PMID: 27837408
    Glycosylation represents the most widespread posttranslational modifications, found in a broad spectrum of natural and therapeutic recombinant proteins. It highly affects bioactivity, site-specificity, stability, solubility, immunogenicity, and serum half-life of glycoproteins. Numerous expression hosts including yeasts, insect cells, transgenic plants, and mammalian cells have been explored for synthesizing therapeutic glycoproteins. However, glycosylation profile of eukaryotic expression systems differs from human. Glycosylation strategies have been proposed for humanizing the glycosylation pathways in expression hosts which is the main theme of this review. Besides, we also highlighted the glycosylation potential of protozoan parasites by emphasizing on the mammalian-like glycosylation potential of Leishmania tarentolae known as Leishmania expression system.
    Matched MeSH terms: Eukaryotic Cells/metabolism*; Glycoproteins/metabolism*; Leishmania/metabolism; Recombinant Proteins/metabolism
  3. Supandi F, van Beek JHGM
    PLoS One, 2018;13(9):e0203687.
    PMID: 30208076 DOI: 10.1371/journal.pone.0203687
    BACKGROUND: Parkinson's disease is a widespread neurodegenerative disorder which affects brain metabolism. Although changes in gene expression during disease are often measured, it is difficult to predict metabolic fluxes from gene expression data. Here we explore the hypothesis that changes in gene expression for enzymes tend to parallel flux changes in biochemical reaction pathways in the brain metabolic network. This hypothesis is the basis of a computational method to predict metabolic flux changes from post-mortem gene expression measurements in Parkinson's disease (PD) brain.

    RESULTS: We use a network model of central metabolism and optimize the correspondence between relative changes in fluxes and in gene expression. To this end we apply the Least-squares with Equalities and Inequalities algorithm integrated with Flux Balance Analysis (Lsei-FBA). We predict for PD (1) decreases in glycolytic rate and oxygen consumption and an increase in lactate production in brain cortex that correspond with measurements (2) relative flux decreases in ATP synthesis, in the malate-aspartate shuttle and midway in the TCA cycle that are substantially larger than relative changes in glucose uptake in the substantia nigra, dopaminergic neurons and most other brain regions (3) shifts in redox shuttles between cytosol and mitochondria (4) in contrast to Alzheimer's disease: little activation of the gamma-aminobutyric acid shunt pathway in compensation for decreased alpha-ketoglutarate dehydrogenase activity (5) in the globus pallidus internus, metabolic fluxes are increased, reflecting increased functional activity.

    CONCLUSION: Our method predicts metabolic changes from gene expression data that correspond in direction and order of magnitude with presently available experimental observations during Parkinson's disease, indicating that the hypothesis may be useful for some biochemical pathways. Lsei-FBA generates predictions of flux distributions in neurons and small brain regions for which accurate metabolic flux measurements are not yet possible.

    Matched MeSH terms: Adenosine Triphosphate/metabolism; Brain/metabolism*; Parkinson Disease/metabolism; RNA, Messenger/metabolism*
  4. Guo G, Zhang W, Dang M, Yan M, Chen Z
    J Biochem Mol Toxicol, 2019 Apr;33(4):e22268.
    PMID: 30431692 DOI: 10.1002/jbt.22268
    Overexpression of human epidermal growth factor receptor 2 (HER2) is observed in breast cancer. The major snag faced by the human population is the development of chemoresistance to HER2 inhibitors by advanced stage breast cancer cells. Moreover, recent researchers focussed on fisetin as an antiproliferative and chemotherapeutic agent. Therefore, this study was intended to analyze the effects of fisetin on HER2/neu-overexpressing breast cancer cell lines. Our results depicted that fisetin induced apoptosis of these cells by various mechanisms, such as inactivation of the receptor, induction of proteasomal degradation, decreasing its half-life, decreasing enolase phosphorylation, and alteration of phosphatidylinositol 3-kinase/Akt signaling.
    Matched MeSH terms: Breast Neoplasms/metabolism; Tyrosine/metabolism; Phosphatidylinositol 3-Kinases/metabolism*; Proto-Oncogene Proteins c-akt/metabolism*
  5. Al-Gheethi A, Noman E, Radin Mohamed RMS, Ismail N, Bin Abdullah AH, Mohd Kassim AH
    J Hazard Mater, 2019 03 05;365:883-894.
    PMID: 30497042 DOI: 10.1016/j.jhazmat.2018.11.068
    Biodegradation of pharmaceuticals active compounds (PACs) in secondary effluents by using B. subtilis 2012WTNC as a function of β-lactamase was optimized using response surface methodology (RSM) designed by central composite design (CCD). Four factors including initial concentration of bacteria (1-6 log10 CFU mL-1), incubation period (1-14 days), incubation temperature (20-40 °C) and initial concentration of PACs (1-5 mg L-1) were investigated. The optimal operating factors for biodegradation process determined using response surface methodology (RSM) was recorded with 5.57 log10 CFU mL-1 of B. subtilis, for 10.38 days, at 36.62 °C and with 4.14 mg L-1 of (cephalexin/amoxicillin) with R2 coefficient of 0.99. The biodegradation was 83.81 and 93.94% respectively. The relationship among the independent variables was significant (p 
    Matched MeSH terms: Amoxicillin/metabolism*; Anti-Bacterial Agents/metabolism*; beta-Lactamases/metabolism*; Cephalexin/metabolism*
  6. Mohammed A, Abdul-Wahab MF, Hashim M, Omar AH, Md Reba MN, Muhamad Said MF, et al.
    Pol J Microbiol, 2018 11 20;67(3):283-290.
    PMID: 30451444 DOI: 10.21307/pjm-2018-033
    Lower temperature biohydrogen production has always been attractive, due to the lower energy requirements. However, the slow metabolic rate of psychrotolerant biohydrogen-producing bacteria is a common problem that affects their biohydrogen yield. This study reports on the improved substrate synthesis and biohydrogen productivity by the psychrotolerant Klebsiella sp. strain ABZ11, isolated from Antarctic seawater sample. The isolate was screened for biohydrogen production at 30°C, under facultative anaerobic condition. The isolate is able to ferment glucose, fructose and sucrose with biohydrogen production rate and yield of 0.8 mol/l/h and 3.8 mol/g, respectively at 10 g/l glucose concentration. It also showed 74% carbohydrate uptake and 95% oxygen uptake ability, and a wide growth temperature range with optimum at 37°C. Klebsiella sp. ABZ11 has a short biohydrogen production lag phase, fast substrate uptake and is able to tolerate the presence of oxygen in the culture medium. Thus, the isolate has a potential to be used for lower temperature biohydrogen production process.
    Matched MeSH terms: Hydrogen/metabolism*; Klebsiella/metabolism*; Oxygen/metabolism; Carbohydrate Metabolism
  7. Amil-Bangsa NH, Mohd-Ali B, Ishak B, Abdul-Aziz CNN, Ngah NF, Hashim H, et al.
    Optom Vis Sci, 2019 12;96(12):934-939.
    PMID: 31834153 DOI: 10.1097/OPX.0000000000001456
    SIGNIFICANCE: Total protein concentration (TPC) and tumor necrosis factor α (TNF-α) concentration in tears are correlated with severity of retinopathy. However, minimal data are available in the literature for investigating tear TPC and TNF-α concentrations in Asian individuals with different severity of nonproliferative diabetic retinopathy (NPDR).

    PURPOSE: This study evaluated differences of TPC and TNF-α concentrations in tears at different severity of NPDR among participants with diabetes in comparison with normal participants.

    METHODS: A total of 75 participants were categorized based on Early Treatment for Diabetic Retinopathy Study scale, with 15 participants representing each group, namely, normal, diabetes without retinopathy, mild NPDR, moderate NPDR, and severe NPDR. All participants were screened using McMonnies questionnaire. Refraction was conducted subjectively. Visual acuity was measured using a LogMAR chart. Twenty-five microliters of basal tears was collected using glass capillary tubes. Total protein concentration and TNF-α concentrations were determined using Bradford assay and enzyme-linked immunosorbent assay, respectively.

    RESULTS: Mean ± SD age of participants (n = 75) was 57.88 ± 4.71 years, and participants scored equally in McMonnies questionnaire (P = .90). Mean visual acuity was significantly different in severe NPDR (P = .003). Mean tear TPC was significantly lower, and mean tear TNF-α concentration was significantly higher in moderate and severe NPDR (P < .001). Mean ± SD tear TPC and TNF-α concentrations for normal were 7.10 ± 1.53 and 1.39 ± 0.24 pg/mL; for diabetes without retinopathy, 6.37 ± 1.65 and 1.53 ± 0.27 pg/mL; for mild NPDR, 6.32 ± 2.05 and 1.60 ± 0.21 pg/mL; for moderate NPDR, 3.88 ± 1.38 and 1.99 ± 0.05 pg/mL; and for severe NPDR, 3.64 ± 1.26 and 2.21 ± 0.04 pg/mL, respectively. Tear TPC and TNF-α concentrations were significantly correlated (r = -0.50, P < .0001). Visual acuity was significantly correlated with tear TPC (r = -0.236, P = .04) and TNF-α concentrations (r = 0.432, P < .0001).

    CONCLUSIONS: This cross-sectional study identified differences in tear TPC and TNF-α concentrations with increasing severity of NPDR.

    Matched MeSH terms: Diabetic Retinopathy/metabolism*; Eye Proteins/metabolism*; Tears/metabolism*; Tumor Necrosis Factor-alpha/metabolism*
  8. Yap JKY, Pickard BS, Chan EWL, Gan SY
    Mol Neurobiol, 2019 Nov;56(11):7741-7753.
    PMID: 31111399 DOI: 10.1007/s12035-019-1638-7
    The innate immune system and inflammatory response in the brain have critical impacts on the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). In the central nervous system (CNS), the innate immune response is primarily mediated by microglia. However, non-glial cells such as neurons could also partake in inflammatory response independently through inflammasome signalling. The NLR family pyrin domain-containing 1 (NLRP1) inflammasome in the CNS is primarily expressed by pyramidal neurons and oligodendrocytes. NLRP1 is activated in response to amyloid-β (Aβ) aggregates, and its activation subsequently cleaves caspase-1 into its active subunits. The activated caspase-1 proteolytically processes interleukin-1β (IL-1β) and interleukin-18 (IL-18) into maturation whilst co-ordinately triggers caspase-6 which is responsible for apoptosis and axonal degeneration. In addition, caspase-1 activation induces pyroptosis, an inflammatory form of programmed cell death. Studies in murine AD models indicate that the Nlrp1 inflammasome is indeed upregulated in AD and neuronal death is observed leading to cognitive decline. However, the mechanism of NLRP1 inflammasome activation in AD is particularly elusive, given its structural and functional complexities. In this review, we examine the implications of the human NLRP1 inflammasome and its signalling pathways in driving neuroinflammation in AD.
    Matched MeSH terms: Alzheimer Disease/metabolism*; Neurons/metabolism*; Adaptor Proteins, Signal Transducing/metabolism*; Inflammasomes/metabolism*
  9. Neoh BK, Wong YC, Teh HF, Ng TLM, Tiong SH, Ooi TEK, et al.
    PLoS One, 2019;14(3):e0213591.
    PMID: 30856213 DOI: 10.1371/journal.pone.0213591
    To investigate limiters of photosynthate assimilation in the carbon-source limited crop, oil palm (Elaeis guineensis Jacq.), we measured differential metabolite, gene expression and the gas exchange in leaves in an open field for palms with distinct mesocarp oil content. We observed higher concentrations of glucose 1-phosphate, glucose 6-phosphate, sucrose 6-phosphate, and sucrose in high-oil content palms with the greatest difference being at 11:00 (p-value ≤0.05) immediately after the period of low morning light intensity. Three important photosynthetic genes were identified using differentially expressed gene analysis (DEGs) and were found to be significantly enriched through Gene Ontology (GO) and pathway enrichment: chlorophyll a-b binding protein (CAB-13), photosystem I (PSI), and Ferredoxin-NADP reductase (FNR), particularly for sampling points at non-peak light (11:00 and 19:00), ranging from 3.3-fold (PSI) and 5.6-fold (FNR) to 10.3-fold (CAB-13). Subsequent gas exchange measurements further supported increased carbon assimilation through higher level of internal CO2 concentration (Ci), stomatal conductance (gs) and transpiration rate (E) in high-oil content palms. The selection for higher expression of key photosynthesis genes together with CO2 assimilation under low light is likely to be important for crop improvement, in particular at full maturity and under high density planting regimes where light competition exists between palms.
    Matched MeSH terms: Carbon Dioxide/metabolism; Plant Proteins/metabolism; Plant Leaves/metabolism; Arecaceae/metabolism
  10. Aimie-Salleh N, Malarvili MB, Whittaker AC
    Med Biol Eng Comput, 2019 Jun;57(6):1229-1245.
    PMID: 30734153 DOI: 10.1007/s11517-019-01958-3
    Adverse childhood experiences have been suggested to cause changes in physiological processes and can determine the magnitude of the stress response which might have a significant impact on health later in life. To detect the stress response, biomarkers that represent both the Autonomic Nervous System (ANS) and Hypothalamic-Pituitary-Adrenal (HPA) axis are proposed. Among the available biomarkers, Heart Rate Variability (HRV) has been proven as a powerful biomarker that represents ANS. Meanwhile, salivary cortisol has been suggested as a biomarker that reflects the HPA axis. Even though many studies used multiple biomarkers to measure the stress response, the results for each biomarker were analyzed separately. Therefore, the objective of this study is to propose a fusion of ANS and HPA axis biomarkers in order to classify the stress response based on adverse childhood experience. Electrocardiograph, blood pressure (BP), pulse rate (PR), and salivary cortisol (SCort) measures were collected from 23 healthy participants; 11 participants had adverse childhood experience while the remaining 12 acted as the no adversity control group. HRV was then computed from the ECG and the HRV features were extracted. Next, the selected HRV features were combined with the other biomarkers using Euclidean distance (ed) and serial fusion, and the performance of the fused features was compared using Support Vector Machine. From the result, HRV-SCort using Euclidean distance achieved the most satisfactory performance with 80.0% accuracy, 83.3% sensitivity, and 78.3% specificity. Furthermore, the performance of the stress response classification of the fused biomarker, HRV-SCort, outperformed that of the single biomarkers: HRV (61% Accuracy), Cort (59.4% Accuracy), BP (78.3% accuracy), and PR (53.3% accuracy). From this study, it was proven that the fused biomarkers that represent both ANS and HPA (HRV-SCort) able to demonstrate a better classification performance in discriminating the stress response. Furthermore, a new approach for classification of stress response using Euclidean distance and SVM named as ed-SVM was proven to be an effective method for the HRV-SCort in classifying the stress response from PASAT. The robustness of this method is crucial in contributing to the effectiveness of the stress response measures and could further be used as an indicator for future health. Graphical abstract ᅟ.
    Matched MeSH terms: Hydrocortisone/metabolism*; Saliva/metabolism*; Stress, Psychological/metabolism*; Biomarkers/metabolism
  11. Wilson N, Steadman R, Muller I, Draman M, Rees DA, Taylor P, et al.
    Int J Mol Sci, 2019 May 31;20(11).
    PMID: 31151314 DOI: 10.3390/ijms20112675
    Hyaluronan (HA), an extra-cellular matrix glycosaminoglycan, may play a role in mesenchymal stem cell differentiation to fat but results using murine models and cell lines are conflicting. Our previous data, illustrating decreased HA production during human adipogenesis, suggested an inhibitory role. We have investigated the role of HA in adipogenesis and fat accumulation using human primary subcutaneous preadipocyte/fibroblasts (PFs, n = 12) and subjects of varying body mass index (BMI). The impact of HA on peroxisome proliferator-activated receptor gamma (PPARγ) expression was analysed following siRNA knockdown or HA synthase (HAS)1 and HAS2 overexpression. PFs were cultured in complete or adipogenic medium (ADM) with/without 4-methylumbelliferone (4-MU = HA synthesis inhibitor). Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, and measurement of a terminal differentiation marker. Modulating HA production by HAS2 knockdown or overexpression increased (16%, p < 0.04) or decreased (30%, p = 0.01) PPARγ transcripts respectively. The inhibition of HA by 4-MU significantly enhanced ADM-induced adipogenesis with 1.52 ± 0.18- (ORO), 4.09 ± 0.63- (foci) and 2.6 ± 0.21-(marker)-fold increases compared with the controls, also increased PPARγ protein expression (40%, (p < 0.04)). In human subjects, circulating HA correlated negatively with BMI and triglycerides (r = -0.396 (p = 0.002), r = -0.269 (p = 0.038), respectively), confirming an inhibitory role of HA in human adipogenesis. Thus, enhancing HA action may provide a therapeutic target in obesity.
    Matched MeSH terms: Adipose Tissue/metabolism; Fibroblasts/metabolism; Hyaluronic Acid/metabolism*; PPAR gamma/metabolism
  12. Hii KS, Lim PT, Kon NF, Usup G, Gu H, Leaw CP
    Gene, 2019 Aug 30;711:143950.
    PMID: 31255736 DOI: 10.1016/j.gene.2019.143950
    The marine dinoflagellate Alexandrium minutum is known to produce saxitoxins that cause paralytic shellfish poisoning in human worldwide through consumption of the contaminated shellfish mollusks. Despite numerous studies on the growth physiology and saxitoxin production of this species, the knowledge on the molecular basis of nutrient uptakes in relation to toxin production in this species is limited. In this study, relative expressions of the high-affinity transporter genes of nitrate, ammonium, and phosphate (AmNrt2, AmAmt1 and AmPiPT1) and the assimilation genes, nitrate reductase (AmNas), glutamine synthase (AmGSIII) and carbamoyl phosphate synthase (AmCPSII) from A. minutum were studied in batch clonal culture condition with two nitrogen sources (nitrate: NO3- or ammonium: NH4+) under different N:P ratios (high-P: N:P of 14 and 16, and low-P: N:P of 155). The expression of AmAmt1 was suppressed in excess NH4+-grown condition but was not observed in AmNrt2 and AmNas. Expressions of AmAmt1, AmNrt2, AmNas, AmGSIII, AmCPSII, and AmPiPT1 were high in P-deficient condition, showing that A. minutum is likely to take up nutrients for growth under P-stress condition. Conversely, relative expression of AmCPSII was incongruent with cell growth, but was well correlated with toxin quota, suggesting that the gene might involve in arginine metabolism and related toxin production pathway. The expression of AmGSIII is found coincided with higher toxin production and is believed to involve in mechanism to detoxify the cells from excess ammonium stress. The gene regulation observed in this study has provided better insights into the ecophysiology of A. minutum in relation to its adaptive strategies in unfavorable environments.
    Matched MeSH terms: Dinoflagellida/metabolism; Nitrates/metabolism; Phosphates/metabolism; Ammonium Compounds/metabolism
  13. Khawory MH, Amat Sain A, Rosli MAA, Ishak MS, Noordin MI, Wahab HA
    Appl Radiat Isot, 2020 Mar;157:109013.
    PMID: 31889674 DOI: 10.1016/j.apradiso.2019.109013
    BACKGROUND AND AIM: The aim of this study is to evaluate the effects of gamma radiation treatment on three medicinal plants, namely Euodia malayana, Gnetum gnemon and Khaya senegalensis at two different forms; methanol leaf extracts and dried leaves respectively.

    EXPERIMENTAL PROCEDURE: The microbial limit test (MLT) studies indicated the suitable dosage of minimum and maximum gamma irradiation for leaf extracts as well as dried leaves of all the tested medicinal plants. Quantitative analysis of total phenolic content (TPC) analysis is based on calorimetric measurements determined using the Folin-Ciocalteu reagent with gallic acid (GA) used as the reference. In vitro cytotoxicity assay by using fibroblast (L929) cell lines was performed on each plant to determine the toxicity effect which sodium dodecyl sulfate (SDS) as the positive control. DPPH (2,2-diphenyl-1-picryl-hydrazyl) assay was conducted by using vitamin C and GA as the positive controls to determine the antioxidant property of each plant.

    RESULTS AND CONCLUSION: The MLT analysis indicated that the suitable dosage gamma irradiation for leaf extracts was 6-12 kGy and dried leaves were 9-13 kGy. The amount of GA concentration in each plant increased significantly from 30-51 mg GAE g-1 before treatment to 57-103 mg GAE g-1 after treatment with gamma radiation. This showed no significant effect of in vitro cytotoxicity activity before and after treatment with gamma irradiation in this study. Effective concentration (EC50) values of Khaya senegalensis plant reduced significantly (P ≤ 0.005) from 44.510 μg/ml before treatment to 24.691 μg/ml after treatment with gamma radiation, which indicate an increase of free radical scavenging activity.

    Matched MeSH terms: Antioxidants/metabolism*; Phenols/metabolism*; Plants, Medicinal/metabolism; Plant Leaves/metabolism
  14. Goh YC, Chan SW, Siar CH
    Malays J Pathol, 2019 Dec;41(3):303-311.
    PMID: 31901915
    INTRODUCTION: Ameloblastoma is a benign but locally invasive odontogenic epithelial neoplasm with a high recurrence rate after treatment. The two main subsets encountered clinically are unicystic (UA) and solid/multicystic ameloblastoma (SMA). Currently neoplastic progression of many tumour types are believed to be related to parenchyma-stromal cell-cell interactions mediated by cytokines notably interleukins (IL). However their roles in ameloblastoma remain ill-understood.

    MATERIALS AND METHODS: Thirty-nine formalin-fixed paraffin-embedded ameloblastoma cases comprising unicystic ameloblastoma (n=19) and solid/multicystic ameloblastoma (n=20) were subjected to IHC staining for IL-1α, IL-1β, IL-6 and IL-8. A semi-quantitative method was used to evaluate the expression levels of these cytokines according to cell types in the tumoural parenchyma and stroma.

    RESULTS: Major findings were upregulations of IL-1α and IL-6 in SMA compared to UA. Both cytokines were heterogeneously detected in the tumoural parenchyma and stroma. Within the neoplastic epithelial compartment, IL-1α expression was more frequently detected in PA-like cells in UA whereas it was more frequently encountered in SR-like cells in SMA. IL-6 demonstrated higher expression levels in the stromal compartment of SMA. IL-1β and IL-8 were markedly underexpressed in both tumour subsets.

    CONCLUSIONS: Overexpression of IL-1α in SMA suggests that this growth factor might play a role in promoting bone resorption and local invasiveness in this subtype. The expression levels of IL-1α and IL-6 in three cellular localizations indicate that parenchymal-stromal components of ameloblastoma interact reciprocally via IL-1α and IL-6 to create a microenvironment conducive for tumour progression.

    Matched MeSH terms: Ameloblastoma/metabolism*; Odontogenic Tumors/metabolism; Interleukin-6/metabolism*; Interleukin-1alpha/metabolism*
  15. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
    Matched MeSH terms: Cyanobacteria/metabolism; Dinoflagellida/metabolism*; Neurotoxins/metabolism; Saxitoxin/metabolism
  16. Ip YK, Randall DJ, Kok TK, Barzaghi C, Wright PA, Ballantyne JS, et al.
    J Exp Biol, 2004 Feb;207(Pt 5):787-801.
    PMID: 14747411
    Periophthalmodon schlosseri is an amphibious and obligatory air-breathing teleost, which is extremely tolerant to environmental ammonia. It actively excretes NH(4)(+) in ammonia loading conditions. For such a mechanism to operate efficaciously the fish must be able to prevent back flux of NH(3). P. schlosseri could lower the pH of 50 volumes (w/v) of 50% seawater in an artificial burrow from pH 8.2 to pH 7.4 in 1 day, and established an ambient ammonia concentration of 10 mmol l(-1) in 8 days. It could alter the rate of titratable acid efflux in response to ambient pH. The rate of net acid efflux (H(+) excretion) in P. schlosseri was pH-dependent, increasing in the order pH 6.0<7.0<8.0<8.5. Net acid flux in neutral or alkaline pH conditions was partially inhibited by bafilomycin, indicating the possible involvement of a V-type H(+)-ATPase. P. schlosseri could also increase the rate of H(+) excretion in response to the presence of ammonia in a neutral (pH 7.0) external medium. Increased H(+) excretion in P. schlosseri occurred in the head region where active excretion of NH(4)(+) took place. This would result in high concentrations of H(+) in the boundary water layer and prevent the dissociation of NH(4)(+), thus preventing a back flux of NH(3) through the branchial epithelia. P. schlosseri probably developed such an 'environmental ammonia detoxification' capability because of its unique behavior of burrow building in the mudflats and living therein in a limited volume of water. In addition, the skin of P. schlosseri had low permeability to NH(3). Using an Ussing-type apparatus with 10 mmol l(-1) NH(4)Cl and a 1 unit pH gradient (pH 8.0 to 7.0), the skin supported only a very small flux of NH(3) (0.0095 micromol cm(-2) min(-1)). Cholesterol content (4.5 micromol g(-1)) in the skin was high, which suggests low membrane fluidity. Phosphatidylcholine, which has a stabilizing effect on membranes, constituted almost 50% of the skin phospholipids, with phosphatidyleserine and phsophatidylethanolamine contributing only 13% and 15%, respectively. More importantly, P. schlosseri increased the cholesterol level (to 5.5 micromol g(-1)) and altered the fatty acid composition (increased total saturated fatty acid content) in its skin lipid after exposure to ammonia (30 mmol l(-1) at pH 7.0) for 6 days. These changes might lead to an even lower permeability to NH(3) in the skin, and reduced back diffusion of the actively excreted NH(4)(+) as NH(3) or the net influx of exogenous NH(3), under such conditions.
    Matched MeSH terms: Acids/metabolism*; Ammonia/metabolism*; Perciformes/metabolism*; Skin/metabolism
  17. Yusof HH, Lee HC, Seth EA, Wu X, Hewitt CA, Scott HS, et al.
    J Mol Neurosci, 2019 Apr;67(4):632-642.
    PMID: 30758748 DOI: 10.1007/s12031-019-01275-2
    Notch signalling pathway is involved in the proliferation of neural progenitor cells (NPCs), to inhibit neuronal cell commitment and to promote glial cell fate. Notch protein is cleaved by gamma-secretase, a multisubunit transmembrane protein complex that releases the Notch intracellular domain (NICD) and subsequently activates the downstream targets. Down syndrome (DS) individuals exhibit an increased number of glial cells (particularly astrocytes), and reduced number of neurons suggesting the involvement of Notch signalling pathway in the neurogenic-to-gliogenic shift in DS brain. Ts1Cje is a DS mouse model that exhibit similar neuropathology to human DS individuals. To date, the spatiotemporal gene expression of the Notch and gamma-secretase genes have not been characterised in Ts1Cje mouse brain. Understanding the expression pattern of Notch and gamma-secretase genes may provide a better understanding of the underlying mechanism that leads to the shift. Gene expression analysis using RT-qPCR was performed on early embryonic and postnatal development of DS brain. In the developing mouse brain, mRNA expression analysis showed that gamma-secretase members (Psen1, Pen-2, Aph-1b, and Ncstn) were not differentially expressed. Notch2 was found to be downregulated in the developing Ts1Cje brain samples. Postnatal gene expression study showed complex expression patterns and Notch1 and Notch2 genes were found to be significantly downregulated in the hippocampus at postnatal day 30. Results from RT-qPCR analysis from E15.5 neurosphere culture showed an increase of expression of Psen1, and Aph-1b but downregulation of Pen-2 and Ncstn genes. Gamma-secretase activity in Ts1Cje E15.5 neurospheres was significantly increased by fivefold. In summary, the association and the role of Notch and gamma-secretase gene expression throughout development with neurogenic-to-gliogenic shift in Ts1Cje remain undefined and warrant further validation.
    Matched MeSH terms: Down Syndrome/metabolism*; Hippocampus/metabolism*; Receptors, Notch/metabolism; Amyloid Precursor Protein Secretases/metabolism
  18. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Mohamed F, et al.
    Arch Pharm Res, 2016 Sep;39(9):1242-56.
    PMID: 26818028 DOI: 10.1007/s12272-016-0710-3
    The aim of this study was to prepare a model protein, bovine serum albumin (BSA) loaded double-walled microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA) and a moderate-degrading carboxyl-terminated PLGA polymers to reduce the initial burst release and to eliminate the lag phase from the release profile of PLGA microspheres. The double-walled microspheres were prepared using a modified water-in-oil-in-oil-in-water (w/o/o/w) method and single-polymer microspheres were prepared using a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The particle size, morphology, encapsulation efficiency, thermal properties, in vitro drug release and structural integrity of BSA were evaluated in this study. Double-walled microspheres prepared with Glu-PLGA and PLGA polymers with a mass ratio of 1:1 were non-porous, smooth-surfaced, and spherical in shape. A significant reduction of initial burst release was achieved for the double-walled microspheres compared to single-polymer microspheres. In addition, microspheres prepared using Glu-PLGA and PLGA polymers in a mass ratio of 1:1 exhibited continuous BSA release after the small initial burst without any lag phase. It can be concluded that the double-walled microspheres made of Glu-PLGA and PLGA polymers in a mass ratio of 1:1 can be a potential delivery system for pharmaceutical proteins.
    Matched MeSH terms: Glucose/metabolism; Polyglycolic Acid/metabolism; Serum Albumin, Bovine/metabolism; Lactic Acid/metabolism
  19. Shudirman S, Abang Kassim A, Shamsol Anuar NS, Utsumi M, Shimizu K, Muhammad Yuzir MA, et al.
    J Gen Appl Microbiol, 2021 Jul 31;67(3):92-99.
    PMID: 33642451 DOI: 10.2323/jgam.2020.08.001
    Musty odor production by actinomycetes is usually related to the presence of geosmin and 2-methylisoborneol (2-MIB), which are synthesized by enzymes encoded by the geoA and tpc genes, respectively. Streptomyces spp. strain S10, which was isolated from a water reservoir in Malaysia, has the ability to produce geosmin when cultivated in a basal salt (BS) solid medium, but no 2-MIB production occurred during growth in BS medium. Strain S10 could produce higher levels of geosmin when the phosphate concentration was limited to 0.05 mg/L, with a yield of 17.53 ± 3.12 ✕ 105 ng/L, compared with growth in BS medium. Interestingly, 2-MIB production was suddenly detected when the nitrate concentration was limited to 1.0 mg/L, with a yield of 1.4 ± 0.11 ✕ 105 ng/L. Therefore, it was concluded that phosphate- and nitrate-limiting conditions could induce the initial production of geosmin and 2-MIB by strain S10. Furthermore, a positive amplicon of geoA was detected in strain S10, but no tpc amplicon was detected by PCR analysis. Draft genome sequence analysis showed that one open reading frame (ORF) contained a conserved motif of geosmin synthase with 95% identity with geoA in Streptomyces coelicolor A3 (2). In the case of the tpc genes, it was found that one ORF showed 23% identity to the known tpc gene in S. coelicolor A3(2), but strain S10 lacked one motif in the N-terminus.
    Matched MeSH terms: Bacterial Proteins/metabolism; Bornanes/metabolism; Naphthols/metabolism; Streptomyces/metabolism*
  20. van der Ent A, Nkrumah PN, Aarts MGM, Baker AJM, Degryse F, Wawryk C, et al.
    BMC Plant Biol, 2021 Sep 27;21(1):437.
    PMID: 34579652 DOI: 10.1186/s12870-021-03190-4
    BACKGROUND: Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo).

    RESULTS: We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies.

    CONCLUSIONS: The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.

    Matched MeSH terms: Zinc Isotopes/metabolism*; Plant Leaves/metabolism*; Plant Roots/metabolism*; Malpighiaceae/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links