Displaying publications 121 - 140 of 897 in total

Abstract:
Sort:
  1. Duangjai A, Nuengchamnong N, Lee LH, Goh BH, Saokaew S, Suphrom N
    Nat Prod Res, 2019 May;33(10):1491-1494.
    PMID: 29258345 DOI: 10.1080/14786419.2017.1416386
    Azadirachta indica has long been used in traditional medicine. This study focused on isolation and characterisation of active ingredients in the extract, its fractions (NF-EA, NF-AQ, NF-G) and its effect on the cholesterol absorption activity. The NF-EA fraction was identified by marker compounds by LC-ESI-QTOF/MS. Cholesterol absorption activity was performed by measuring the solubility and size of cholesterol micelles. The intestinal motility was also examined by isolated rat's ileum to test the contraction. The extract and its fractions consist of flavonoids and phenolic compounds, like quercetin, kaempferol and myricetin. We found that A. indica extract and NF-EA increase cholesterol micelles size, while the extract, NF-AQ, myricetin and quercetin, reduced the solubility of cholesterol in micelles. The extract and quercetin inhibited the contraction induced by KCl up to 29 and 18%, respectively, and also decreased CaCl2-induced contraction. This finding is in support to traditional uses of A. indica as cholesterol-lowering agents and regulator of gastrointestinal motility.
    Matched MeSH terms: Plant Extracts/chemistry
  2. Anirudhan A, Okomoda VT, Mimi Iryani MT, Andriani Y, Abd Wahid ME, Tan MP, et al.
    Fish Shellfish Immunol, 2021 Feb;109:97-105.
    PMID: 33352338 DOI: 10.1016/j.fsi.2020.12.011
    Plants and herbal extracts are indispensable for controlling the spread of disease-causing bacteria, including those that infect aquatic organisms used in aquaculture. The use of plant or herbal extract is expected to be safe for aquatic animals and less harmful to the environment, as opposed to conventional therapeutic alternatives such as antibiotics that promote the occurrence of potential antibiotic-resistant bacteria when used improperly. The efficacy of Pandanus tectorius fruit extract in the regulation of Hsp70 expression, pro-phenoloxidase (ProPO), peroxinectin, penaeidin, crustin and transglutaminase, all immune peptides essential for Vibrio tolerance in white leg shrimp, Penaeus vannamei, was investigated in this study, which included the determination of the safety levels of the extract. Tolerance of shrimp against Vibrio parahaemolyticus, a pathogenic bacteria that causes Acute Hepatopancreas Necrosis Disease (AHPND), was assessed on the basis of median lethal dose challenge survival (LD50 = 106 cells/ml). Mortality was not observed 24 h after exposure of 0.5-6 g/L of the fruit extract, indicating that P. tectorius was not toxic to shrimp at these concentrations. A 24-h incubation of 2-6 g/L of the fruit extract increased shrimp tolerance to V. parahaemolyticus, with survival doubled when the maximum dose tested in this study was used. Concomitant with a rise in survival was the increase in immune-related proteins, with Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase increased 10, 11, 11, 0.4, 8 and 13-fold respectively. Histological examination of the hepatopancreas and muscle tissues of Vibrio-infected shrimp primed with P. tectorius extract revealed reduced signs of histopathological degeneration, possibly due to the accumulation of Hsp70, a molecular chaperone crucial to cellular protein folding, tissue repair and immune response of living organisms, including Penaeid shrimp.
    Matched MeSH terms: Plant Extracts/chemistry
  3. AhbiRami R, Zuharah WF, Thiagaletchumi M, Subramaniam S, Sundarasekar J
    J Insect Sci, 2014;14:180.
    PMID: 25368088 DOI: 10.1093/jisesa/ieu042
    Natural insecticides from plant origin against mosquito vectors have been the main concern for research due to their high level of eco-safety. Control of mosquitoes in their larval stages are an ideal method since Aedes larvae are aquatic, thus it is easier to deal with them in this habitat. The present study was specifically conducted to explore the larvicidal efficacy of different plant parts of Ipomoea cairica (L.) or railway creeper crude extract obtained using two different solvents; methanol and acetone against late third-stage larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae). Plant materials of I. cairica leaf, flower, and stem were segregated, airdried, powdered, and extracted using Soxhlet apparatus. Larvicidal bioassays were performed by using World Health Organization standard larval susceptibility test method for each species which were conducted separately for different concentration ranging from 10 to 450 ppm. Both acetone and methanol extracts showed 100% mortality at highest concentration tested (450 ppm) after 24 h of exposure. Results from factorial ANOVA indicated that there were significant differences in larvicidal effects between mosquito species, solvent used and plant parts (F=5.71, df=2, P<0.05). The acetone extract of I. cairica leaf showed the most effective larvicidal action in Ae. aegypti with LC50 of 101.94 ppm followed by Ae. albopictus with LC50 of 105.59 ppm compared with other fractions of I. cairica extract obtained from flower, stem, and when methanol are used as solvent. The larvae of Ae. aegypti appeared to be more susceptible to I. cairica extract with lower LC50 value compared with Ae. albopictus (F=8.83, df=1, P<0.05). Therefore, this study suggests that the acetone extract of I. cairica leaf can be considered as plant-derived insecticide for the control of Aedes mosquitoes. This study quantified the larvicidal property of I. cairica extract, providing information on lethal concentration that may have potential for a more eco-friendly Aedes mosquito control program.
    Matched MeSH terms: Plant Extracts/chemistry
  4. Tan ST, Ismail A, Hamid M, Chong PP, Sun J
    J Food Biochem, 2019 05;43(5):e12843.
    PMID: 31353513 DOI: 10.1111/jfbc.12843
    Unhealthy eating habits and lack of physical activities are among the contributing factors for obesity and diabetes. It has been reported that consumption of naturally occurring phenolics could exert beneficial effects toward these diseases. Therefore, this study aims to evaluate the ability of phenolic-rich soy husk powder extract (SHPE) in modifying the physical and biochemical parameters for obesity and diabetes. Forty-nine Sprague Dawley rats were divided into seven groups, including three supplementary/treatment groups. Rats in supplementary/treatment groups were provided with either 4 mg/kg BW Rosiglitazone Maleate, 250 mg SHPE/kg BW, or 500 mg SHPE/kg BW. The effectiveness of SHPE in alleviating obesity-diabetes was evaluated by measuring body weight (physical parameter), blood glucose metabolisms (biochemical parameters), and PPARγ expression. Findings in the present study revealed that short-term SHPE and Rosiglitazone Maleate administration improved the physical and biochemical parameters of obese-diabetic rats. In addition, SHPE was also demonstrated to upregulate PPARγ expression in adipocytes. These findings suggest that soy husk could emerge as a potential hypoglycemic and anti-adipogenic nutraceutical in future. PRACTICAL APPLICATIONS: This was the first study to evaluate the potential effects of soy husk against the parameters of obese-diabetes in rats. In addition, promising effects derived from this study might explore the possibility of soy husk to be utilized as an antidiabetes nutraceutical.
    Matched MeSH terms: Plant Extracts/chemistry
  5. Katayon S, Noor MJ, Asma M, Ghani LA, Thamer AM, Azni I, et al.
    Bioresour Technol, 2006 Sep;97(13):1455-60.
    PMID: 16213137
    Moringa oleifera is a plant whose seeds have coagulation properties for treating water and wastewater. In this study the coagulation efficiency of Moringa oleifera kept in different storage conditions were studied. The Moringa oleifera seeds were stored at different conditions and durations; open container and closed container at room temperature (28 degrees C) and refrigerator (3 degrees C) for durations of 1, 3 and 5 months. Comparison between turbidity removal efficiency of Moringa oleifera kept in refrigerator and room temperature revealed that there was no significant difference between them. The Moringa oleifera kept in refrigerator and room temperature for one month showed higher turbidity removal efficiency, compared to those kept for 3 and 5 months, at both containers. The coagulation efficiency of Moringa oleifera was found to be dependent on initial turbidity of water samples. Highest turbidity removals were obtained for water with very high initial turbidity. In summary coagulation efficiency of Moringa oleifera was found independent of storage temperature and container, however coagulation efficiency of Moringa oleifera decreased as storage duration increased. In addition, Moringa oleifera can be used as a potential coagulant especially for very high turbidity water.
    Matched MeSH terms: Plant Extracts/chemistry*
  6. Ooi KL, Muhammad TS, Sulaiman SF
    J Ethnopharmacol, 2013 Oct 28;150(1):382-8.
    PMID: 24051023 DOI: 10.1016/j.jep.2013.09.014
    Physalin F (a secosteroid derivative), is well recognized as a potent anticancer compound from Physalis minima L., a plant that is traditionally used to treat cancer. However, the exact molecular anticancer mechanism remains to be elucidated.
    Matched MeSH terms: Plant Extracts/chemistry
  7. Tan ML, Muhammad TS, Najimudin N, Sulaiman SF
    J Ethnopharmacol, 2005 Jan 15;96(3):375-83.
    PMID: 15619555
    Epipremnum pinnatum (L.) Engl. hexane extract produced a significant growth inhibition against T-47D breast carcinoma cells and analysis of cell death mechanisms indicated that the extract elicited a non-apoptotic programmed cell death. T-47D cells exposed to the extract at EC(50) concentration (72 h) for 24 h failed to demonstrate typical DNA fragmentation associated with apoptosis, as carried out using a modified TUNEL assay. In addition, acute exposure to the extract produced an insignificant regulation of caspase-3 and p53 mRNA expression but increased in the c-myc mRNA expression. Ultrastructural analysis using transmission electron microscope demonstrated distinct vacuolated cells, which strongly indicated a Type II non-apoptotic cell death although the changes in chromatin were also detected. The presence of non-apoptotic programmed cell death was then reconfirmed with annexin-V and propidium iodide staining. These findings suggested that up-regulation of c-myc mRNA expression may have contributed to the growth arrest and Type II non-apoptotic programmed cell death in the Epipremnum pinnatum (L.) Engl. hexane extract-treated T-47D cells.
    Matched MeSH terms: Plant Extracts/chemistry
  8. Ong HM, Mohamad AS, Makhtar N', Khalid MH, Khalid S, Perimal EK, et al.
    J Ethnopharmacol, 2011 Jan 7;133(1):227-33.
    PMID: 20920570 DOI: 10.1016/j.jep.2010.09.030
    Acmella uliginosa (Sw.) Cass. is a medicinal herbaceous plant that is commonly used by the Malay community in Malaysia to relieve pain often associated with mouth ulcers, toothache, sore throat, and stomach ache.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Ping CP, Tengku Mohamad TAS, Akhtar MN, Perimal EK, Akira A, Israf Ali DA, et al.
    Molecules, 2018 Sep 03;23(9).
    PMID: 30177603 DOI: 10.3390/molecules23092237
    Pain is one of the most common cause for hospital visits. It plays an important role in inflammation and serves as a warning sign to avoid further injury. Analgesics are used to manage pain and provide comfort to patients. However, prolonged usage of pain treatments like opioids and NSAIDs are accompanied with undesirable side effects. Therefore, research to identify novel compounds that produce analgesia with lesser side effects are necessary. The present study investigated the antinociceptive potentials of a natural compound, cardamonin, isolated from Boesenbergia rotunda (L) Mansf. using chemical and thermal models of nociception. Our findings showed that intraperitoneal and oral administration of cardamonin (0.3, 1, 3, and 10 mg/kg) produced significant and dose-dependent inhibition of pain in abdominal writhing responses induced by acetic acid. The present study also demonstrated that cardamonin produced significant analgesia in formalin-, capsaicin-, and glutamate-induced paw licking tests. In the thermal-induced nociception model, cardamonin exhibited significant increase in response latency time of animals subjected to hot-plate thermal stimuli. The rota-rod assessment confirmed that the antinociceptive activities elicited by cardamonin was not related to muscle relaxant or sedative effects of the compound. In conclusion, the present findings showed that cardamonin exerted significant peripheral and central antinociception through chemical- and thermal-induced nociception in mice through the involvement of TRPV₁, glutamate, and opioid receptors.
    Matched MeSH terms: Plant Extracts/chemistry
  10. Mohamad Asri SF, Mohd Ramli ES, Soelaiman IN, Mat Noh MA, Abdul Rashid AH, Suhaimi F
    Molecules, 2016 Nov 15;21(11).
    PMID: 27854305
    Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum (Ps) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11β-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 μg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 μg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration (p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11β-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.
    Matched MeSH terms: Plant Extracts/chemistry
  11. Zawawi NK, Ahmat N, Mazatulikhma MZ, Shafiq RM, Wahid NH, Sufian AS
    Nat Prod Res, 2013;27(17):1589-93.
    PMID: 23035830 DOI: 10.1080/14786419.2012.730047
    Phytochemical investigation on the stem bark of Shorea maxwelliana yielded five oligostilbenoids identified as α-viniferin (1), maximol A (2), vaticanol A (3), suffruticosol A (4) and vaticanol G (5). Chemotaxonomy of isolated compounds was discussed briefly. Major compounds were tested for neurotoxic and cytotoxic activities. Neurotoxicity for all tested compounds did not pose any toxic effect against cultured cell (cell viability range ±100-94%). Compounds 2-5 possessed active cyctotoxic activity against HL60 cell line with IC50 values range of 2.7-78 µg mL(-1).
    Matched MeSH terms: Plant Extracts/chemistry
  12. Mohd MR, Ariff TM, Mohamad N, Abdul Latif AZ, Wan Nik WMN, Mohamed A, et al.
    Pak J Pharm Sci, 2019 Sep;32(5):2155-2162.
    PMID: 31813882
    The "noni" species of Morinda citrifolia L., is using in traditional medicine in the tropical country for over 2000 years. Noni fruit has come from the Morinda citrifolia tree which is called Rubiaceae, and it is from the coffee family. It is a perennial herb whose ripe fruit has a robust butyric acid smell and flavor. Recently scientists have proven that this fruit has antioxidant and antibiotic properties in vitro. An anthraquinone, damnacanthal, is one of the constituents of Morinda citrifolia. It has been demonstrated to have anti-cancer properties. Damnacanthal has low water solubility and low bioavailability. Formulating of damnacanthal into the biodegradable nanocapsule drug delivery system may increase its bioavailability. Various formulations of damnacanthal would be developed to enable the selection of a dosage form that could offer the provision of the anti-cancer bioactive substance with suitable sustained- or controlled release properties. The efficiency of extraction of damnacanthal will be compared using both conventional and traditional method. Both the damnacanthal and an anthraquinone active compounds extracted from noni roots, are currently being studied in the context of anti-cancer study. Soon, the medical values, bioactivities and nutritional of this fruit can be assessed, especially its anti-cancer activity, this fruit extract could play an outstanding economic role in Malaysia and other tropical countries.
    Matched MeSH terms: Plant Extracts/chemistry
  13. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
    Matched MeSH terms: Plant Extracts/chemistry
  14. Bagalkotkar G, Sagineedu SR, Saad MS, Stanslas J
    J Pharm Pharmacol, 2006 Dec;58(12):1559-70.
    PMID: 17331318
    This review discusses the medicinal plant Phyllanthus niruri Linn. (Euphorbiaceae), its wide variety of phytochemicals and their pharmacological properties. The active phytochemicals, flavonoids, alkaloids, terpenoids, lignans, polyphenols, tannins, coumarins and saponins, have been identified from various parts of P. niruri. Extracts of this herb have been proven to have therapeutic effects in many clinical studies. Some of the most intriguing therapeutic properties include anti-hepatotoxic, anti-lithic, anti-hypertensive, anti-HIV and anti-hepatitis B. Therefore, studies relating to chemical characteristics and structural properties of the bioactive phytochemicals found in P. niruri are very useful for further research on this plant as many of the phytochemicals have shown preclinical therapeutic efficacies for a wide range of human diseases, including HIV/AIDS and hepatitis B.
    Matched MeSH terms: Plant Extracts/chemistry*
  15. Senthil-Rajan D, Rajkumar M, Srinivasan R, Kumarappan C, Arunkumar K, Senthilkumar KL, et al.
    Trop Biomed, 2013 Dec;30(4):570-8.
    PMID: 24522124 MyJurnal
    Many medicinal plants have been used for centuries in daily life to treat microbial diseases all over the world. In this study, the in vitro antibacterial activity of aqueous and ethanol root extracts of Thespesia populnea Linn were investigated. Antimicrobial properties of T. populnea Linn was evaluated against five pathogenic bacteria and two fungi. Disc diffusion method and minimum inhibitory concentration (MIC) were determined by broth serial dilution method. The ciprofloxacin (5 μg/ml) and flucanozole (100 units/disc) were used as positive controls for bacteria and fungi respectively. Different concentrations (50, 100, 150 μg/ml) of ethanolic and aqueous root extracts of T. populnea were checked for the dose dependent antibacterial activity. Thespesia populnea showed broad spectrum antimicrobial activity against gram positive and gram negative bacteria and maximum inhibition by ethanolic extract was observed at higher dose (250 μg/ml) as 27±0.2mm. The MIC of the ethanol extract was 10 μg/ml for Staphylococcus aureus and 750 μg/ml for Candida albicans. The antifungal activity offered against S. aureus by the ethanolic extract is more than the aqueous extract. The results concluded that the anti-microbial activity of T. populnea was dose dependent. As the concentration increased the inhibition zone also increased. Flavonoids and tannins present in the extracts may be responsible for the antimicrobial activity.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Monirul Islam M, Hemmanahalli Ramesh V, Durga Bhavani P, Goudanavar PS, Naveen NR, Ramesh B, et al.
    Drug Deliv, 2022 Dec;29(1):3370-3383.
    PMID: 36404771 DOI: 10.1080/10717544.2022.2144963
    Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.
    Matched MeSH terms: Plant Extracts/chemistry
  17. Chua LS, Lau CH, Chew CY, Ismail NIM, Soontorngun N
    Phytomedicine, 2018 Jan 15;39:49-55.
    PMID: 29433683 DOI: 10.1016/j.phymed.2017.12.015
    BACKGROUND: Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market.

    PURPOSE: The phytochemical profile of O. aristatus was investigated at different storage durations for quality comparison.

    METHODS: The phytochemicals were extracted from the leaves and stems of O. aristatus using a reflux reactor. The extracts were examined for total phenolic and flavonoid contents, as well as their antioxidant capacities, in terms of radical scavenging, metal chelating and reducing power. The phytochemical profiles were also analyzed by unsupervised principal component analysis and hierarchical cluster analysis, in relation to the factor of storage at 4 °C for 5 weeks.

    RESULTS: The leaf extract was likely to have more phytochemicals than stem extract, particularly caffeic acid derivatives including glycosylated and alkylated caffeic acids. This explains higher ratio of total phenolic content to total flavonoid content with higher antioxidant capacities for the leaf extracts. Rosmarinic acid dimer and salvianolic acid B appeared to be the major constituents, possibly contributing to the previously reported pharmacological properties. However, the phytochemical profiles were found changing, even though the extracts were stored in the refrigerator (4 °C). The change was significantly observed at the fifth week based on the statistical pattern recognition technique.

    CONCLUSION: O. aristatus could be a promising source of rosmarinic acid and its dimer, as well as salvianolic acid B with remarkably antioxidant properties. The phytochemical profile was at least stable for a month stored at 4 °C. It is likely to be a good choice of herbal tea with comparable radical scavenging activity, but lower caffeine content than other tea samples.

    Matched MeSH terms: Plant Extracts/chemistry*
  18. Li Y, Ling Ma N, Chen H, Zhong J, Zhang D, Peng W, et al.
    Environ Int, 2023 Nov;181:108279.
    PMID: 37924601 DOI: 10.1016/j.envint.2023.108279
    According to the World Health Organization, women's breast cancer is among the most common cancers with 7.8 million diagnosed cases during 2016-2020 and encompasses 15 % of all female cancer-related mortalities. These mortality events from triple-negative breast cancer are a significant health issue worldwide calling for a continuous search of bioactive compounds for better cancer treatments. Historically, plants are important sources for identifying such new bioactive chemicals for treatments. Here we use high-throughput screening and mass spectrometry analyses of extracts from 100 plant species collected in Chinese ancient forests to detect novel bioactive breast cancer phytochemicals. First, to study the effects on viability of the plant extracts, we used a MTT and CCK-8 cytotoxicity assay employing triple-negative breast cancer (TNBC) MDA-MB-231 and normal epithelial MCF-10A cell lines and cell cycle arrest to estimate apoptosis using flow cytometry for the most potent three speices. Based on these analyses, the final most potent extracts were from the Amur honeysuckle (Lonicera maackii) wood/root bark and Nigaki (Picrasma quassioides) wood/root bark. Then, 5 × 106 MDA-MB-231 cells were injected subcutaneously into the right hind leg of nude mice and a tumour was allowed to grow before treatment for seven days. Subsequently, the four exposed groups received gavage extracts from Amur honeysuckle and Nigaki (Amur honeysuckle wood distilled water, Amur honeysuckle root bark ethanol, Nigaki wood ethanol or Nigaki root bark distilled water/ethanol (1:1) extracts) in phosphate-buffered saline (PBS), while the control group received only PBS. The tumour weight of treated nude mice was reduced significantly by 60.5 % within 2 weeks, while on average killing 70 % of the MDA-MB-231 breast cancer cells after 48 h treatment (MTT test). In addition, screening of target genes using the Swiss Target Prediction, STITCH, STRING and NCBI-gene database showed that the four plant extracts possess desirable activity towards several known breast cancer genes. This reflects that the extracts may kill MBD-MB-231 breast cancer cells. This is the first screening of plant extracts with high efficiency in 2 decades, showing promising results for future development of novel cancer treatments.
    Matched MeSH terms: Plant Extracts/chemistry
  19. Dyary HO, Arifah AK, Sharma RS, Rasedee A, Mohd-Aspollah MS, Zakaria ZA, et al.
    Trop Biomed, 2014 Mar;31(1):89-96.
    PMID: 24862048 MyJurnal
    Trypanosoma evansi, the causative agent of "surra", infects many species of wild and domestic animals worldwide. In the current study, the aqueous and ethanolic extracts of six medicinal plants, namely, Aquilaria malaccensis, Derris elliptica, Garcinia hombroniana, Goniothalamus umbrosus, Nigella sativa, and Strobilanthes crispus were screened in vitro for activity against T. evansi. The cytotoxic activity of the extracts was evaluated on green monkey kidney (Vero) cells using MTT-cell proliferation assay. The median inhibitory concentrations (IC50) of the extracts ranged between 2.30 and 800.97 μg/ml and the median cytotoxic concentrations (CC50) ranged between 29.10 μg/ml and 14.53 mg/ml. The aqueous extract of G. hombroniana exhibited the highest selectivity index (SI) value of 616.36, followed by A. malaccensis aqueous extract (47.38). Phytochemical screening of the G. hombroniana aqueous extract revealed the presence of flavonoids, phenols, tannins, and saponins. It is demonstrated here that the aqueous extract of G. hombroniana has potential antitrypanosomal activity with a high SI, and may be considered as a potential source for the development of new antitrypanosomal compounds.
    Matched MeSH terms: Plant Extracts/chemistry
  20. Ahmad AA, Kasim KF, Gopinath SCB, Anbu P, Sofian-Seng NS
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126795.
    PMID: 37689304 DOI: 10.1016/j.ijbiomac.2023.126795
    Dicranopteris linearis (DL) is a fern in the Gleicheniaceae family, locally known as resam by the Malay community. It has numerous pharmacological benefits, with antiulcer and gastroprotective properties. Peptic ulcer is a chronic and recurring disease that significantly impacts morbidity and mortality, affecting nearly 20 % of the world's population. Despite the effectiveness of peptic ulcer drugs, there is no perfect treatment for the ailment. Encapsulation is an advanced technique that can treat peptic ulcers by incorporating natural sources. This work aims to encapsulate DL extract using different types of cellulose particles by the solvent displacement technique for peptic ulcer medication. The extract was encapsulated using methyl cellulose (MC), ethyl cellulose (EC), and a blend of ethyl methyl cellulose through a dialysis cellulose membrane tube and freeze-dried to yield a suspension of the encapsulated DL extracts. The microencapsulated methyl cellulose chloroform extract (MCCH) has a considerably greater level of total phenolic (84.53 ± 6.44 mg GAE/g), total flavonoid (84.53 ± 0.54 mg GAE/g), and antioxidant activity (86.40 ± 0.63 %). MCCH has the highest percentage of antimicrobial activity against Escherichia coli (2.42 ± 107 × 0.70 CFU/mL), Bacillus subtilis (5.21 ± 107 × 0.90 CFU/mL), and Shigella flexneri (1.25 ± 107 × 0.66 CFU/mL), as well as the highest urease inhibitory activity (50.0 ± 0.21 %). The MCCH particle size was estimated to be 3.347 ± 0.078 μm in diameter. It has been proven that DL elements were successfully encapsulated in the methyl cellulose polymer in the presence of calcium (Ca). Fourier transform infrared (FTIR) analysis indicated significant results, where the peak belonging to the CO stretch of the carbonyl groups of methyl cellulose (MC) shifted from 1638.46 cm-1 in the spectrum of pure MC to 1639.10 cm-1 in the spectrum of the MCCH extract. The shift in the wavenumbers was due to the interactions between the phytochemicals in the chloroform extract and the MC matrix in the microcapsules. Dissolution studies in simulated gastric fluid (SGF) and model fitting of encapsulated chloroform extracts showed that MCCH has the highest EC50 of 6.73 ± 0.27 mg/mL with R2 = 0.971 fitted by the Korsmeyer-Peppas model, indicating diffusion as the mechanism of release.
    Matched MeSH terms: Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links