Displaying publications 121 - 140 of 309 in total

Abstract:
Sort:
  1. Ee GC, Teo SH, Rahmani M, Lim CK, Lim YM, Go R
    Nat Prod Res, 2011 Jun;25(10):995-1003.
    PMID: 21644180 DOI: 10.1080/14786419.2010.534471
    A new furanodihydrobenzoxanthone, artomandin (1), together with three other flavonoid derivatives, artoindonesianin C, artonol B, and artochamin A, as well as β-sitosterol were isolated from the stem bark of Artocarpus kemando. The structures of these compounds were determined on the basis of spectral evidence. All of these compounds displayed inhibition effects to a very susceptible degree in cancer cell line tests. Compound 1 also exhibited significant antioxidant capacity in the free radical 1,1-diphenyl-2-picrylhydrazyl tests.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  2. Latiff ZA, Kamal NA, Jahendran J, Alias H, Goh BS, Syed Zakaria SZ, et al.
    J Pediatr Hematol Oncol, 2010 Jul;32(5):407-10.
    PMID: 20505534 DOI: 10.1097/MPH.0b013e3181e01584
    Vincristine-induced vocal cord paralysis is a rare but serious complication. We report 2 patients with acute lymphoblastic leukemia who developed progressive stridor during induction chemotherapy. There were no clinical features of peripheral or autonomic neuropathy. Flexible laryngoscopy confirmed the diagnosis of bilateral vocal cord palsy; interestingly, the nerve conduction test revealed axonal motor neuropathy involving the median and common peroneal nerves in both patients. The first patient required prolonged ventilatory support necessitating unilateral cordectomy before extubation, whereas the second only required supplemental oxygen therapy. There was resolution of stridor in the first patient after cordectomy and gradual clinical improvement in the second. These cases illustrate that a high index of suspicion of vincristine-induced vocal cord palsy with prompt otolaryngology consultation for laryngoscopy is required in the diagnostic evaluation of a patient who has received vincristine.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/adverse effects*
  3. Wibowo A, Ahmat N, Hamzah AS, Sufian AS, Ismail NH, Ahmad R, et al.
    Fitoterapia, 2011 Jun;82(4):676-81.
    PMID: 21338657 DOI: 10.1016/j.fitote.2011.02.006
    A new resveratrol trimer, malaysianol A (1), five known resveratrol oligomers: laevifonol (2), ampelopsin E (3), α-viniferin (4), ε-viniferin (5), diptoindonesin A (6), and bergenin (7) have been isolated from the acetone extract of the stem bark of Dryobalanops aromatica by combination of vacuum and radial chromatography techniques. Their structures were established on the basis of their spectroscopic evidence and comparison with the published data. The cytotoxic activity of the compounds was tested against several cell lines in which compound 4 was found to inhibit strongly the growth of HL-60 cell line.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*
  4. Ramasamy K, Lim SM, Abu Bakar H, Ismail N, Ismail MS, Ali MF, et al.
    Phytother Res, 2010 May;24(5):640-3.
    PMID: 19468989 DOI: 10.1002/ptr.2891
    Endophytes, which are receiving increasing attention, have been found to be potential sources of bioactive metabolites following the discovery of paclitaxel producing endophytic fungi. In the present study, a total of 348 endophytes were isolated from different parts of 24 Malaysian medicinal plants. Three selected endophytes (HAB10R12, HAB11R3 and HAB21F25) were investigated for their antimicrobial and cytotoxic activities. For antimicrobial activity, HAB10R12 and HAB11R3 were found to be most active against bacteria and fungi, respectively. Their antimicrobial effects were comparable to, if not better than, a number of current commercial antibacterial and antifungal agents. Both HAB10R12 and HAB21F25 were found to be potential anticancer drug candidates, having potent activity against MCF-7 and HCT116 cell lines and warrant further investigation.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*
  5. RamaChandran S, Ariffin H
    Pediatr Blood Cancer, 2009 Sep;53(3):488-90.
    PMID: 19434733 DOI: 10.1002/pbc.22063
    Haemophagocytic lymphohistiocytosis (HLH) is an uncommon disease with a high fatality rate. Etoposide is an important component of current HLH treatment regimes. Two patients with HLH developed etoposide-related secondary acute myeloid leukemia (sAML) following therapy for HLH. Etoposide, an epipodophyllotoxin, is a topoisomerase II inhibitor that interacts with DNA to potentiate leukaemogenesis. The risk of developing sAML is estimated to be between 1% and 5%, 2-20 years after exposure to etoposide but may also be related to cumulative drug doses, treatment schedules, host factors and co-administration of other antineoplastic agents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/adverse effects*
  6. Mackeen MM, Ali AM, Lajis NH, Kawazu K, Hassan Z, Amran M, et al.
    J Ethnopharmacol, 2000 Oct;72(3):395-402.
    PMID: 10996278
    Crude extracts (methanol) of various parts, viz. the leaves, fruits, roots, stem and trunk bark, of Garcinia atroviridis were screened for antimicrobial, cytotoxic, brine shrimp toxic, antitumour-promoting and antioxidant activities. The crude extracts exhibited predominantly antibacterial activity with the root extract showing the strongest inhibition against the test bacteria at a minimum inhibitory dose (MID) of 15.6 microg/disc. Although all the extracts failed to inhibit the growth of most of the test fungi, significant antifungal activity against Cladosporium herbarum was exhibited by most notably the fruit (MID: 100 microg), and the leaf (MID: 400 microg) extracts. None of the extracts were significantly cytotoxic, and lethal towards brine shrimps. The root, leaf, trunk and stem bark extracts (except for the fruits) showed strong antioxidant activity exceeding that of the standard antioxidant, alpha-tocopherol. Antitumour-promoting activity (>95% inhibition) was shown by the fruit, leaf, stem and trunk bark extracts.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  7. Fu X, Sévenet T, Remy F, Païs M, Hamid A, Hadi A, et al.
    J Nat Prod, 1993 Jul;56(7):1153-63.
    PMID: 8377019
    Four complex flavanones, kurziflavolactones A [2], B [3], C [4], and D [5] and a complex chalcone 6 with an unprecedented carbon side chain on the flavanone or chalcone A ring have been isolated from a Malaysian plant, Cryptocarya kurzii (Lauraceae). Their structures were determined by extensive spectroscopic analysis, especially 2D nmr experiments. Compounds 3 and 6 showed slight cytotoxicity against KB cells, with IC50 values of 4 and 15 micrograms/ml, respectively. A biosynthetic pathway for the formation of these compounds is suggested.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  8. Chua LK, Lim CL, Ling APK, Chye SM, Koh RY
    Plant Foods Hum Nutr, 2019 Mar;74(1):18-27.
    PMID: 30535971 DOI: 10.1007/s11130-018-0704-z
    Cancer is a preventable and treatable disease, however, the incidence rates are on the rise. Classical treatment modalities for cancer include surgery, radiotherapy and chemotherapy. However, these are associated with detrimental side effects such as nausea and emesis. Therefore, researchers currently vest interest in complementary and alternative medicines for cancer treatment and prevention. Plants such as Syzygium sp. are a common basis of complementary medicines due to its abundance of bioactive phytochemicals. Numerous natural compounds derived from Syzygium sp., such as phenolics, oleanolic acids, and betulinic acids, and dimethyl cardamonins, were reported to have anticancer effects. Many possess the ability to inhibit cell proliferation and induce apoptosis. In this review, we discuss the vast potential Syzygium sp. harbours as a source of anticancer natural compounds due to its abundance, easy acceptability, affordability and safety for regular consumption.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  9. Abd Hamid H, Mutazah R, Yusoff MM, Abd Karim NA, Abdull Razis AF
    Food Chem Toxicol, 2017 Oct;108(Pt B):451-457.
    PMID: 27725206 DOI: 10.1016/j.fct.2016.10.004
    Rhodomyrtus tomentosa (Aiton) Hassk. has a wide spectrum of pharmacological effects and has been used to treat wounds, colic diarrhoea, heartburns, abscesses and gynaecopathy. The potential antiproliferative activities of R. tomentosa extracts from different solvents were evaluated in vitro on HepG2, MCF-7 and HT 29 cell lines while antioxidant activity was monitored by radical scavenging assay (DPPH), copper reducing antioxidant capacity (CUPRAC) and β-carotene bleaching assay. Extracts from R. tomentosa show the viability of the cells in concentration-dependent manner. According to the IC50 obtained, the ethyl acetate extracts showed significant antiproliferative activity on HepG2 (IC50 11.47 ± 0.280 μg/mL), MCF-7 (IC50 2.68 ± 0.529 μg/mL) and HT 29 (IC50 16.18 ± 0.538 μg/mL) after 72 h of treatment. Bioassay guided fractionation of the ethyl acetate extract led to the isolation of lupeol. Methanol extracts show significant antioxidant activities in DPPH (EC50 110.25 ± 0.005 μg/ml), CUPRAC (EC50 53.84 ± 0.004) and β-carotene bleaching (EC50 58.62 ± 0.001) due to the presence of high total flavonoid and total phenolic content which were 110.822 ± 0.017 mg butylated hydroxytoluene (BHT)/g and 190.467 ± 0.009 mg gallic acid (GAE)/g respectively. Taken together, the results extracts show the R. tomentosa as a potential source of antioxidant and antiproliferative efficacy.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacokinetics*
  10. Tan ML, Tan HK, Oon CE, Kuroyanagi M, Muhammad TS
    Food Chem Toxicol, 2012 Feb;50(2):431-44.
    PMID: 22101062 DOI: 10.1016/j.fct.2011.11.001
    14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  11. Kam TS, Sim KM, Koyano T, Toyoshima M, Hayashi M, Komiyama K
    Bioorg Med Chem Lett, 1998 Jul 07;8(13):1693-6.
    PMID: 9873417
    Four new bisindoles of the vobasine-iboga type, conodiparines A-D were obtained from Tabernaemontana corymbosa which showed appreciable activity in reversing resistance in vincristine-resistant KB cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  12. Looi ML, Wong AKH, Gnapragasan SA, Japri AZ, Rajedadram A, Pin KY
    J Zhejiang Univ Sci B, 2020 9 8;21(9):745-748.
    PMID: 32893531 DOI: 10.1631/jzus.B2000278
    Piper betle (PB), also known as "betel" in Malay language, is a tropical Asian vine. PB leaves are commonly chewed by Asians along with betel quid. It contains phenols such as eugenol and hydroxychavicol along with chlorophyll, β-carotene, and vitamin C (Salehi et al., 2019). Extracts from PB leaves have various medicinal properties including anticancer, antioxidant, anti-inflammatory, and antibacterial effects (Salehi et al., 2019). Previous research has shown that PB induces cell cycle arrest at late S or G2/M phase and causes apoptosis at higher doses (Wu et al., 2014; Guha Majumdar and Subramanian, 2019). A combination of PB leaf extract has also been shown to enhance the cytotoxicity of the anticancer drug, 5-fluorouracil (5-FU), in cancer cells (Ng et al., 2014).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  13. Ghazali AR, Muralitharan RV, Soon CK, Salyam T, Ahmad Maulana NN, Mohamed Thaha UAB, et al.
    Asian Pac J Cancer Prev, 2020 Nov 01;21(11):3381-3386.
    PMID: 33247699 DOI: 10.31557/APJCP.2020.21.11.3381
    BACKGROUND: Traditional cooling rice powder (bedak sejuk) is a fermented rice-based cosmetic that is applied topically on one's skin, as an overnight facial mask. According to user testimonies, bedak sejuk beautifies and whitens skin, whereby these benefits could be utilised as a potential melanoma chemopreventive agent.

    OBJECTIVE: Hence, this study aimed to determine the effects of bedak sejuk made from Oryza sativa ssp. indica (Indica) and Oryza sativa ssp. japonica (Japonica) on UVB-induced B164A5 melanoma cells, and also identify the antioxidant capacities of both types of bedak sejuk.

    METHODS: The optimum dose of Indica and Japonica bedak sejuk to treat the cells was determined via the MTT assay. Then, the antioxidant capacities of both types of bedak sejuk were determined using the FRAP assay.

    RESULTS: From the MTT assay, it was found that Indica and Japonica bedak sejuk showed no cytotoxic effects towards the cells. Hence, no IC50 can be obtained and two of the higher doses, 50 and 100 g/L were chosen for treatment. In the FRAP assay, Indica bedak sejuk at 50 and 100 g/L showed FRAP values of 0.003 ± 0.001 μg AA (ascorbic acid)/g of bedak sejuk and 0.004 ± 0.0003 μg AA/g of bedak sejuk. Whereas Japonica bedak sejuk at 50 g/L had the same FRAP value as Indica bedak sejuk at 100 g/L. As for Japonica bedak sejuk at 100 g/L, it showed the highest antioxidant capacity with the FRAP value of 0.01 ± 0.0007 μg AA/g of bedak sejuk which was statistically significant (p < 0.05) when compared to other tested concentrations.

    CONCLUSION: In conclusion, Japonica bedak sejuk has a higher antioxidant capacity compared to Indica bedak sejuk despite both being not cytotoxic towards the cells. Regardless, further investigations need to be done before bedak sejuk could be developed as potential melanoma chemoprevention agents.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  14. El-Far AH, Badria FA, Shaheen HM
    Curr Drug Discov Technol, 2016;13(3):123-143.
    PMID: 27515456
    Costus speciosus is native to South East Asia, especially found in India, Srilanka, Indonesia and Malaysia. C. speciosus have numerous therapeutic potentials against a wide variety of complains. The therapeutic properties of C. speciosus are attributed to the presence of various ingredients such as alkaloids, flavonoids, glycosides, phenols, saponins, sterols and sesquiterpenes. This review presented the past, present, and the future status of C. speciosus active ingredients to propose a future use as a potential anticancer agent. All possible up-regulation of cellular apoptotic molecules as p53, p21, p27, caspases, reactive oxygen species (ROS) generation and others attribute to the anticancer activity of C. speciosus along the down-regulation of anti-apoptotic agents such as Akt, Bcl2, NFKB, STAT3, JAK, MMPs, actin, surviving and vimentin. Eventually, we recommend further investigation of different C. speciosus extracts, using some active ingredients and evaluate the anticancer effect of these chemicals against different cancers.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  15. Zulkipli IN, Rajabalaya R, Idris A, Sulaiman NA, David SR
    Pharm Biol, 2017 Dec;55(1):1093-1113.
    PMID: 28198202 DOI: 10.1080/13880209.2017.1288749
    CONTEXT: Medicinal plants have attracted global attention for their hidden therapeutic potential. Clinacanthus nutans (Burm.f) Lindau (Acanthaceae) (CN) is endemic in Southeast Asia. CN contains phytochemicals common to medicinal plants, such as flavonoids. Traditionally, CN has been used for a broad range of human ailments including snake bites and cancer.

    OBJECTIVES: This article compiles the ethnomedicinal uses of CN and its phytochemistry, and thus provides a phytochemical library of CN. It also discusses the known pharmacological and biological effects of CN to enable better investigation of CN.

    METHODS: This literature review was limited to articles and websites published in the English language. MEDLINE and Google Scholar databases were searched from December 2014 to September 2016 using the following keywords: "Clinacanthus nutans" and "Belalai gajah". The results were reviewed to identify relevant articles. Information from relevant selected studies was systematically analyzed from contemporary ethnopharmacological sources, evaluated against scientific literature, and extracted into tables.

    RESULTS: The literature search yielded 124 articles which were then further scrutinized revealing the promising biological activities of CN, including antimicrobial, antiproliferative, antitumorigenic and anti-inflammatory effects. Few articles discussed the mechanisms for these pharmacological activities. Furthermore, CN was beneficial in small-scale clinical trials for genital Herpes and aphthous stomatitis.

    CONCLUSION: Despite the rich ethnomedicinal knowledge behind the traditional uses of CN, the current scientific evidence to support these claims remains scant. More research is still needed to validate these medicinal claims, beginning by increasing the understanding of the biological actions of this plant.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  16. Mah SH, Teh SS, Ee GC
    Pharm Biol, 2017 Dec;55(1):920-928.
    PMID: 28152649 DOI: 10.1080/13880209.2017.1285322
    CONTEXT: Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation.

    OBJECTIVES: This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time.

    MATERIALS AND METHODS: S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC50 values. GC-MS analysis was carried out on the n-hexane extract.

    RESULTS AND DISCUSSION: The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol.

    CONCLUSIONS: The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  17. Lim CK, Gan SY, Yi V, Jong M, Leong CO, Mai CW, et al.
    Pak J Pharm Sci, 2019 Sep;32(5):2183-2187.
    PMID: 31813886
    Phytochemical investigation on the dichloromethane stem bark extract of Calophyllum castaneum resulted in the isolation of five compounds, namely isoblancoic acid (1), blancoic acid (2), euxanthone (3), friedelin (4) and friedelinol (5). All these compounds were isolated for the first time from this plant. Their chemical structures were elucidated based on the spectroscopic analyses. The cytotoxicity of compounds 1-5 was assessed on a panel of cancer cell lines including bone (Saos-2, mg63), colorectal (HT29, Caco-2, HCC2998, SW48, HCT116, KM12), liver (HepG2), lung (H1299, Calu-3), and brain (C6), using 5-fluorouracil as positive control. Pronounced antiproliferative activities were observed for compound 1 which exhibited a comparable activity with the positive control, against brain (C6) and colorectal (SW48, KM12, HCT116) cancer cell lines showing IC50 values in the range of 14 to 65μM. Meanwhile, compound 5 displayed a greater cytotoxic effect showing at least 2-fold more strongly than the positive control, against C6 brain cancer cells. The assay findings have unveiled the therapeutic value of phytochemicals from Calophyllum castaneum as anti-cancer agents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  18. Khalivulla SI, Mohammed A, Sirajudeen KNS, Shaik MI, Ye W, Korivi M
    Curr Drug Metab, 2019;20(12):946-957.
    PMID: 31744445 DOI: 10.2174/1389200220666191118102616
    BACKGROUND: Typhonium is the largest genus in the Araceae family (~70 species), distributed in South Asia, Southeast Asia and Australia. Typhonium is well-known for its ethnopharmacological uses, and Southeast Asians consider it as an alternative medicine to treat cancer. This review elucidated the confirmed chemical structures of the isolated compounds of Typhonium and emphasized on their anticancer activities against various human cancer cells.

    METHODS: Among several species, Typhonium blumei, T. flagelliforme, T. divaricatum and T. giganteum were extensively studied due to the presence of a class of secondary metabolites. All the available reports on Typhonium were included and discussed in this article.

    RESULTS: Until now several groups of compounds, namely amino acids (1, 2), cinnamic acid (3), fatty acids (4-14), glycerol derivatives (15-18) and cerebrosides (19-34), flavonoids (35), hydantoins (36-38), lignin monomers (39-44), nucleobases (45-48), pheophorbides (49-52), phthalate (53), terpene and steroids (54-59) and vitamins (60, 61) were isolated and characterized from Typhonium. These phytochemicals were investigated for their anticancer properties, and results confirmed the promising growth inhibitory effect and anticancer activities against human lung, breast, prostate and colon cancer cells. The anticancer activity of these compounds appears to be mediated through the induction of apoptotic cell death. These phytochemicals further reported to exhibit other pharmacological efficacies, including anti-inflammatory, antioxidant, antiviral, anti-allergic, neuroprotective and hepato-protective properties.

    CONCLUSION: This is the first review to summarize the anticancer properties of all isolated compounds of Typhonium genus with confirmed chemical structures. Further advanced studies are necessary to establish the detailed signaling pathways that are involved in the anticancer property of the compounds.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*
  19. Nik Salleh NNH, Othman FA, Kamarudin NA, Tan SC
    Molecules, 2020 Dec 02;25(23).
    PMID: 33276419 DOI: 10.3390/molecules25235677
    In Southeast Asia, traditional medicine has a longestablished history and plays an important role in the health care system. Various traditional medicinal plants have been used to treat diseases since ancient times and much of this traditional knowledge remains preserved today. Oroxylum indicum (beko plant) is one of the medicinal herb plants that is widely distributed throughout Asia. It is a versatile plant and almost every part of the plant is reported to possess a wide range of pharmacological activities. Many of the important bioactivities of this medicinal plant is related to the most abundant bioactive constituent found in this plant-the baicalein. Nonetheless, there is still no systematic review to report and vindicate the biological activities and therapeutic potential of baicalein extracted from O. indicum to treat human diseases. In this review, we aimed to systematically present in vivo and in vitro studies searched from PubMed, ScienceDirect, Scopus and Google Scholar database up to 31 March 2020 based on keywords "Oroxylum indicum" and "baicalein". After an initial screening of titles and abstracts, followed by a full-text analysis and validation, 20 articles that fulfilled all the inclusion and exclusion criteria were included in this systematic review. The searched data comprehensively reported the biological activities and therapeutic potential of baicalein originating from the O. indicum plant for anti-cancer, antibacterial, anti-hyperglycemia, neurogenesis, cardioprotective, anti-adipogenesis, anti-inflammatory and wound healing effects. Nonetheless, we noticed that there was a scarcity of evidence on the efficacy of this natural active compound in human clinical studies. In conclusion, this systematic review article provides new insight into O. indicum and its active constituent baicalein as a prospective complementary therapy from the perspective of modern and scientific aspect. We indicate the potential of this natural product to be developed into more conscientious and judicious evidencebased medicine in the future. However, we also recommend more clinical research to confirm the efficacy and safety of baicalein as therapeutic medicine for patients.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  20. Mahomoodally MF, Aumeeruddy MZ, Rengasamy KRR, Roshan S, Hammad S, Pandohee J, et al.
    Semin Cancer Biol, 2021 Feb;69:140-149.
    PMID: 31412298 DOI: 10.1016/j.semcancer.2019.08.009
    Ginger is a spice that is renowned for its characteristic aromatic fragrance and pungent taste, with documented healing properties. Field studies conducted in several Asian and African countries revealed that ginger is used traditionally in the management of cancer. The scientific community has probed into the biological validation of its extracts and isolated compounds including the gingerols, shogaols, zingiberene, and zingerone, through in-vitro and in-vivo studies. Nonetheless, an updated compilation of these data together with a deep mechanistic approach is yet to be provided. Accordingly, this review highlights the mechanisms and therapeutics of ginger and its bioactive compounds focused on a cancer context and these evidence are based on the (i) cytotoxic effect against cancer cell lines, (ii) enzyme inhibitory action, (iii) combination therapy with chemotherapeutic and phenolic compounds, (iv) possible links to the microbiome and (v) the use of nano-formulations of ginger bioactive compounds as a more effective drug delivery strategy in cancer therapy.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links