Displaying publications 1281 - 1300 of 9214 in total

Abstract:
Sort:
  1. Shahjahan M, Kitahashi T, Ogawa S, Parhar IS
    Gen Comp Endocrinol, 2013 Nov 1;193:79-85.
    PMID: 23899715 DOI: 10.1016/j.ygcen.2013.07.015
    Kisspeptins encoded by the kiss1 and kiss2 genes play an important role in reproduction through the stimulation of gonadotropin-releasing hormone (GnRH) secretion by activating their receptors (KissR1 EU047918 and KissR2 EU047917). To understand the mechanism through which temperature affects reproduction, we examined kiss1 and kiss2 and their respective receptor (kissr1 and kissr2) gene expression in the brain of male zebrafish exposed to a low temperature (15°C), normal temperature (27°C), and high temperature (35°C) for 7-days. kiss1 mRNA levels in the brain were significantly increased (2.9-fold) in the low temperature compared to the control (27°C), while no noticeable change was observed in the high temperature conditions. Similarly, kissr1 mRNA levels were significantly increased (1.5-2.2-folds) in the low temperature conditions in the habenula, the nucleus of the medial longitudinal fascicle, oculomotor nucleus, and the interpeduncular nucleus. kiss2 mRNA levels were significantly decreased (0.5-fold) in the low and high temperature conditions, concomitant with kissr2 mRNA levels (0.5-fold) in the caudal zone of the periventricular hypothalamus and the posterior tuberal nucleus. gnrh3 but not gnrh2 mRNA levels were also decreased (0.5-fold) in the low and high temperature conditions. These findings suggest that while the kiss1/kissr1 system is sensitive to low temperature, the kiss2/kissr2 system is sensitive to both extremes of temperature, which leads to failure in reproduction.
    Matched MeSH terms: Brain/metabolism*; Zebrafish/metabolism*; Zebrafish Proteins/metabolism*; Kisspeptins/metabolism*
  2. Zheltova AA, Kharitonova MV, Iezhitsa IN, Serebryansky EP, Evsyukov OY, Spasov AA, et al.
    J Trace Elem Med Biol, 2017 Jan;39:36-42.
    PMID: 27908421 DOI: 10.1016/j.jtemb.2016.07.002
    The aim of the present study was to assess whether dietary magnesium deficiency can alter distribution of macroelements and trace elements in different organs and tissues. Experiments were carried out on 12 adult female Wistar rats, which were fed either a diet with low Mg content (≤20mgkg(-1) of diet) (LMgD) or a diet with daily recommended Mg content (≈500mgkg(-1)) as control group (CG) for 70 days. On the 70th day of the experiment heart, aorta, femoral skeletal muscle, forebrain, cerebellum, pituitary gland, thyroid gland, ovaries, uterus, liver, kidneys, and spleen were taken for analysis of mineral content. Concentrations of Fe and Ca were measured by inductively coupled plasma-atomic emission spectrometry, and levels of Na, K, Mg, Co, Cu, Zn, Ni, Se, I were determined by inductively coupled plasma mass spectrometry. On the 70th day, LMgD led to significant reduction of Mg level in red blood cells, plasma, aorta, uterus and thyroid gland compared to CG as well as resulted in significant decrease of Mg/Ca ratio in kidneys, spleen and ovaries. Contrary to this, an increase of Mg/Ca ratio was found in cerebellum of LMgD group. Significant decrease of K concentration was shown in aorta of LMgD animals compared to CG whereas myocardial K concentration was increased in LMgD group. Na level was two-fold higher in skeletal muscles of rats that received LMgD in comparison to CG (p=0.006). Increased concentrations of Fe in ovaries and uterus were found in LMgD. Mg restriction did not affect Zn concentration in any of tasted tissues. Se level was higher in spleen and lower in uterus of LMgD animals compared to CG. MgD was accompanied by increased level of Co in skeletal muscles and decreased its level in kidneys and uterus. LMgD feeding was associated with decreased concentrations of Ni in heart, thyroid gland, spleen, uterus and Co in heart, aorta, liver, kidneys, spleen and ovaries. The changes of Mg, K, Co content were accompanied by dramatic (10-fold) decrease of I concentration in aorta of LMgD animals. LMgD causes decrease of I content in ovaries and increase of I level in uterus vs CG. Thus, distribution of macroelements (Ca, Na, K) was weakly affected by Mg restriction that led to the most evident alterations of Co and Ni tissue levels. Moreover, mineral balance of uterus seems to be the most susceptible to low Mg intake. Hypomagnesaemia resulted in significant changes of 5 studied trace elements (Fe, Se, Cu, Ni and Co).
    Matched MeSH terms: Magnesium/metabolism; Magnesium Deficiency/metabolism*; Minerals/metabolism*; Trace Elements/metabolism*
  3. Taher M, Amiroudine MZAM, Jaffri JM, Amri MS, Susanti D, Abd Hamid S, et al.
    Pak J Pharm Sci, 2017 Jul;30(4):1335-1339.
    PMID: 29039334
    A new naturally occurring dibenzylbutyrolactone lignan named isocubebinic ether has been isolated from Knema patentinervia. The structure was established by spectroscopic methods, which include Ultraviolet, Infrared, Nuclear Magnetic Resonance and Mass Spectrometry. The compound showed activity in the stimulation of glucose uptake by 3T3-L1 adipocytes.
    Matched MeSH terms: Deoxyglucose/metabolism; Glucose/metabolism*; Tritium/metabolism; Adipocytes/metabolism*
  4. Shokryazdan P, Jahromi MF, Liang JB, Sieo CC, Kalavathy R, Idrus Z, et al.
    J Food Sci, 2017 Nov;82(11):2734-2745.
    PMID: 29023714 DOI: 10.1111/1750-3841.13921
    Twelve previously isolated Lactobacillus strains were investigated for their in vitro bioactivities, including bile salt hydrolase (BSH), cholesterol-reducing and antioxidant activities, cytotoxic effects against cancer cells, enzyme activity, and biogenic amine production. Among them, only 4 strains showed relatively high BSH activity, whereas the rest exhibited low BSH activity. All 12 strains showed cholesterol-reducing and antioxidant activities, especially in their intact cells, which in most of the cases, the isolated strains were stronger in these activities than the tested commercial reference strains. None of the tested strains produced harmful enzymes (β-glucosidase and β-glucuronidase) or biogenic amines. Among the 12 strains, 3 strains were tested for their cytotoxic effects against 3 cancer cell lines, which exhibited strong cytotoxic effects, and they also showed selectivity in killing cancer cells when compared to normal cells. Hence, all 12 Lactobacillus strains could be considered good potential probiotic candidates because of their beneficial functional bioactivities.

    PRACTICAL APPLICATION: The Lactobacillus strains tested in this study could be considered good potential probiotic candidates for food/feed industry because of their beneficial functional bioactivities such as good cholesterol-reducing ability, high antioxidant activity, and good and selective cytotoxic effect against cancer cells.

    Matched MeSH terms: Amidohydrolases/metabolism; Bacterial Proteins/metabolism; Cholesterol/metabolism; Lactobacillus/metabolism*
  5. Nguyen PNN, Choo KB, Huang CJ, Sugii S, Cheong SK, Kamarul T
    Stem Cell Res Ther, 2017 09 29;8(1):214.
    PMID: 28962647 DOI: 10.1186/s13287-017-0666-3
    BACKGROUND: Introduction of the transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is able to 'reprogram' somatic cells to become induced pluripotent stem cells (iPSCs). Several microRNAs (miRNAs) are known to enhance reprogramming efficiency when co-expressed with the OSKM factors. The primate-specific chromosome 19 miRNA cluster (C19MC) is essential in primate reproduction, development, and differentiation. miR-524-5p, a C19MC member, is highly homologous to the reprogramming miR-520d-5p; we also reported that miR-524-5p was expressed in iPSCs but not mesenchymal stem cells (MSCs). This study aimed to elucidate possible contributions of miR-524-5p to the reprogramming process.

    METHODS: A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR.

    RESULTS: Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4.

    CONCLUSIONS: Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.

    Matched MeSH terms: Carrier Proteins/metabolism; Heat-Shock Proteins/metabolism; MicroRNAs/metabolism; Smad4 Protein/metabolism
  6. Kardia E, Mohamed R, Yahaya BH
    Sci Rep, 2017 09 15;7(1):11732.
    PMID: 28916766 DOI: 10.1038/s41598-017-11992-6
    Airway stem/progenitor epithelial cells (AECs) are notable for their differentiation capacities in response to lung injury. Our previous finding highlighted the regenerative capacity of AECs following transplantation in repairing tracheal injury and reducing the severity of alveolar damage associated acute lung injury in a rabbit model. The goal of this study is to further investigate the potential of AECs to re-populate the tracheal epithelium and to study their stimulatory effect on inhibiting pro-inflammatory cytokines, epithelial cell migration and proliferation, and epithelial-to-mesenchymal transition (EMT) process following tracheal injury. Two in vitro culture assays were applied in this study; the direct co-culture assay that involved a culture of decellularised tracheal epithelium explants and AECs in a rotating tube, and indirect co-culture assay that utilized microporous membrane-well chamber system to separate the partially decellularised tracheal epithelium explants and AEC culture. The co-culture assays provided evidence of the stimulatory behaviour of AECs to enhance tracheal epithelial cell proliferation and migration during early wound repair. Factors that were secreted by AECs also markedly suppressed the production of IL-1β and IL-6 and initiated the EMT process during tracheal remodelling.
    Matched MeSH terms: Epithelial Cells/metabolism*; Stem Cells/metabolism; Interleukin-6/metabolism; Interleukin-1beta/metabolism
  7. Yusuf AL, Adeyemi KD, Samsudin AA, Goh YM, Alimon AR, Sazili AQ
    BMC Vet Res, 2017 Nov 24;13(1):349.
    PMID: 29178910 DOI: 10.1186/s12917-017-1223-0
    BACKGROUND: The nature and amount of dietary medicinal plants are known to influence rumen fermentation and nutrient digestibility in ruminants. Nonetheless, changes in nutrient digestibility and rumen metabolism in response to dietary Andrographis paniculata (AP) in goats are unknown. This study examined the effects of dietary supplementation of leaves and whole plant of AP on nutrient digestibility, rumen fermentation, fatty acids and rumen microbial population in goats. Twenty-four Boer crossbred bucks (4 months old; average body weight of 20.18 ± 0.19 kg) were randomly assigned to three dietary groups of eight goats each. The dietary treatments included a control diet (Basal diet without additive), basal diet +1.5% (w/w) Andrographis paniculata leaf powder (APL) and basal diet +1.5% (w/w) Andrographis paniculata whole plant powder (APW). The trial lasted 100 d following 14 d of adjustment.

    RESULTS: The rumen pH and concentration of propionate were greater (P 

    Matched MeSH terms: Fatty Acids/metabolism*; Goats/metabolism*; Propionates/metabolism; Rumen/metabolism*
  8. Abdul Manan FM, Attan N, Widodo N, Aboul-Enein HY, Wahab RA
    Prep Biochem Biotechnol, 2018 Jan 02;48(1):92-102.
    PMID: 29194017 DOI: 10.1080/10826068.2017.1405021
    An alternative environmentally benign support was prepared from chitosan-chitin nanowhiskers (CS/CNWs) for covalent immobilization of Rhizomucor miehei lipase (RML) to increase the operational stability and recyclability of RML in synthesizing eugenyl benzoate. The CS/CNWs support and RML-CS/CNWs were characterized using X-ray diffraction, fluorescent microscopy, and Fourier transform infrared spectroscopy. Efficiency of the RML-CS/CNWs was compared to the free RML to synthesize eugenyl benzoate for parameters: reaction temperature, stirring rate, reusability, and thermal stability. Under optimal experimental conditions (50°C, 250 rpm, catalyst loading 3 mg/mL), a twofold increase in yield of eugenyl benzoate was observed for RML-CS/CNWs as compared to free RML, with the former achieving maximum yield of the ester at 62.1% after 5 hr. Results demonstrated that the strategy adopted to prepare RML-CS/CNWs was useful, producing an improved and prospectively greener biocatalyst that supported a sustainable process to prepare eugenyl benzoate. Moreover, RML-CS/CNWs are biodegradable and perform esterification reactions under ambient conditions as compared to the less eco-friendly conventional acid catalyst. This research provides a facile and promising approach for improving activity of RML in which the resultant RML-CS/CNWs demonstrated good operational stability for up to eight successive esterification cycles to synthesize eugenyl benzoate.
    Matched MeSH terms: Benzoates/metabolism*; Enzymes, Immobilized/metabolism*; Eugenol/metabolism; Lipase/metabolism*
  9. Afroz R, Cao Y, Rostam MA, Ta H, Xu S, Zheng W, et al.
    Pharmacol Ther, 2018 07;187:88-97.
    PMID: 29454855 DOI: 10.1016/j.pharmthera.2018.02.005
    Atherosclerosis commences with the trapping of low density lipoproteins (LDLs) in blood vessels by modified proteoglycans (PGs) with hyperelongated glycosaminoglycan (GAG) chains. GAG chain synthesis and growth factor mediated hyperelongation regulates the composition and size of PGs in a manner that would cause low density lipoprotein (LDLs) retention in vessel wall. Galactosaminoglycans are a class of GAGs, commonly observed on PGs. Multiple enzymes are involved in galactosaminoglycan biosynthesis. Galactosaminoglycan synthesis is regulated by various signalling pathways which are amenable to pharmacological manipulation to treat atherosclerosis. Receptor mediated signalling pathways including protein tyrosine kinase receptors (PTKRs), serine/threonine kinase receptors (S/TKRs) and G-protein coupled receptors (GPCRs) pathways regulate galactosaminoglycan synthesizing enzyme expression. Increased expression of these enzymes modify galactosaminoglycan chain structure by making them hyperelongated. This review focuses on the signalling pathways regulating the expression of genes involved in galactosaminoglycan synthesis and modification. Furthermore, there are multiple other processes for inhibiting the interactions between LDL and galactosaminoglycans such as peptide mimetics of ApoB100 and anti-galactosaminoglycan antibodies and the therapeutic potential of these strategies is also addressed.
    Matched MeSH terms: Lipoproteins/metabolism*; Muscle, Smooth, Vascular/metabolism*; Polysaccharides/metabolism*; Atherosclerosis/metabolism*
  10. Karim A, Yousuf A, Islam MA, Naif YH, Faizal CKM, Alam MZ, et al.
    Biotechnol Prog, 2018 07;34(4):838-845.
    PMID: 29464927 DOI: 10.1002/btpr.2625
    The aim of the study was to investigate the feasibility of using irreversible electroporation (EP) as a microbial cell disruption technique to extract intracellular lipid within short time and in an eco-friendly manner. An EP circuit was designed and fabricated to obtain 4 kV with frequency of 100 Hz of square waves. The yeast cells of Lipomyces starkeyi (L. starkeyi) were treated by EP for 2-10 min where the distance between electrodes was maintained at 2, 4, and 6 cm. Colony forming units (CFU) were counted to observe the cell viability under the high voltage electric field. The forces of the pulsing electric field caused significant damage to the cell wall of L. starkeyi and the disruption of microbial cells was visualized by field emission scanning electron microscopic (FESEM) image. After breaking the cell wall, lipid was extracted and measured to assess the efficiency of EP over other techniques. The extent of cell inactivation was up to 95% when the electrodes were placed at the distance of 2 cm, which provided high treatment intensity (36.7 kWh m-3 ). At this condition, maximum lipid (63 mg g-1 ) was extracted when the biomass was treated for 10 min. During the comparison, EP could extract 31.88% lipid while the amount was 11.89% for ultrasonic and 16.8% for Fenton's reagent. The results recommend that the EP is a promising technique for lowering the time and solvent usage for lipid extraction from microbial biomass. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:838-845, 2018.
    Matched MeSH terms: Flagellin/metabolism; Tissue Plasminogen Activator/metabolism; Toll-Like Receptors/metabolism; Lipomyces/metabolism*
  11. Pachaiappan R, Tamboli E, Acharya A, Su CH, Gopinath SCB, Chen Y, et al.
    PLoS One, 2018;13(3):e0193717.
    PMID: 29494663 DOI: 10.1371/journal.pone.0193717
    Enzyme hydrolysates (trypsin, papain, pepsin, α-chymotrypsin, and pepsin-pancreatin) of Tinospora cordifolia stem proteins were analyzed for antioxidant efficacy by measuring (1) 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging activity, (2) 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging capacity, and (3) Fe2+ chelation. Trypsin hydrolysate showed the strongest DPPH• scavenging, while α-chymotrypsin hydrolysate exhibited the highest ABTS+ scavenging and Fe2+ chelation. Undigested protein strongly inhibited the gastrointestinal enzymes, trypsin (50% inhibition at enzyme/substrate ratio = 1:6.9) and α-chymotrypsin (50% inhibition at enzyme/substrate ratio = 1:1.82), indicating the prolonged antioxidant effect after ingestion. Furthermore, gel filtration purified peptide fractions of papain hydrolysates exhibited a significantly higher ABTS+ and superoxide radical scavenging as compared to non-purified digests. Active fraction 9 showing the highest radical scavenging ability was further purified and confirmed by MALDI-TOF MS followed by MS/MS with probable dominant peptide sequences identified are VLYSTPVKMWEPGR, VITVVATAGSETMR, and HIGININSR. The obtained results revealed that free radical scavenging capacity of papain hydrolysates might be related to its consistently low molecular weight hydrophobic peptides.
    Matched MeSH terms: Chymotrypsin/metabolism; Papain/metabolism; Pepsin A/metabolism; Trypsin/metabolism
  12. Mariappan V, Thimma J, Vellasamy KM, Shankar EM, Vadivelu J
    Environ Microbiol Rep, 2018 04;10(2):217-225.
    PMID: 29393577 DOI: 10.1111/1758-2229.12624
    Physiological constituents in airway surface liquids (ASL) appear to impact the adherence and invasion potentials of Burkholderia pseudomallei contributing to recrudescent melioidosis. Here, we investigated the factors present in ASL that is likely to influence bacterial adhesion and invasion leading to improved understanding of bacterial pathogenesis. Six B. pseudomallei clinical isolates from different origins were used to investigate the ability of the bacteria to adhere and invade A549 human lung epithelial cells using a system that mimics the physiological ASL with different pH, NaCl, KCl, CaCl2 and glucose concentrations. These parameters resulted in markedly differential adherence and invasion abilities of B. pseudomallei to the lung epithelial cells. The concentration of 20 mM glucose dramatically increased adherence and invasion by increasing the rate of pili formation in depiliated bacteria. Glucose significantly increased adherence and invasion of B. pseudomallei to A549 cells, and presence of NaCl, KCl and CaCl2 markedly ablated the effect despite the presence of glucose. Our data established a link between glucose, enhanced adhesion and invasion potentials of B. pseudomallei, hinting increased susceptibility of individuals with diabetes mellitus to clinical melioidosis.
    Matched MeSH terms: Epithelial Cells/metabolism*; Glucose/metabolism*; Lung/metabolism*; Melioidosis/metabolism*
  13. Lin C, Wei Z, Cheng KK, Xu J, Shen G, She C, et al.
    Sci Rep, 2017 07 28;7(1):6820.
    PMID: 28754994 DOI: 10.1038/s41598-017-07306-5
    Acupuncture is a traditional Chinese medicine therapy that has been found useful for treating various diseases. The treatments involve the insertion of fine needles at acupoints along specific meridians (meridian specificity). This study aims to investigate the metabolic basis of meridian specificity using proton nuclear magnetic resonance (1H NMR)-based metabolomics. Electro-acupuncture (EA) stimulations were performed at acupoints of either Stomach Meridian of Foot-Yangming (SMFY) or Gallbladder Meridian of Foot-Shaoyang (GMFS) in healthy male Sprague Dawley (SD) rats. 1H-NMR spectra datasets of serum, urine, cortex, and stomach tissue extracts from the rats were analysed by multivariate statistical analysis to investigate metabolic perturbations due to EA treatments at different meridians. EA treatment on either the SMFY or GMFS acupoints induced significant variations in 31 metabolites, e.g., amino acids, organic acids, choline esters and glucose. Moreover, a few meridian-specific metabolic changes were found for EA stimulations on the SMFY or GMFS acupoints. Our study demonstrated significant metabolic differences in response to EA stimulations on acupoints of SMFY and GMFS meridians. These results validate the hypothesis that meridian specificity in acupuncture is detectable in the metabolome and demonstrate the feasibility and effectiveness of a metabolomics approach in understanding the mechanism of acupuncture.
    Matched MeSH terms: Blood/metabolism; Brain/metabolism; Gastric Mucosa/metabolism; Urea/metabolism
  14. Nahi A, Othman R, Omar D, Ebrahimi M
    Pol J Microbiol, 2016 Aug 26;65(3):377-382.
    PMID: 29334074 DOI: 10.5604/17331331.1215618
    A study was carried out to determine the effects of paraquat, pretilachlor and 2, 4-D on growth and nitrogen fixing activity of Stenotrophomonas maltophilia (Sb16) and pH of Jensen's N-free medium. The growth of Sb16 and pH of medium were significantly reduced with full (X) and double (2X) doses of tested herbicides, but nitrogen fixing activity was decreased by 2X doses. The nitrogenase activity had the highest value in samples treated with 1/2X of 2, 4-D on fifth incubation day, but 2X of 2, 4-D had the most adverse effect. An inhibition in the growth and nitrogenase activity was recovered on the last days of incubation.
    Matched MeSH terms: Bacterial Proteins/metabolism; Herbicides/metabolism; Nitrogenase/metabolism; Stenotrophomonas maltophilia/metabolism
  15. Idrus FA, Basri MM, Rahim KAA, Rahim NSA, Chong MD
    Bull Environ Contam Toxicol, 2018 Mar;100(3):350-355.
    PMID: 29344698 DOI: 10.1007/s00128-018-2270-3
    This study analyzed the levels of cadmium (Cd), copper (Cu), and zinc (Zn) by the flame atomic absorption spectrophotometer (FAAS), in the muscle tissues, exoskeletons, and gills from freshwater prawn (Macrobrachium rosenbergii) (n = 20) harvested from natural habitat in Kerang River, Malaysia on 25th November 2015. Significant increase of the metals level in muscle tissue and gill (r > 0.70, p 
    Matched MeSH terms: Cadmium/metabolism; Copper/metabolism; Zinc/metabolism; Palaemonidae/metabolism
  16. Mazlan M, Hamezah HS, Taridi NM, Jing Y, Liu P, Zhang H, et al.
    Oxid Med Cell Longev, 2017;2017:6019796.
    PMID: 29348790 DOI: 10.1155/2017/6019796
    Accumulating evidence suggests that altered arginine metabolism is involved in the aging and neurodegenerative processes. This study sought to determine the effects of age and vitamin E supplementation in the form of tocotrienol-rich fraction (TRF) on brain arginine metabolism. Male Wistar rats at ages of 3 and 21 months were supplemented with TRF orally for 3 months prior to the dissection of tissue from five brain regions. The tissue concentrations of L-arginine and its nine downstream metabolites were quantified using high-performance liquid chromatography and liquid chromatography tandem mass spectrometry. We found age-related alterations in L-arginine metabolites in the chemical- and region-specific manners. Moreover, TRF supplementation reversed age-associated changes in arginine metabolites in the entorhinal cortex and cerebellum. Multiple regression analysis revealed a number of significant neurochemical-behavioral correlations, indicating the beneficial effects of TRF supplementation on memory and motor function.
    Matched MeSH terms: Amino Acids/metabolism*; Arginine/metabolism*; Brain/metabolism*; Polyamines/metabolism*
  17. Wong YM, Wu TY, Ling TC, Show PL, Lee SY, Chang JS, et al.
    J Biosci Bioeng, 2018 May;125(5):590-598.
    PMID: 29352712 DOI: 10.1016/j.jbiosc.2017.12.012
    Three newly discovered H2 producing bacteria namely Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade.TY originated from landfill leachate sludge have demonstrated highly efficient H2 production. The maximum H2 production attained from these isolates are in the descending order of strain C. perfringens strain JJC > C. bifermentans strain WYM > Clostridium sp. strain Ade.TY with yield of 4.68 ± 0.12, 3.29 ± 0.11, and 2.87 ± 0.10 mol H2/mol glucose, respectively. The result has broken the conventional theoretical yield of 4 mol H2/mol glucose. These isolates were thermodynamically favourable with Gibbs free energy between -33 and -35 kJ/mol (under process conditions: pH 6, 37 °C and 5 g/L glucose). All three isolates favour butyrate pathway for H2 production with the ratio of acetate and butyrate of 0.77, 0.65 and 0.80 for strain JJC, WYM and Ade.TY, respectively. This study reported provides a new insight on the potential of unique bacteria in H2 production.
    Matched MeSH terms: Clostridium perfringens/metabolism*; Glucose/metabolism; Hydrogen/metabolism*; Clostridium bifermentans/metabolism*
  18. Nasyitah Sobihah N, Ahmad Zaharin A, Khairul Nizam M, Ley Juen L, Kyoung-Woong K
    Chemosphere, 2018 Apr;197:318-324.
    PMID: 29360594 DOI: 10.1016/j.chemosphere.2017.12.187
    Mariculture fish contains a rich source of protein, but some species may bioaccumulate high levels of heavy metals, making them unsafe for consumption. This study aims to identify heavy metal concentration in Lates calcarifer (Barramudi), Lutjanus campechanus (Red snapper) and Lutjanus griseus (Grey snapper). Three species of mariculture fish, namely, L. calcarifer, L. campechanus and L. griseus were collected for analyses of heavy metals. The concentration of heavy metal (As, Cd, Cu, Cr, Fe, Pb, Mn, Ni, Se, and Zn) was determined using inductive coupled plasma mass spectrometry (ICP-MS). The distribution of heavy metals mean concentration in muscle is Zn > Fe > As > Se > Cr > Cu > Mn > Pb > Ni > Cd for L. calcarifer, Fe > Zn > Cr > As > Ni > Mn > Se > Cu > Pb > Cd for L. campechanus and Fe > Zn > Cr > Ni > Se > Cu > As > Mn > Pb > Cd for L. griseus. Among all of the species under investigation, the highest concentration of Fe was found in the muscle tissue of L. campechanus (19.985 ± 1.773 mg kg-1) and liver tissue of L. griseus (58.248 ± 8.736 mg kg-1). Meanwhile, L. calcarifer has the lowest concentration of Cd in both muscle (0.007 ± 0.004 mg kg-1) and liver tissue (0.027 ± 0.016 mg kg-1). The heavy metal concentration in muscle tissue is below the permissible limit guidelines stipulated by the Food & Agriculture Organization, 1983 and Malaysia Food Act, 1983. The concentration of heavy metals varies significantly among fish species and tissues. L. campechanus was found to have a higher ability to accumulate heavy metals as compared to the other two species (p 
    Matched MeSH terms: Fishes/metabolism*; Muscles/metabolism; Perches/metabolism*; Perciformes/metabolism*
  19. Zhao L, Yang L, Ahmad K
    Hum Exp Toxicol, 2023;42:9603271221146780.
    PMID: 36607234 DOI: 10.1177/09603271221146780
    OBJECTIVES: Kaempferol (KMF), has beneficial effects against hepatic lipid accumulation. In this study, we aimed to investigate molecular mechanism underlying the protective effect of KMF on lipid accumulation.

    METHODS: HepG2 cells were treated with different concentrations of KMF and 0.5 mM palmitate (PA) for 24  h. The mRNA and protein levels of genes involved in lipid metabolism were evaluated using real-time PCR and western blot. The expression of Nrf2 was silenced using siRNA.

    RESULTS: Data indicated that KMF (20 μM) reversed PA-induced increased triglyceride (TG) levels and total lipid content. These effects were accompanied by down-regulation of the mRNA and protein levels of lipogenic genes (FAS, ACC and SREBP1), and up-regulation of genes related to fatty acid oxidation (CPT-1, HADHα and PPARα). Kaempferol significantly decreased the levels of the oxidative stress markers (ROS and MDA) and enhanced the activities of antioxidant enzymes SOD and GPx in PA-challenged cells. Luciferase analysis showed that KMF increased the transactivation of Nrf2 in hepatocytes. The results also revealed that KMF-mediated activation of Nrf2 target genes was suppressed by Nrf2 siRNA. Furthermore, Nrf2 siRNA abolished the KMF-induced reduction in ROS and MDA levels in PA treated cells. In addition, the inhibitory effect of KMF on TG levels and the mRNA and protein levels of FAS, ACC and SREPB-1 were significantly abolished by Nrf2 inhibition. Nrf2 inhibition also suppressed the KMF-induced activation of genes involved in β oxidation (CPT-1 and PPAR-α).

    CONCLUSION: The results suggest that KMF protects HepG2 cells from PA-induced lipid accumulation via activation of the Nrf2 signaling pathway.

    Matched MeSH terms: RNA, Messenger/metabolism; Reactive Oxygen Species/metabolism; PPAR alpha/metabolism; Lipid Metabolism
  20. Barber BE, Grigg MJ, Piera KA, Chen Y, William T, Weinberg JB, et al.
    Sci Rep, 2021 May 07;11(1):9741.
    PMID: 33963210 DOI: 10.1038/s41598-021-88962-6
    Degradation of the endothelial glycocalyx is associated with mortality in adult falciparum malaria. However, its role in the pathogenesis of non-falciparum malaria is unknown. In Malaysian patients with knowlesi (n = 200) and vivax (n = 61) malaria, and in healthy controls (n = 50), we measured glycocalyx breakdown products plasma syndecan-1 and urinary glycosaminoglycans, and evaluated correlations with biomarkers of disease severity. Urinary glycosaminoglycans were increased in patients with knowlesi and vivax malaria compared to healthy controls, and in knowlesi malaria were highest in those with severe disease. In knowlesi malaria, plasma syndecan-1 was also highest in those with severe disease, and correlated with markers of endothelial activation (angiopoietin-2, osteoprotegerin, ICAM-1), asymmetric dimethylarginine (ADMA) and impaired microvascular reactivity. Syndecan-1 also correlated with endothelial activation (ICAM-1, angiopoietin-2) and ADMA in vivax malaria. In knowlesi malaria increased syndecan-1 was associated with acute kidney injury, after controlling for age and parasitemia. In knowlesi malaria, the difference in median syndecan-1 between severe and non-severe disease was more marked in females than males. Endothelial glycocalyx degradation is increased in knowlesi and vivax malaria, and associated with disease severity and acute kidney injury in knowlesi malaria. Agents that inhibit glycocalyx breakdown may represent adjunctive therapeutics for severe non-falciparum malaria.
    Matched MeSH terms: Endothelium, Vascular/metabolism*; Plasmodium vivax/metabolism*; Plasmodium knowlesi/metabolism*; Glycocalyx/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links