Displaying publications 121 - 140 of 556 in total

Abstract:
Sort:
  1. Zulkarnain NN, Anuar N, Johari NA, Sheikh Abdullah SR, Othman AR
    Environ Toxicol Pharmacol, 2020 Nov;80:103498.
    PMID: 32950717 DOI: 10.1016/j.etap.2020.103498
    Inefficient ketoprofen removal from pharmaceutical wastewater may negatively impact the ecosystem and cause detrimental risks to human health. This study was conducted to determine the cytotoxicity effects of ketoprofen on HEK 293 cell growth and metabolism, including cyclooxygenase-1 (COX-1) expression, at environmentally relevant concentrations. The cytotoxic effects were evaluated through the trypan blue test, DNS assay, MTT assay, and the expression ratio of the COX-1 gene. The results of this study show insignificant (p > 0.05) cytotoxic effects of ketoprofen on cell viability and cell metabolism. However, high glucose consumption rates among the treated cells cause an imitation of the Warburg effect, which is likely linked to the development of cancer cells. Apart from that, the upregulation of COX-1 expression among the treated cells indicates remote possibility of inflammation. Although no significant cytotoxic effects of ketoprofen were detected throughout this study, the effects of prolonged exposure of residual ketoprofen need to be evaluated in the future.
    Matched MeSH terms: Cell Proliferation/drug effects
  2. Hitora Y, Takada K, Ise Y, Woo SP, Inoue S, Mori N, et al.
    Bioorg Med Chem, 2020 01 15;28(2):115233.
    PMID: 31848114 DOI: 10.1016/j.bmc.2019.115233
    New sesquiterpene quinones, metachromins X (1) and Y (2), together with the known metachromins C (3), J (4), and T (5), were isolated as inhibitors of cell cycle progression in the HeLa/Fucci2 cells. The structure of 1 was assigned by spectroscopic data and confirmed by a total synthesis. The planar structure of 2 was determined by interpretation of spectroscopic data, whereas its absolute configuration was analyzed by a combination of chiral HPLC and CD spectroscopy. Metachromins X (1) and C (3) arrested the cell cycle progression of HeLa/Fucci2 cells at S/G2/M phase.
    Matched MeSH terms: Cell Proliferation/drug effects
  3. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Cell Proliferation/drug effects
  4. Salehinejad P, Alitheen NB, Mandegary A, Nematollahi-Mahani SN, Janzamin E
    In Vitro Cell Dev Biol Anim, 2013 Aug;49(7):515-23.
    PMID: 23708920 DOI: 10.1007/s11626-013-9631-3
    Mesenchymal stem cells have been increasingly introduced to have great potential in regenerative medicine, immunotherapy, and gene therapy due to their unique properties of self-renewal and differentiation into multiple cell lineages. Studies have shown that these properties may be limited and changed by senescence-associated growth arrest under different culture conditions. This study aimed to present the ability of some growth factors on human umbilical cord mesenchymal (hUCM) cells expansion and telomerase activity. To optimize hUCM cell growth, epidermal growth factor (EGF) and fibroblast growth factor (FGF) were utilized in culture media, and the ability of these growth factors on the expression of the telomerase reverse transcriptase (TERT) gene and cell cycle phases was investigated. TERT mRNA expression increased in the hUCM cells treated by EGF and FGF. So, the untreated hUCM cells expressed 30.49 ± 7.15% of TERT, while EGF-treated cells expressed 51.82 ± 12.96% and FGF-treated cells expressed 33.77 ± 11.55% of TERT. Exposure of hUCM cells to EGF or FGF also promoted the progression of cells from G1 to S phase of the cell cycle and induced them to decrease the number of cells entering the G2/M phase. Our study showed that EGF and, to a lesser extent, FGF amplify the proliferation and expansion of hUCM cells.
    Matched MeSH terms: Cell Proliferation/drug effects
  5. Arulnathan SB, Leong KH, Ariffin A, Kareem HS, Cheah KKH
    Anticancer Agents Med Chem, 2020;20(9):1072-1086.
    PMID: 32188392 DOI: 10.2174/1871520620666200318100051
    BACKGROUND: Oxadiazoles, triazoles, and their respective precursors have been shown to exhibit various pharmacological properties, namely antitumour activities. Cytotoxic activity was reported for these compounds in various cancer cell lines.

    AIM AND OBJECTIVES: In this study, we aim at investigating the mechanism of apoptosis by N-(4-chlorophenyl)-2-(4- (3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide, a triazole precursor, henceforth termed compound P7a, in breast cancer cell line, MCF-7. We first screen a series of analogues containing (3,4,5-trimethoxybenzyloxy) phenyl moiety in breast cancer cell lines (MCF-7 and MDA-MB-231) to select the most cytotoxic compound and demonstrate a dose- and time-dependent cytotoxicity. Then, we unravel the mechanism of apoptosis of P7a in MCF-7 as well as its ability to cause cell cycle arrest.

    METHODS: Synthesis was performed as previously described by Kareem and co-workers. Cytotoxicity of analogues containing (3,4,5-trimethoxybenzyloxy)phenyl moiety against MCF-7 and MDA-MB-231 cell lines was evaluated using the MTS assay. Flow cytometric analyses was done using Annexin V/PI staining, JC-1 staining and ROS assay. The activity of caspases using a chemoluminescence assay and western blot analysis was conducted to study the apoptotic pathway induced by the compound in MCF-7 cells. Lastly, cell cycle analysis was conducted using flow cytometry.

    RESULTS: Upon 48 hours of treatment, compound P7a inhibited the proliferation of human breast cancer cells with IC50 values of 178.92 ± 12.51μM and 33.75 ± 1.20μM for MDA-MB-231 and MCF-7, respectively. Additionally, compound P7a showed selectivity towards the cancer cell line, MCF-7 compared to the normal breast cell line, hTERT-HME1, an advantage against current anticancer drugs (tamoxifen and vinblastine). Flow cytometric analyses using different assays indicated that compound P7a significantly increased the proportion of apoptotic cells, increased mitochondria membrane permeabilisation and caused generation of ROS in MCF-7. In addition, cell cycle analysis showed that cell proliferation was arrested at the G1 phase in the MCF-7 cell line. Furthermore, upon treatment, the MCF-7 cell line showed increased activity of caspase-3/7, and caspase-9. Lastly, the western blot analysis showed the up-regulation of pro-apoptotic proteins along with up-regulation of caspase-7 and caspase-9, indicating that an intrinsic pathway of apoptosis was induced.

    CONCLUSION: The results suggest that compound P7a could be a potential chemotherapeutic agent for breast cancer.

    Matched MeSH terms: Cell Proliferation/drug effects
  6. Su Wei Poh M, Voon Chen Yong P, Viseswaran N, Chia YY
    PLoS One, 2015;10(3):e0121382.
    PMID: 25816349 DOI: 10.1371/journal.pone.0121382
    Glabridin is an isoflavan from licorice root, which is a common component of herbal remedies used for treatment of menopausal symptoms. Past studies have shown that glabridin resulted in favorable outcome similar to 17β-estradiol (17β-E2), suggesting a possible role as an estrogen replacement therapy (ERT). This study aims to evaluate the estrogenic effect of glabridin in an in-vitro endometrial cell line -Ishikawa cells via alkaline phosphatase (ALP) assay and ER-α-SRC-1-co-activator assay. Its effect on cell proliferation was also evaluated using Thiazoyl blue tetrazolium bromide (MTT) assay. The results showed that glabridin activated the ER-α-SRC-1-co-activator complex and displayed a dose-dependent increase in estrogenic activity supporting its use as an ERT. However, glabridin also induced an increase in cell proliferation. When glabridin was treated together with 17β-E2, synergistic estrogenic effect was observed with a slight decrease in cell proliferation as compared to treatment by 17β-E2 alone. This suggest that the combination might be better suited for providing high estrogenic effects with lower incidences of endometrial cancer that is associated with 17β-E2.
    Matched MeSH terms: Cell Proliferation/drug effects*
  7. Magalingam KB, Radhakrishnan AK, Somanath SD, Md S, Haleagrahara N
    Mol Biol Rep, 2020 Nov;47(11):8775-8788.
    PMID: 33098048 DOI: 10.1007/s11033-020-05925-2
    Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.
    Matched MeSH terms: Cell Proliferation/drug effects*
  8. Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Jun 30;181:82-98.
    PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108
    Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
    Matched MeSH terms: Cell Proliferation/drug effects
  9. Nik Mohamed Kamal NNS, Abdul Aziz FA, Tan WN, Fauzi AN, Lim V
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207699 DOI: 10.3390/molecules26123518
    Pancreatic cancer is an aggressive disease that progresses in a relatively symptom-free manner; thus, is difficult to detect and treat. Essential oil is reported to exhibit pharmacological properties, besides its common and well-known function as aromatherapy. Therefore, this study herein aimed to investigate the anti-proliferative effect of essential oil extracted from leaves of Garcinia atroviridis (EO-L) against PANC-1 human pancreatic cancer cell line. The cell growth inhibitory concentration at 50% (IC50) and selective index (SI) values of EO-L analyses were determined as 78 µg/mL and 1.23, respectively. Combination index (CI) analysis revealed moderate synergism (CI values of 0.36 to 0.75) between EO-L and 2 deoxy-d-glucose (2-DG) treatments. The treatments of PANC-1 cells with EO-L, 2-DG and EOL+2DG showed evidence of depolarization of mitochondrial membrane potential, cell growth arrest and apoptosis. The molecular mechanism causing the anti-proliferative effect between EO-L and 2-DG is potentially through pronounced up-regulation of P53 (4.40-fold), HIF1α (1.92-fold), HK2 (2.88-fold) and down-regulation of CYP3A5 (0.11-fold), as supported by quantitative mRNA expression analysis. Collectively, the current data suggest that the combination of two anti-proliferative agents, EO-L and 2-DG, can potentially be explored as therapeutic treatments and as potentiating agents to conventional therapy against human pancreatic cancer.
    Matched MeSH terms: Cell Proliferation/drug effects
  10. Daddiouaissa D, Amid A, Abdullah Sani MS, Elnour AAM
    J Ethnopharmacol, 2021 Apr 24;270:113813.
    PMID: 33444719 DOI: 10.1016/j.jep.2021.113813
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used by indigenous people across the world for centuries to help individuals preserve their wellbeing and cure diseases. Annona muricata L. (Graviola) which is belonging to the Annonaceae family has been traditionally used due to its medicinal abilities including antimicrobial, anti-inflammatory, antioxidant and cancer cell growth inhibition. Graviola is claimed to be a potential antitumor due to its selective cytotoxicity against several cancer cell lines. However, the metabolic mechanism information underlying the anticancer activity remains limited.

    AIM OF THE STUDY: This study aimed to investigate the effect of ionic liquid-Graviola fruit pulp extract (IL-GPE) on the metabolomics behavior of colon cancer (HT29) by using an untargeted GC-TOFMS-based metabolic profiling.

    MATERIALS AND METHODS: Multivariate data analysis was used to determine the metabolic profiling, and the ingenuity pathway analysis (IPA) was used to predict the altered canonical pathways after treating the HT29 cells with crude IL-GPE and Taxol (positive control).

    RESULTS: The principal components analysis (PCA) identified 44 metabolites with the most reliable factor loading, and the cluster analysis (CA) separated three groups of metabolites: metabolites specific to the non-treated HT29 cells, metabolites specific to the treated HT29 cells with the crude IL-GPE and metabolites specific to Taxol treatment. Pathway analysis of metabolomic profiles revealed an alteration of many metabolic pathways, including amino acid metabolism, aerobic glycolysis, urea cycle and ketone bodies metabolism that contribute to energy metabolism and cancer cell proliferation.

    CONCLUSION: The crude IL-GPE can be one of the promising anticancer agents due to its selective inhibition of energy metabolism and cancer cell proliferation.

    Matched MeSH terms: Cell Proliferation/drug effects
  11. Mahmood I, Azfaralariff A, Mohamad A, Airianah OB, Law D, Dyari HRE, et al.
    PMID: 33737223 DOI: 10.1016/j.cbpc.2021.109033
    The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 μg/ml) than WE (EC50 = 52.8 ± 1.19 μg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 μg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 β (pGSK3β) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.
    Matched MeSH terms: Cell Proliferation/drug effects
  12. Syed Najmuddin SU, Romli MF, Hamid M, Alitheen NB, Nik Abd Rahman NM
    BMC Complement Altern Med, 2016 Aug 24;16(1):311.
    PMID: 27558166 DOI: 10.1186/s12906-016-1290-y
    Annona muricata Linn which comes from Annonaceae family possesses many therapeutic benefits as reported in previous studies and to no surprise, it has been used in many cultures to treat various ailments including headaches, insomnia, and rheumatism to even treating cancer. However, Annona muricata Linn obtained from different cultivation area does not necessarily offer the same therapeutic effects towards breast cancer (in regards to its bioactive compound production). In this study, anti-proliferative and anti-cancer effects of Annona muricata crude extract (AMCE) on breast cancer cell lines were evaluated.
    Matched MeSH terms: Cell Proliferation/drug effects
  13. Teo SY, Yew MY, Lee SY, Rathbone MJ, Gan SN, Coombes AGA
    J Pharm Sci, 2017 01;106(1):377-384.
    PMID: 27522920 DOI: 10.1016/j.xphs.2016.06.028
    Phenytoin-loaded alkyd nanoemulsions were prepared spontaneously using the phase inversion method from a mixture of novel biosourced alkyds and Tween 80 surfactant. Exposure of human adult keratinocytes (HaCaT cells) for 48 h to alkyd nanoemulsions producing phenytoin concentrations of 3.125-200 μg/mL resulted in relative cell viability readings using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide of 100% confirming nontoxicity and suggesting cell proliferation activity. Phenytoin-loaded alkyd nanoemulsions generally resulted in higher mean cell viability compared with equivalent concentration of phenytoin solutions, suggesting that the nanoemulsions provided a controlled-release property that maintained the optimum phenytoin level for keratinocyte growth. HaCaT cell proliferation, measured by 5-bromo-2-deoxyuridine uptake, was found to increase following exposure to increasing phenytoin concentration from 25 to 50 μg/mL in solution or encapsulated in nanoemulsions but declined at a drug concentration of 100 μg/mL. An in vitro cell monolayer wound scratch assay revealed that phenytoin solution or nanoemulsions producing 50 μg/mL phenytoin concentration resulted in 75%-82% "scratch closure" after 36 h, similar to medium containing 10% fetal bovine serum as a cell growth promoter. These findings indicate that phenytoin-loaded alkyd nanoemulsions show potential for promoting topical wound healing through enhanced proliferation of epidermal cells.
    Matched MeSH terms: Cell Proliferation/drug effects
  14. Fang TY, Praveena SM, deBurbure C, Aris AZ, Ismail SN, Rasdi I
    Chemosphere, 2016 Dec;165:358-368.
    PMID: 27665296 DOI: 10.1016/j.chemosphere.2016.09.051
    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples.
    Matched MeSH terms: Cell Proliferation/drug effects*
  15. Jennings CJ, Zainal N, Dahlan IM, Kay EW, Harvey BJ, Thomas W
    Anticancer Res, 2016 11;36(11):5905-5913.
    PMID: 27793915
    Malignant pleural mesothelioma (MPM) is a rare but highly aggressive malignancy most often associated with exposure to asbestos. Recent evidence points to oestrogen receptor (ER)-β having a tumour-suppressor role in MPM progression, and this raises the question of whether selective modulators of ERs could play a role in augmenting MPM therapy.
    Matched MeSH terms: Cell Proliferation/drug effects*
  16. Tan WC, Kuppusamy UR, Phan CW, Sabaratnam V
    Int J Med Mushrooms, 2018;20(2):155-163.
    PMID: 29773007 DOI: 10.1615/IntJMedMushrooms.2018025445
    Ganoderma neo-japonicum is an annual polypore that grows on decaying bamboo in the forests of Malaysia. The indigenous Temuan tribe uses this species as a medicinal mushroom to cure fever and epilepsy and to improve body strength. The potential use of G. neo-japonicum in genoprotection and DNA repair was established using a single-cell gel electrophoresis (comet) assay. The effects of the ethanol and hot aqueous extracts from wild and cultivated basidiocarps, solid substrate-fermented (SSF) wheat grains, and mycelia via submerged culture on H2O2-damaged murine RAW264.7 macrophages were investigated. An ethanol extract from wild basidiocarps showed the most significant protective effect on murine RAW264.7 macrophages, followed by ethanol and hot water extracts of cultivated basidiocarps, and this effect was dose dependent. However, only the ethanol extracts from SSF and submerged culture showed significant protective effects compared with the control. As for DNA repair ability, only the ethanol extract from wild and cultivated basidiocarps showed significant results when compared with the negative control. The findings suggest the potential therapeutic use of G. neo-japonicum in genome protection and as a DNA repair stimulator.
    Matched MeSH terms: Cell Proliferation/drug effects*
  17. Adebayo IA, Arsad H, Samian MR
    PMID: 28573245 DOI: 10.21010/ajtcam.v14i2.30
    BACKGROUND: Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed.
    MATERIALS AND METHODS: Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A.
    RESULTS: Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC50 > 400μg/ml).
    CONCLUSION: Moringa oleifera seed has antiproliferative effect on MCF7.
    Matched MeSH terms: Cell Proliferation/drug effects*
  18. Zainal Abidin SA, Rajadurai P, Hoque Chowdhury ME, Othman I, Naidu R
    Molecules, 2018 06 08;23(6).
    PMID: 29890640 DOI: 10.3390/molecules23061388
    The aim of this study is to investigate the potential anti-cancer activity of l-amino acid oxidase (CP-LAAO) purified from the venom of Cryptelytrops purpureomaculatus on SW480 and SW620 human colon cancer cells. Mass spectrometry guided purification was able to identify and purify CP-LAAO. Amino acid variations identified from the partial protein sequence of CP-LAAO may suggest novel variants of these proteins. The activity of the purified CP-LAAO was confirmed with o-phenyldiamine (OPD)-based spectrophotometric assay. CP-LAAO demonstrated time- and dose-dependent cytotoxic activity and the EC50 value was determined at 13 µg/mL for both SW480 and SW620 cells. Significant increase of caspase-3 activity, reduction of Bcl-2 levels, as well as morphological changes consistent with apoptosis were demonstrated by CP-LAAO. Overall, these data provide evidence on the potential anti-cancer activity of CP-LAAO from the venom of Malaysian C. purpureomaculatus for therapeutic intervention of human colon cancer.
    Matched MeSH terms: Cell Proliferation/drug effects*
  19. Ong YS, Saiful Yazan L, Ng WK, Noordin MM, Sapuan S, Foo JB, et al.
    Int J Nanomedicine, 2016 11 09;11:5905-5915.
    PMID: 27877037
    BACKGROUND: Thymoquinone (TQ), the predominant active lipophilic component in Nigella sativa seed oil, has a variety of pharmacological properties such as anticancer activities. However, translation of TQ to clinical phase is still not possible due to its hydrophobic properties. This problem can be solved by encapsulating it in nanoformulations to enhance its pharmacological properties. In our previous study, TQ has been successfully encapsulated in a nanostructured lipid carrier (hereinafter referred to as TQNLC) with excellent physiochemical properties such as high encapsulation efficiency, high drug-loading capacity, particle diameter less than 100 nm, and stability up to 2 years. In vitro studies also proved that TQNLC exhibited antiproliferative activity toward breast and cervical cancer cell lines. However, no toxicity profile related to this formulation has been reported. In this study, we determine and compare the in vivo toxicity of both TQNLC and TQ.

    MATERIALS AND METHODS: The in vivo toxicity (acute and subacute toxicity) study was carried out by oral administration of TQNLC and TQ to BALB/c mice. Animal survival, body weight, organ weight-to-body weight ratio, hematological profile, biochemistry profile, and histopathological changes were analyzed.

    RESULTS: In acute toxicity, TQ that is loaded in nanostructured lipid carrier (NLC) was found to be less toxic than pure TQ. It can be concluded that encapsulation of TQ in lipid carrier minimizes the toxicity of the compound. In the subacute toxicity study, oral administration of 100 mg/kg of TQNLC and TQ did not cause mortality to either male or female but resulted in toxicity to the liver. It is postulated that long-term consumption of TQNLC and TQ may cause toxicity to the liver but not to the extent of altering the functions of the organ. For both treatments, the no observed adverse effect level (NOAEL) was found to be 10 mg/kg/d for mice in both sexes.

    CONCLUSION: For long-term oral consumption, TQ and TQNLC at a dose of 10 mg/kg is safe in mice and does not exert any toxic effect. The results provide safety information of TQNLC, which would further help researchers in clinical use.

    Matched MeSH terms: Cell Proliferation/drug effects
  20. Teoh SL, Das S
    Curr Drug Targets, 2018;19(2):128-143.
    PMID: 28294046 DOI: 10.2174/1389450118666170309143419
    BACKGROUND: The Notch pathway is an evolutionarily conserved, intercellular signalling system which is present in all multicellular organisms and mammals. The Notch pathway plays an important role in the embryonic development as it controls cell proliferation, cell differentiation and binary cell fate decisions.

    OBJECTIVE: In the present review, we highlight the Notch signalling pathway components i.e. Notch receptors, ligands, effector, and their regulators. We also discuss the tumor biology of the Notch pathway involved in various cancers.

    RESULTS: Interestingly, the Notch signalling pathway is dysregulated in many cancers. Notch may serve as oncogene or tumor suppressor and plays an important role in cancers of the liver, pancreas, endometrium of uterus, ovary, prostate, bladder and colon. The activation of Notch pathway plays a vital role in the progression of some cancer. In addition, Notch pathway activation was also shown to drive chemoresistance in cancer, as well. Chemotherapeutically, combined NOTCH1 inhibitor synergistically attenuated chemotherapy-enriched cancer stem cell population both in vitro and in vivo. This may prove to be beneficial in the treatment of cancer.

    CONCLUSION: The Notch inhibitors possess anti-proliferative effects on cancer, thereby serving as a new treatment for cancer.

    Matched MeSH terms: Cell Proliferation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links