Displaying publications 121 - 140 of 346 in total

Abstract:
Sort:
  1. Masni Mohd Ali, Norfariza Humrawali, Mohd Talib Latif, Mohamad Pauzi Zakaria
    This study explores the role of sterols as lipid biomarkers to indicate their input which originates from various sources in the marine environment. Sterols and their ratios were investigated in sediments taken from sixteen sampling stations at Pulau Tinggi, Johor in order to assess the sources of organic matter. The compounds extracted from the sediments were quantified using a gas chromatography-mass spectrometry (GC-MS). The distributions of sterols indicated that organic matter at all sampling stations originated from a mixture of marine source and terrestrial origins at different proportions. A total of eleven sterols were quantified, with the major compounds being phytosterols (44% of total sterols), cholesterol (11%), brassicasterol (11%) and fecal sterols (12%).
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  2. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA, Nadri MH
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):479-484.
    PMID: 32960782 DOI: 10.1515/znc-2020-0096
    The rich and diversified Malaysian flora represents an excellent resource of new chemical structures with biological activities. The genus Xylopia L. includes aromatic plants that have both nutritional and medicinal uses. This study aims to contribute with information about the volatile components of three Xylopia species essential oils: Xylopia frutescens, Xylopia ferruginea, and Xylopia magna. In this study, essential oils were extracted from the leaves by a hydrodistillation process. The identification of the essential oil components was performed by gas chromatography (GC-FID) and gas chromatography-coupled mass spectrometry (GC-MS). The major components of the essential oils from X. frutescens were bicyclogermacrene (22.8%), germacrene D (14.2%), elemol (12.8%), and guaiol (12.8%), whereas components of the essential oils from X. magna were germacrene D (35.9%), bicyclogermacrene (22.8%), and spathulenol (11.1%). The X. ferruginea oil was dominated by bicyclogermacrene (23.6%), elemol (13.7%), guaiol (13.4%), and germacrene D (12.3%).
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  3. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Sci Total Environ, 2020 Jun 10;720:137370.
    PMID: 32325554 DOI: 10.1016/j.scitotenv.2020.137370
    Complete degradation of azo dye has always been a challenge due to the refractory nature of azo dye. An innovative hybrid system, constructed wetland-microbial fuel cell (CW-MFC) was developed for simultaneous azo dye remediation and energy recovery. This study investigated the effect of circuit connection and the influence of azo dye molecular structures on the degradation rate of azo dye and bioelectricity generation. The closed circuit system exhibited higher chemical oxygen demand (COD) removal and decolourisation efficiencies compared to the open circuit system. The wastewater treatment performances of different operating systems were ranked in the decreasing order of CW-MFC (R1 planted-closed circuit) > MFC (R2 plant-free-closed circuit) > CW (R1 planted-open circuit) > bioreactor (R2 plant-free-open circuit). The highest decolourisation rate was achieved by Acid Red 18 (AR18), 96%, followed by Acid Orange 7 (AO7), 67% and Congo Red (CR), 60%. The voltage outputs of the three azo dyes were ranked in the decreasing order of AR18 > AO7 > CR. The results disclosed that the decolourisation performance was significantly influenced by the azo dye structure and the moieties at the proximity of azo bond; the naphthol type azo dye with a lower number of azo bond and more electron-withdrawing groups could cause azo bond to be more electrophilic and more reductive for decolourisation. Moreover, the degradation pathway of AR18, AO7 and CR were elucidated based on the respective dye intermediate products identified through UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), and gas chromatograph-mass spectrometer (GC-MS) analyses. The CW-MFC system demonstrated high capability of decolouring azo dyes at the anaerobic anodic region and further mineralising dye intermediates at the aerobic cathodic region to less harmful or non-toxic products.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  4. Lasekan O, Teoh LS
    BMC Chem, 2019 Dec;13(1):133.
    PMID: 31891159 DOI: 10.1186/s13065-019-0650-3
    Background: The aroma chemistry and the contribution of the aroma compounds to the anti-oxidative properties of roasted yam have yet to be characterized. The growing popularity of roasted yam in regions where they are being consumed calls for a concerted effort to elucidate their aroma chemistry as well as their anti-oxidative properties.

    Results: The aroma compounds in roasted white yam (Dioscorea rotundata) were isolated and identified using static headspace-gas chromatography-mass spectrometry (SH-GC-MS) and gas chromatography-olfactometry (GC-O). In addition, the anti-oxidative activities of the most abundant volatile heterocyclic compounds (2 pyrroles, 4 furans and 3 pyrazines) were evaluated on their inhibitory effect towards the oxidation of hexanal for a period of 30 days. Twenty-nine aroma-active compounds with a flavour dilution (FD) factor range of 2-256 and an array of odour notes were obtained. Among them, the highest odour activities (FD ≥ 128) factors were determined for 2-acetyl furan and 2-acetylpyrrole. Other compounds with significant FD factors ≥ 32 were; 2-methylpyrazine, ethyl furfural, and 5-hydroxy methyl furfural.

    Conclusion: Results of the anti-oxidative activity showed that the pyrroles exhibited the greatest antioxidant activity among all the tested heterocyclic compounds. This was followed by the furans and the pyrazines which had the least antioxidant activity.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  5. Abdul Kadir FA, Azizan KA, Othman R
    Data Brief, 2020 Feb;28:104987.
    PMID: 32226799 DOI: 10.1016/j.dib.2019.104987
    Agarwood is the highly valuable fragrant resin of the wounded Aquilaria spp. trees widely used in fragrances, medicines and incenses. Among the Aquilaria spp., A. malaccensis is the primary producer and is mainly found in Indonesia and Malaysia. In normal condition, agarwood is naturally formed in Aquilaria trees as a defense mechanism upon physical damage or microbial infection on the trees, which is a slow process that occurs over several years. The high demand in agarwood has spurred the development of various artificial inoculation methods where agarwood formation is synthetically induced in a shorter period of time. However, the synthetic induction method produces agarwood with aromas different from the naturally formed agarwood. To understand the changes in the agarwoods produced from different induction conditions, metabolite profiling of agarwood essential oil from A. malaccensis has been performed. The essential oils of healthy undamaged tree trunks and, naturally formed and synthetically induced agarwoods were obtained using hydrodistillation (HS) method and analysed using gas chromatography mass spectrometer (GC-MS). These data will provide valuable resources for chemical components of agarwood produced by the species in the genus Aquilaria.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  6. Hadibarata T, Nor NM
    Bioprocess Biosyst Eng, 2014 Sep;37(9):1879-85.
    PMID: 24623464 DOI: 10.1007/s00449-014-1162-0
    Polyporus sp. S133 decolorized the Amaranth in 72 h (30 mg L(-1)) under static and shaking conditions. Liquid medium containing glucose has shown the highest decolorization of Amaranth by Polyporus sp. S133. When the effect of increasing inoculum concentration on decolorization of Amaranth was studied, maximum decolorization was observed with 15 % inoculum concentration. Significant increase in the enzyme production of laccase (102.2 U L(-1)) was observed over the period of Amaranth decolorization compared to lignin peroxidase and manganese peroxidase. Germination rate of Sorghum vulgare and Triticum aestivum was less with Amaranth treatment as compared to metabolites obtained after its decolorization. Based on the metabolites detected by GC-MS, it was proposed that Amaranth was bio-transformed into two intermediates, 1-hydroxy-2-naphthoic acid and 1,4-naphthaquinone. Overall findings suggested the ability of Polyporus sp. S133 for the decolorization of azo dye and ensured the ecofriendly degradation of Amaranth.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  7. Neoh CH, Lam CY, Lim CK, Yahya A, Ibrahim Z
    Environ Sci Pollut Res Int, 2014 Mar;21(6):4397-408.
    PMID: 24327114 DOI: 10.1007/s11356-013-2350-1
    Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  8. Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ, Yusoff AR, Salim MR, et al.
    Folia Microbiol (Praha), 2013 Sep;58(5):385-91.
    PMID: 23307571 DOI: 10.1007/s12223-013-0221-2
    Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5-30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography-mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  9. Tay KS, Rahman NA, Abas MR
    Chemosphere, 2009 Aug;76(9):1296-302.
    PMID: 19570564 DOI: 10.1016/j.chemosphere.2009.06.007
    This study was undertaken in order to understand the factors affecting the degradation of an insect repellent, N,N-diethyl-m-toluamide (DEET) by ozonation. Kinetic studies on DEET degradation were carried out under different operating conditions, such as varied ozone doses, pH values of solution, initial concentrations of DEET, and solution temperatures. The degradation of DEET by ozonation follows the pseudo-first-order kinetic model. The rate of DEET degradation increased exponentially with temperature in the range studied (20-50 degrees C) and in proportion with the dosage of ozone applied. The ozonation of DEET under different pH conditions in the presence of phosphate buffer occurred in two stages. During the first stage, the rate constant, k(obs), increased with increasing pH, whereas in the second stage, the rate constant, k(obs2), increased from pH 2.3 up to 9.9, however, it decreased when the pH value exceeded 9.9. In the case where buffers were not employed, the k(obs) were found to increase exponentially with pH from 2.5 to 9.2 and the ozonation was observed to occur in one stage. The rate of degradation decreased exponentially with the initial concentration of DEET. GC/MS analysis of the by-products from DEET degradation were identified to be N,N-diethyl-formamide, N,N-diethyl-4-methylpent-2-enamide, 4-methylhex-2-enedioic acid, N-ethyl-m-toluamide, N,N-diethyl-o-toluamide, N-acetyl-N-ethyl-m-toluamide, N-acetyl-N-ethyl-m-toluamide 2-(diethylamino)-1-m-tolylethanone and 2-(diethylcarbamoyl)-4-methylhex-2-enedioic acid. These by-products resulted from ozonation of the aliphatic chain as well as the aromatic ring of DEET during the degradation process.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  10. Assaggaf H, Jeddi M, Mrabti HN, Ez-Zoubi A, Qasem A, Attar A, et al.
    Sci Rep, 2024 Apr 22;14(1):9195.
    PMID: 38649707 DOI: 10.1038/s41598-024-59708-x
    The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, β-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  11. Tay BY, Yung SC, Teoh TY
    Int J Cosmet Sci, 2016 Dec;38(6):627-633.
    PMID: 27169828 DOI: 10.1111/ics.12342
    OBJECTIVE: Isopropyl p-toluenesulfonate (IPTS) is a potentially genotoxic by-product formed during the esterification of palm oil-based palmitic and palm kernel oil-based myristic acid with isopropanol to produce isopropyl palmitate or isopropyl myristate. There are no methods described for the analysis of IPTS in cosmetic products. In this work, we have established a simple, precise and accurate method to determine the presence and level of IPTS in various finished cosmetic products which contain palm-based esters in their formulations.

    METHODS: An Agilent 1200 series high-performance liquid chromatography (HPLC) unit using a diode-array detector (DAD) has been employed and optimized to detect IPTS in cosmetic products. For the separation, a reverse-phase Hypersil Gold C8 column (5 μm, 4.6 mm i.d. 250 mm) 5 mM tetrabutylammonium phosphate buffer 50 : 50, (v/v) solution in acetonitrile as mobile phase, in isocratic mode and a flow rate of 0.8 mL min(-1) were used. A second method using a gas chromatography/mass selective detector GC-MSD was also developed to confirm the IPTS identity in the cosmetic products.

    RESULTS: Recoveries of IPTS from cosmetic matrices such as a lotion, cleansing milk and a cream ranged from 94.0% to 101.1% with <5% relative standard deviation (%RSD) showing good accuracy and repeatability of the method. The six-point calibration curves (determined over the range 0.5-50 μg mL(-1) ) have a correlation coefficient of 0.9999 (based on HPLC peak area) and 0.9998 (based on HPLC peak height). The intra- and interday precisions (measured by the %RSD) of the method were <2% and <5%, respectively, indicating that the developed method is reliable, precise and reproducible. The detection and quantification limit of the method were found to be 0.5 μg mL(-1) and 1.6 μg mL(-1) , respectively. Analyses of 83 commercial cosmetics showed no presence of IPTS.

    CONCLUSIONS: The validation data indicated that this method was suitable for the quantitative analysis of IPTS in commercial cosmetics. This method is applicable for analyses of trace levels of IPTS in cosmetics and has the advantage of using only simple sample preparation steps.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry/methods*
  12. Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL
    BMC Microbiol, 2017 Feb 16;17(1):36.
    PMID: 28209130 DOI: 10.1186/s12866-017-0936-3
    BACKGROUND: Antimicrobial resistance is currently a major global issue. As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, particularly against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). The ability of fly larvae to thrive in septic habitats has prompted us to determine the antibacterial activity and minimum inhibitory concentrations (MICs) of larval extract of flies, namely Lucilia cuprina, Sarcophaga peregrina and Musca domestica against 4 pathogenic bacteria [Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa and Escherichia coli] via a simple and sensitive antibacterial assay, resazurin-based turbidometric (TB) assay as well as to demonstrate the preliminary chemical profile of larval extracts using gas chromatography-mass spectrophotometry (GC-MS).

    RESULTS: The resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml(-1). Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica.

    CONCLUSION: The resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry/methods
  13. Man CN, Ismail S, Harn GL, Lajis R, Awang R
    PMID: 19109080 DOI: 10.1016/j.jchromb.2008.12.014
    Hair nicotine is a known biomarker for monitoring long-term environmental tobacco smoke (ETS) exposure and smoking status. In general, hair nicotine assay involves alkaline digestion, extraction and instrumental analysis. The gas chromatography-mass spectrometry (GC-MS) assay currently developed has shown to be of high throughput with average approximately 100 hair samples being extracted and analyzed per day. This was achieved through simplified extraction procedure and shortened GC analysis time. The extraction was improved by using small volume (0.4 mL) of organic solvent that does not require further evaporation and salting steps prior to GC-MS analysis. Furthermore, the amount of hair utilized in the extraction was very little (5 mg) while the sensitivity and selectivity of the assay is equal, if not better than other established methods. The linearity of the assay (r(2)>0.995), limit of quantitation (0.04 ng/mg hair), within- and between-assays accuracies and precisions (<11.4%) and mean recovery (92.6%) were within the acceptable range.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry*
  14. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN, Aboul Enein HY
    J Chromatogr Sci, 2013 Feb;51(2):112-6.
    PMID: 22776739 DOI: 10.1093/chromsci/bms113
    In this work, a two-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with gas chromatography-mass spectrometry (GC-MS) is developed to provide a rapid, selective and sensitive analytical method to determine polycyclic aromatic hydrocarbons (PAHs) in fresh milk. The standard addition method is used to construct calibration curves and to determine the residue levels for the target analytes, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene, thus eliminating sample pre-treatment steps such as pH adjustment. The HF-LPME method shows dynamic linearity from 5 to 500 µg/L for all target analytes with R(2) ranging from 0.9978 to 0.9999. Under optimized conditions, the established detection limits range from 0.07 to 1.4 µg/L based on a signal-to-noise ratio of 3:1. Average relative recoveries for the determination of PAHs studied at 100 µg/L spiking levels are in the range of 85 to 110%. The relative recoveries are slightly higher than those obtained by conventional solvent extraction, which requires saponification steps for fluorene and phenanthrene, which are more volatile and heat sensitive. The HF-LPME method proves to be simple and rapid, and requires minimal amounts of organic solvent that supports green analysis.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry/methods*
  15. Samer Al-Battawi, Yu Bin Ho, Mohd Talib Latif, Vivien How, Karuppiah Thilakavathy
    MyJurnal
    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants with toxic effects and adverse health impacts on general population. Several methods of extraction had been applied to extract PAHs from human blood samples such as solid phase extraction (SPE). The SPE represents one of the most common techniques for extraction and clean-up procedures as it needs low quantity of solvents with less manual efforts. Similarly, various analytical instruments like gas chromatography coupled to mass spectrometry (GC-MS) was used to measure the PAHs levels. Gas chromatog- raphy is a simple, fast, and very efficient method for solvents and small organic molecules. This review provides an overview of the measured concentrations of PAHs in human blood samples through the application of SPE and GC- MS during the last ten years. While these studies used various solvents, their application of SPE method and GC-MS revealed rewarding results about the determination of PAHs levels in the human samples.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  16. Ramli NAS, Roslan NA, Abdullah F, Bilal B, Ghazali R, Abd Razak RA, et al.
    PMID: 37682685 DOI: 10.1080/19440049.2023.2255290
    Esters of 2- and 3-monochloropropanediol (2-MCPDE, 3-MCPDE) and glycidol (GE) are regarded as process contaminants that are found in refined vegetable oils and oil-based foods. Since glycerol is produced during fat splitting, saponification and biodiesel production, it is important to have methods for determining contaminants that might be formed during these processes. Due to the use of glycerol as a food additive, data on the presence of compounds of toxicological concern, including 3-MCPD, are of interest. This study focuses on modifying the indirect analysis of 2-MCPDE, 3-MCPDE and GE using GC-MS based on the AOCS Official Method Cd 29a-13, validating the modified method, and quantifying 2-MCPDE, 3-MCPDE and GE in glycerol. The AOCS Cd 29a-13 method was modified at the initial stage of sample preparation in which the targeted esters were extracted from glycerol by vortex-assisted extraction before sample analysis. This modification was performed based on the polarity of all compounds involved. The calibration functions for all analytes were fitted to linear regression with R2 above 0.99. Limits of detection (LOD) 0.02, 0.01 and 0.02 mg kg-1 were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Spiked glycerol with 3-MCPDE and 2-MCPDE (0.25, 0.51 and 1.01 mg kg-1) and GE (0.58, 1.16 and 2.32 mg kg-1) were used for recovery and precision measurements. Recoveries of 100-108%, 101-103%, and 93-99% were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Acceptable precision levels with relative standard deviations ranged from 3.3% to 8.3% were obtained for repeatability and intermediate precision. The validated method was successfully applied for the analysis of the target compounds in refined glycerol from commercial plants, which showed that 2-MCPDE, 3-MCPDE and GE levels in the analysed samples were below the detection limit.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  17. Nur Aimi, R., Abu Bakar, F., Dzulkifly, M.H.
    MyJurnal
    Nipa sap or air nira is a sweet natural beverage obtained from a type of palm tree, Nypa fruticans.
    It is readily and spontaneously fermented resulting in the development of alcoholic fermentation products. Objective of this study is to determine the volatile compounds (VOCs) responsible for the aroma in fresh and fermented nipa sap. The sap was left for natural fermentation at 30ºC for 63 days. VOCs of the sap were analysed using static headspace gas chromatography-mass spectrometry (GC-MS). Fresh nipa sap contained ethanol (83.43%), diacetyl (0.59%), and esters
    (15.97%). Fermented nipa sap contained alcohols (91.16 – 98.29%), esters (1.18 – 8.14%), acetoin (0.02 – 0.7%), diacetyl (0.04 – 0.06%), and acetic acid (0.13 – 0.68%). Concentration of ethanol in fresh nipa sap increased from 0.11% (v/v) to 6.63% (v/v) during the fermentation, and slightly decreased to 5.73% (v/v) at day 63. No higher alcohols were detected in the fresh nipa sap. Concentration of 1-propanol and 2-methylpropanol were constant throughout the fermentation with average of 0.004 to 0.006% (v/v) and 0.0001 to 0.0009% (v/v), respectively. 3-methylbutanol increased during the fermentation process. The highest concentration (0.001% v/v) was recorded at day 35. This study has shown differences in VOCs types between fresh and fermented nipa sap.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  18. Soh SC, Abdullah MP
    Environ Monit Assess, 2007 Jan;124(1-3):39-50.
    PMID: 16967208
    A field investigation was conducted at all water treatment plants throughout 11 states and Federal Territory in Peninsular Malaysia. The sampling points in this study include treatment plant operation, service reservoir outlet and auxiliary outlet point at the water pipelines. Analysis was performed by solid phase micro-extraction technique with a 100 microm polydimethylsiloxane fibre using gas chromatography with mass spectrometry detection to analyse 54 volatile organic compounds (VOCs) of different chemical families in drinking water. The concentration of VOCs ranged from undetectable to 230.2 microg/l. Among all of the VOCs species, chloroform has the highest concentration and was detected in all drinking water samples. Average concentrations of total trihalomethanes (THMs) were almost similar among all states which were in the range of 28.4--33.0 microg/l. Apart from THMs, other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichloro - benzene. Principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method were used to statistically verify the correlation between VOCs and the source of pollution. The multivariate analysis pointed out that the maintenance of auxiliary pipelines in the distribution systems is vital as it can become significant point source pollution to Malaysian drinking water.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  19. Firus Khan AY, Ahmed QU, Nippun TS, Hilles A, Jalal TK, Teh LK, et al.
    J Ethnopharmacol, 2020 Nov 15;262:113138.
    PMID: 32726681 DOI: 10.1016/j.jep.2020.113138
    ETHNOPHARMACOLOGICAL RELEVANCE: Porcupine bezoar (PB) is used as folk medicine for various medical conditions including cancer treatment in Malaysia. However, its toxicity profile has never been thoroughly ascertained to confirm its safe nature as an efficacious traditional medicine in the treatment of cancer as well as other ailments.

    AIM OF THE STUDY: This study was aimed to reveal three different PBs' aqueous extracts(viz. PB-A, PB-B, PB-C) chemical constituent's profile using GC-MS analysis, anticancer property on A375, HeLa and MCF7 cancer cells, toxicity profile on zebrafish embryo morphology, EC50, LC50 and teratogenicity index.

    MATERIALS AND METHODS: PBs' extracts characterization was performed through GC-MS analysis, in vitro anticancer effect was carried out on A375, HeLa and MCF7 cancer cell lines and finally and toxicity properties on three different PBs aqueous extracts (viz. PB-A, PB-B, PB-C) were determined using zebrafish embryo model.

    RESULTS: The GC-MS analysis revealed 10 similar compounds in all PBs' extracts. Dilauryl thiodipropionate was found to be a major compound in all PBs' extracts followed by tetradecanoic acid. An in vitro anticancer study revealed PB extracts exerted median inhibition concentration (IC50) <50 μg/mL, on cancer cells viz. A375, HeLa and MCF7 with no significant toxicity on normal cells viz. NHDF cells. In vivo toxicity of PBs extracts found affecting tail detachment, hatching, craniofacial, brain morphology, soft tissues, edema, spinal, somites, notochord and cardiovascular system (brachycardia, disruption of blood circulation) deformities. The LC50 and EC50 demonstrated PB extracts effect as dose and time dependent with median concentration <150.0 μg/mL. Additionally, teratogenicity index (TI) viz. >1.0 revealed teratogenic property for PB extracts.

    CONCLUSIONS: The findings revealed that all three PBs aqueous extracts possessed anticancer activity and exhibited significant toxicological effects on zebrafish embryos with high teratogenicity index. Hence, its use as an anticancer agent requires further investigation and medical attentions to determine its safe dose.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry/methods*
  20. Aasim WR, Gan SH, Tan SC
    Biomed Chromatogr, 2008 Sep;22(9):1035-42.
    PMID: 18655218 DOI: 10.1002/bmc.1073
    A stereospecific gas chromatography-mass spectrometry analysis method for amphetamine-type stimulants in human urine was recently developed. For maximum efficiency, liquid-liquid extraction and chiral derivatization of the analytes using (R)-(-)-alpha-methoxy-alpha-(trifluoromethyl)phenylacetyl chloride were performed simultaneously. The effects of (1) use of saturated sodium chloride in 2.0 M sodium hydroxide, (2) extraction solvent volume, (3) percentage of triethylamine, (4) derivatization reagent volume, (5) sample mixing time, (6) incubation temperature and (7) incubation time on method sensitivity and variability were assessed using a two-level, eight-run Plackett-Burman design followed by a fold-over design. The use of saturated sodium chloride solution and the derivatization reagent volume were significant factors (ANOVA, p<0.01). The saturated sodium chloride solution decreased sensitivity whereas an increased volume of derivatization reagent increased sensitivity. Calibration curves for all analytes were linear between 5 and 500 microg/L, with correlation coefficients of >0.99. Detection limits were
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links