Displaying publications 121 - 140 of 704 in total

Abstract:
Sort:
  1. Wan Mohtar WHM, Wan-Mohtar WAAQI, Zahuri AA, Ibrahim MF, Show PL, Ilham Z, et al.
    Bioengineered, 2022;13(7-12):14903-14935.
    PMID: 37105672 DOI: 10.1080/21655979.2023.2184785
    Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.
    Matched MeSH terms: Biomass
  2. Azad SA, Vikineswary S, Chong VC, Ramachandran KB
    Lett Appl Microbiol, 2004;38(1):13-8.
    PMID: 14687209
    Rhodovulum sulfidophilum was grown in settled undiluted and nonsterilized sardine processing wastewater (SPW). The aims were to evaluate the effects of inoculum size and media on the biomass production with simultaneous reduction of chemical oxygen demand (COD).
    Matched MeSH terms: Biomass
  3. Asshifa Md Noh N, Al-Ashraf Abdullah A, Nasir Mohamad Ibrahim M, Ramli Mohd Yahya A
    J Gen Appl Microbiol, 2012;58(2):153-61.
    PMID: 22688247
    A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.
    Matched MeSH terms: Biomass
  4. Norfarhana AS, Ilyas RA, Ngadi N, Othman MHD, Misenan MSM, Norrrahim MNF
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128256.
    PMID: 38000585 DOI: 10.1016/j.ijbiomac.2023.128256
    The potential for the transformation of lignocellulosic biomass into valuable commodities is rapidly growing through an environmentally sustainable approach to harness its abundance, cost-effectiveness, biodegradability, and environmentally friendly nature. Ionic liquids (ILs) have received considerable and widespread attention as a promising solution for efficiently dissolving lignocellulosic biomass. The fact that ILs can act as solvents and reagents contributes to their widespread recognition. In particular, ILs are desirable because they are inert, non-toxic, non-flammable, miscible in water, recyclable, thermally and chemically stable, and have low melting points and outstanding ionic conductivity. With these characteristics, ILs can serve as a reliable replacement for traditional biomass conversion methods in various applications. Thus, this comprehensive analysis explores the conversion of lignocellulosic biomass using ILs, focusing on main components such as cellulose, hemicellulose, and lignin. In addition, the effect of multiple parameters on the separation of lignocellulosic biomass using ILs is discussed to emphasize their potential to produce high-value products from this abundant and renewable resource. This work contributes to the advancement of green technologies, offering a promising avenue for the future of biomass conversion and sustainable resource management.
    Matched MeSH terms: Biomass
  5. Khairiatul Nabilah Jansar, Ahmad Muhaimin Roslan, Mohd Ali Hassan
    MyJurnal
    Oil palm (Elaeis guineensis Jacq.) is one of the most planted trees in Malaysia for the palm oil production. Thus, solid biomass had been generated from this industry such as empty fruit bunch, shell, mesocarp fibre, frond and trunk produced that causes problematic to the nation and expected to escalate up to 85-110 million tonnes by 2020. Besides that, palm oil mill effluent and excessive steam also generated from the production of palm oil. In situ hydrothermal pretreatment means the utilisation of excessive steam produced by the oil palm mill and at the same time, generating value added product as well as reducing the biomass. Oil palm biomass is rich in lignocellulosic materials which comprised of lignin, hemicellulose and cellulose. Refinement of lignocellulosic from oil palm biomass can be utilised to form fermentable sugar, bioethanol and other potential chemicals. Recalcitrant property of lignocellulosic reduces the ability of enzymes to penetrate, thus pretreatment is required prior to hydrolysis process. Pretreatment can be either physical, chemical, biological or combined. In this review paper, three types of hydrothermal pretreatment were discussed as suitable in situ pretreatment process for oil palm biomass; in palm oil mill. The suitability was measured based on the availability of excess steam and energy in the mill. Furthermore, physicochemical pretreatment also facilitate the saccharification process, whereby it loosened the lignocellulose structure and increase the surface area. The effects and factors in choosing right pretreatment are highlighted in this paper.
    Matched MeSH terms: Biomass
  6. Leong YK, Chew KW, Chen WH, Chang JS, Show PL
    Trends Plant Sci, 2021 07;26(7):729-740.
    PMID: 33461869 DOI: 10.1016/j.tplants.2020.12.010
    Given their advantages of high photosynthetic efficiency and non-competition with land-based crops, algae, that are carbon-hungry and sunlight-driven microbial factories, are a promising solution to resolve energy crisis, food security, and pollution problems. The ability to recycle nutrient and CO2 fixation from waste sources makes algae a valuable feedstock for biofuels, food and feeds, biochemicals, and biomaterials. Innovative technologies such as the bicarbonate-based integrated carbon capture and algae production system (BICCAPS), integrated algal bioenergy carbon capture and storage (BECCS), as well as ocean macroalgal afforestation (OMA), can be used to realize a low-carbon algal bioeconomy. We review how algae can be applied in the framework of integrated low-carbon circular bioeconomy models, focusing on sustainable biofuels, low-carbon feedstocks, carbon capture, and advances in algal biotechnology.
    Matched MeSH terms: Biomass
  7. Hameed BH, Rahman AA
    J Hazard Mater, 2008 Dec 30;160(2-3):576-81.
    PMID: 18434009 DOI: 10.1016/j.jhazmat.2008.03.028
    Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25-200mg/L initial phenol concentrations, 3-10 solution pH and at temperature of 30 degrees C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25mg/g. The dimensionless separation factor RL revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.
    Matched MeSH terms: Biomass
  8. Jung C, Phal N, Oh J, Chu KH, Jang M, Yoon Y
    J Hazard Mater, 2015 Dec 30;300:808-814.
    PMID: 26340547 DOI: 10.1016/j.jhazmat.2015.08.025
    Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution.
    Matched MeSH terms: Biomass
  9. Hamouda RA, Yeheia DS, Hamzah HA, Hussein MH
    Sains Malaysiana, 2016;45:467-476.
    Algae have recently received a lot of attention as a new biomass source for the production of renewable energy and an important bioremediation agent. This study was carried out to evaluate the potential of green algae Scenedesmus obliquus grow in different concentrations of wastewater and the improvement of cultivation conditions to produce biomass rich in sugar to produce bioethanol by fermentation processes. The highest sugar content of S. obliquus biomass was recorded for algae cultivated with 40 and 85% wastewater after 9 days under aeration condition with dark and light duration (44.5%). It was found that the highest removal efficiency of BOD and COD were 18% for S. obliquus grown under aeration condition. The highest ethanol efficiency of S. obliquus biomass hydrolysate was 20.33% at 4th day. The best condition of S. obliquus to grow efficiently was under aeration with light and dark durations, where it has high efficiency to remove heavy metals from wastewater in this condition.
    Matched MeSH terms: Biomass
  10. Sim, F.S., Mohd Irwan Lu, N.A.L., Lee, Z.E.T., Mohamed, M.
    MyJurnal
    In this study, agriculture biomass was used to remove dissolved organic matter from peat swamp runoff. The functional groups and morphological properties of 6 tropical agriculture biomasses (coconut husk, rice husk, empty fruit bunch, sago hampas, saw dust and banana trunk) in their raw and citric acid–treated states were examined. The Fourier transform infrared (FTIR) spectra showed that various biomasses were typically characterised with lignocellulosic compounds. The spectra analysis further demonstrated that citric acid treatment resulted in the dissolution of lignin and hemicelluloses to various extents where carboxyl groups were also introduced. These changes hypothetically suggest improved adsorption ability. Treatment of peat swamp runoff with various untreated biomasses showed no adsorption. With the modified biomass, adsorption was evidenced, with rice husk illustrating the highest removal efficiency of 60% to 65%.The biosorbent can be used in the water treatment process especially for treating water with a high dissolved organic matter content. The spent sorbent can be subsequently applied as a soil conditioner as the dissolved organic fraction, commonly known as humic matter, possesses important agricultural value.
    Matched MeSH terms: Biomass
  11. Krishna LS, Yuzir A, Yuvaraja G, Ashokkumar V
    Int J Phytoremediation, 2017 May 04;19(5):431-438.
    PMID: 27739901 DOI: 10.1080/15226514.2016.1244161
    The feasibility for the removal of Acid Blue25 (AB25) by Bengal gram fruit shell (BGFS), an agricultural by-product, has been investigated as an alternative for high-cost adsorbents. The impact of various experimental parameters such as dose, different dye concentration, solution pH, and temperature on the removal of Acid Blue25 (AB25) has been studied under the batch mode of operation. pH is a significant impact on the sorption of AB25 onto BGFS. The maximum removal of AB25 was achieved at a pH of 2 (83.84%). The optimum dose of biosorbent was selected as 200 mg for the removal of AB25 onto BGFS. Kinetic studies reveal that equilibrium reached within 180 minutes. Biosorption kinetics has been described by Lagergren equation and biosorption isotherms by classical Langmuir and Freundlich models. Equilibrium data were found to fit well with the Langmuir and Freundlich models, and the maximum monolayer biosorption capacity was 29.41 mg g(-1) of AB25 onto BGFS. The kinetic studies indicated that the pseudo-second-order (PSO) model fitted the experimental data well. In addition, thermodynamic parameters have been calculated. The biosorption process was spontaneous and exothermic in nature with negative values of ΔG° (-1.6031 to -0.1089 kJ mol(-1)) and ΔH° (-16.7920 kJ mol(-1)). The negative ΔG° indicates the feasibility of physical biosorption process. The results indicate that BGFS could be used as an eco-friendly and cost-effective biosorbent for the removal of AB25 from aqueous solution.
    Matched MeSH terms: Biomass
  12. Md Saad M, Ali NS, Meon S
    Trop Life Sci Res, 2020 Apr;31(1):19-43.
    PMID: 32963709 DOI: 10.21315/tlsr2020.31.1.2
    Basal stem rot (BSR) is a devastating disease to Malaysian oil palm. Current techniques employed for BSR disease detection on oil palm are laborious, time consuming, costly, and subjected to accuracy limitations. An ergosterol detection method was developed, whereby it correlated well with the degree of infection in oil palm. This current study was designed to study the relationship between Ganoderma biomass, ergosterol concentration, BSR disease progress and to validate the efficiency of microwave assisted extraction (MAE) method for extraction of ergosterol compound. In addition, testing on the sensitivity of thin layer chromatography (TLC) analysis for detection of ergosterol was also the aim of this study. The optimised procedure involved extracting a small amount of Ganoderma-infected oil palm root tissues suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30 s, resulting in simultaneous extraction and saponification. Based on the results obtained, MAE method may be effective in extracting low to high yields of ergosterol from infected oil palm roots demonstrating disease scale 2, 3 and 4. Positive relationship was observed between ergosterol content and inoculation period starting day 3 in the inoculated oil palm seedlings and hour 6 in germinated seeds. TLC analysis demonstrated a good correlation with high performance liquid chromatography (HPLC) quantification. Therefore, a semi-quantitative TLC analysis may be applied for handling a large amount of samples during onset field survey.
    Matched MeSH terms: Biomass
  13. Amin NAS, Talebian-Kiakalaieh A
    Waste Manag, 2018 Mar;73:256-264.
    PMID: 29150259 DOI: 10.1016/j.wasman.2017.11.019
    As the world's second largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than that of fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO2 emissions from two biomass thermal power plants. The CO2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME), as alternative fuels for powering steam and gas turbines, were determined using the INCAM model. Each section emitting CO2 in the power plant, known as the carbon accounting center (CAC), was measured for its carbon profile (CP) and carbon index (CI). The carbon performance indicator (CPI) included electricity, fuel and water consumption, solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile (CEP), based on the total monthly carbon production, were determined across the CPI. Various innovative strategies resulted in a 20%-90% reduction of CO2 emissions. The implementation of reduction strategies significantly reduced the CO2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce the CO2 emissions and increase the potential for waste to energy initiatives.
    Matched MeSH terms: Biomass
  14. Hai T, Ali MA, Alizadeh A, Almojil SF, Almohana AI, Alali AF
    Chemosphere, 2023 Apr;319:137847.
    PMID: 36657576 DOI: 10.1016/j.chemosphere.2023.137847
    Renewable energy sources are undoubtedly necessary, considering global electricity demand is expected to rise dramatically in the coming years. This research looks at a unique multi-generation plant from the perspectives of exergy, energy, and economics; also, an environmental evaluation is performed to estimate the systems' CO2 emissions. The unit is made up of a biomass digester and gasifier, a Multi effect Desalination unit, and a supercritical CO2 (SCO2) cycle. In this study, two methods for using biomass are considered: the first is using synthesis gas generated by the gasifier, and the second is utilizing a digester to generate biogas. A comprehensive parametric study is performed on the designed energy unit to assess the influence of compressor pressure ratio, Gas turbine inlet temperature, supercritical CO2 cycle pressure ratio, and the number of effects of multi-effect distillation on the system performance. Furthermore, the exergy study revealed that the exergy destruction in the digestion unit was 11,337 kW, which was greater than the exergy destruction in the gasification unit, which was 9629. Finally, when compared to the gasifier, the amount of exergy efficiency, net output power, and freshwater production in the digester was greater.
    Matched MeSH terms: Biomass
  15. Najib MZM, Salmiati, Ujang Z, Salim MR, Ibrahim Z, Muda K
    Bioresour Technol, 2016 Dec;221:157-164.
    PMID: 27639234 DOI: 10.1016/j.biortech.2016.08.119
    The developed microbial granules containing photosynthetic pigments had successfully achieved approximately 18-21% of carbon dioxide (CO2) removal in POME for one complete SBR cycle. Also, the granules had reached CO2 removal at 15-29% within 24h and removal of 25% after 5 days. Both results were inconsistent possibly due to the slow mass transfer rate of CO2 from gas to liquid as well as the simultaneous effect of CO2 production and respiration among the microbes. Furthermore, results showed the removal of CO2 from air increases proportionally with the CO2 removed in liquid. The CO2 biofixation of granules attained was approximately 0.23g/L/day for a week. Using the regression model, the removal of CO2 between liquid and gas, CO2 biofixation rate were highly correlated with the treatment time. A statistically significant relationship was obtained between CO2 concentration in liquid, biomass productivity and treatment time for the CO2 biofixation rate of the granules.
    Matched MeSH terms: Biomass*
  16. Awg-Adeni DS, Bujang KB, Hassan MA, Abd-Aziz S
    Biomed Res Int, 2013;2013:935852.
    PMID: 23509813 DOI: 10.1155/2013/935852
    Lower concentration of glucose was often obtained from enzymatic hydrolysis process of agricultural residue due to complexity of the biomass structure and properties. High substrate load feed into the hydrolysis system might solve this problem but has several other drawbacks such as low rate of reaction. In the present study, we have attempted to enhance glucose recovery from agricultural waste, namely, "sago hampas," through three cycles of enzymatic hydrolysis process. The substrate load at 7% (w/v) was seen to be suitable for the hydrolysis process with respect to the gelatinization reaction as well as sufficient mixture of the suspension for saccharification process. However, this study was focused on hydrolyzing starch of sago hampas, and thus to enhance concentration of glucose from 7% substrate load would be impossible. Thus, an alternative method termed as cycles I, II, and III which involved reusing the hydrolysate for subsequent enzymatic hydrolysis process was introduced. Greater improvement of glucose concentration (138.45 g/L) and better conversion yield (52.72%) were achieved with the completion of three cycles of hydrolysis. In comparison, cycle I and cycle II had glucose concentration of 27.79 g/L and 73.00 g/L, respectively. The glucose obtained was subsequently tested as substrate for bioethanol production using commercial baker's yeast. The fermentation process produced 40.30 g/L of ethanol after 16 h, which was equivalent to 93.29% of theoretical yield based on total glucose existing in fermentation media.
    Matched MeSH terms: Biomass
  17. Hassan H, Lim JK, Hameed BH
    Bioresour Technol, 2016 Dec;221:645-655.
    PMID: 27671343 DOI: 10.1016/j.biortech.2016.09.026
    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.
    Matched MeSH terms: Biomass*
  18. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, et al.
    Bioresour Technol, 2017 Dec;246:2-11.
    PMID: 28844690 DOI: 10.1016/j.biortech.2017.08.009
    Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications.
    Matched MeSH terms: Biomass
  19. Chong JWR, Yew GY, Khoo KS, Ho SH, Show PL
    J Environ Manage, 2021 Sep 01;293:112782.
    PMID: 34052610 DOI: 10.1016/j.jenvman.2021.112782
    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.
    Matched MeSH terms: Biomass
  20. Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, et al.
    Bioresour Technol, 2020 Feb;298:122476.
    PMID: 31810736 DOI: 10.1016/j.biortech.2019.122476
    Microalgal and lignocellulosic biomass is the most sumptuous renewable bioresource raw material existing on earth. Recently, the bioconversion of biomass into biofuels have received significant attention replacing fossil fuels. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for biofuel production are advancing, the productivity and yield from these techniques are low. Over the past years, various pretreatment techniques have been developed and successfully employed to improve the technology. This paper presents an in-depth review of the recent advancement of pretreatment methods focusing on microalgal and lignocellulosic biomass. The technological approaches involving physical, chemical, biological and other latest pretreatment methods are reviewed.
    Matched MeSH terms: Biomass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links