Displaying publications 141 - 160 of 437 in total

Abstract:
Sort:
  1. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Bullo S
    Drug Des Devel Ther, 2013;7:25-31.
    PMID: 23345969 DOI: 10.2147/DDDT.S37070
    The aim of the current study is to design a new nanocomposite for inducing cytotoxicity of doxorubicin and oxaliplatin toward MDA-MB231, MCF-7, and Caco2 cell lines. A hippuric acid (HA) zinc layered hydroxide (ZLH) nanocomposite was synthesized under an aqueous environment using HA and zinc oxide (ZnO) as the precursors.
    Matched MeSH terms: Inhibitory Concentration 50
  2. Hussein HA, Maulidiani M, Abdullah MA
    Heliyon, 2020 Oct;6(10):e05263.
    PMID: 33102866 DOI: 10.1016/j.heliyon.2020.e05263
    Heavy metal pollution has become a major concern globally as it contaminates eco-system, water networks and as finely suspended particles in air. In this study, the effects of elevated silver nanoparticle (AgNPs) levels as a model system of heavy metals, in the presence of microalgal crude extracts (MCEs) at different ratios, were evaluated against the non-cancerous Vero cells, and the cancerous MCF-7 and 4T1 cells. The MCEs were developed from water (W) and ethanol (ETH) as green solvents. The AgNPs-MCEs-W at the 4:1 and 5:1 ratios (v/v) after 48 and 72 h treatment, respectively, showed the IC50 values of 83.17-95.49 and 70.79-91.20 μg/ml on Vero cells, 13.18-28.18 and 12.58-25.7 μg/ml on MCF-7; and 16.21-33.88 and 14.79-26.91 μg/ml on 4T1 cells. In comparison, the AgNPs-MCEs-ETH formulation achieved the IC50 values of 56.23-89.12 and 63.09-91.2 μg/ml on Vero cells, 10.47-19.95 and 13.48-26.61 μg/ml on MCF-7; 14.12-50.11 and 15.13-58.88 μg/ml on 4T1 cells, respectively. After 48 and 72 h treatment, the AgNPs-MCE-CHL at the 4:1 and 5:1 ratios exhibited the IC50 of 51.28-75.85 and 48.97-69.18 μg/ml on Vero cells, and higher cytotoxicity at 10.47-16.98 and 6.19-14.45 μg/ml against MCF-7 cells, and 15.84-31.62 and 12.58-24.54 μg/ml on 4T1 cells, respectively. The AgNPs-MCEs-W and ETH resulted in low apoptotic events in the Vero cells after 24 h, but very high early and late apoptotic events in the cancerous cells. The Liquid Chromatography-Mass Spectrometry-Electrospray Ionization (LC-MS-ESI) metabolite profiling of the MCEs exhibited 64 metabolites in negative ion and 56 metabolites in positive ion mode, belonging to different classes. The microalgal metabolites, principally the anti-oxidative components, could have reduced the toxicity of the AgNPs against Vero cells, whilst retaining the cytotoxicity against the cancerous cells.
    Matched MeSH terms: Inhibitory Concentration 50
  3. Ibrahim MA, Yusof MS, Amin NM
    Molecules, 2014 Apr 22;19(4):5191-204.
    PMID: 24759076 DOI: 10.3390/molecules19045191
    Thiourea derivatives display a broad spectrum of applications in chemistry, various industries, medicines and various other fields. Recently, different thiourea derivatives have been synthesized and explored for their anti-microbial properties. In this study, four carbonyl thiourea derivatives were synthesized and characterized, and then further tested for their anti-amoebic properties on two potential pathogenic species of Acanthamoeba, namely A. castellanii (CCAP 1501/2A) and A. polyphaga (CCAP 1501/3A). The results indicate that these newly-synthesized thiourea derivatives are active against both Acanthamoeba species. The IC50 values obtained were in the range of 2.39-8.77 µg·mL⁻¹ (9.47-30.46 µM) for A. castellanii and 3.74-9.30 µg·mL⁻¹ (14.84-31.91 µM) for A. polyphaga. Observations on the amoeba morphology indicated that the compounds caused the reduction of the amoeba size, shortening of their acanthopodia structures, and gave no distinct vacuolar and nuclear structures in the amoeba cells. Meanwhile, fluorescence microscopic observation using acridine orange and propidium iodide (AOPI) staining revealed that the synthesized compounds induced compromised-membrane in the amoeba cells. The results of this study proved that these new carbonyl thiourea derivatives, especially compounds M1 and M2 provide potent cytotoxic properties toward pathogenic Acanthamoeba to suggest that they can be developed as new anti-amoebic agents for the treatment of Acanthamoeba keratitis.
    Matched MeSH terms: Inhibitory Concentration 50
  4. Indah M Amin, Mohd Ridzuan Hamid, Dayang Zahidah A. Othman, Rosfaiizah Siran, Siti Hamimah S.A. Kadir, Narimah AH Hasani
    ASM Science Journal, 2014;8(2):165-173.
    MyJurnal
    Aloe emodin, an anthraquinone of Aloe barbadensis Miller has been shown to have more cytotoxic effect in
    different kinds of human cancer cell lines compared to normal. Accordingly, we found it to selectively inhibit
    the proliferation of oestrogen-receptor-positive-(ER+)-breast cancer cells, MCF-7; but not controls cells,
    MCF-10A. However, its precise mechanism is not well understood. Several studies have shown that there is
    evidence of increased intracellular calcium (Ca2+), both at early and late stage of apoptosis which associated
    with the down-regulation of ERK1/2 proliferative pathway. Therefore, we aim to elucidate the involvement
    of intracellular Ca2+ in aloe emodin induced apoptosis on MCF-7. Apoptotic morphological changes were
    observed under fluorescence microscope. The involvement of cytoplasmic Ca2+ and MAPKs were investigated
    using Fluo-4 intracellular Ca2+ imaging and QuantiGene 2.0 Plex assay, respectively. IC50 of aloe emodin
    (80 μM) at 72 hours incubation was used. Data were evaluated using the one-way or two-way ANOVA tests.
    Our results indicated that aloe emodin at IC50 80µM induced apoptosis on MCF-7 through the association of
    intracellular Ca2+ signalling. This observation include a significant increased (p
    Matched MeSH terms: Inhibitory Concentration 50
  5. Iqbal K, Abdalla SAO, Anwar A, Iqbal KM, Shah MR, Anwar A, et al.
    Antibiotics (Basel), 2020 May 25;9(5).
    PMID: 32466210 DOI: 10.3390/antibiotics9050276
    The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
    Matched MeSH terms: Inhibitory Concentration 50
  6. Ismail M, Bagalkotkar G, Iqbal S, Adamu HA
    Molecules, 2012 May 14;17(5):5745-56.
    PMID: 22628046 DOI: 10.3390/molecules17055745
    Different parts of four edible medicinal plants (Casearia capitellata, Baccaurea motleyana, Phyllanthus pulcher and Strobilanthus crispus), indigenous to Malaysia, were extracted in different solvents, sequentially. The obtained 28 extracts were evaluated for their in vitro anticancer properties, using the MTS assay, on four human cancer cell lines: colon (HT-29), breast (MCF-7), prostate (DU-145) and lung (H460) cancers. The best anticancer activity was observed for the ethyl acetate (EA) extract of Casearia capitellata leaves on MCF-7 cell lines with IC₅₀ 2.0 μg/mL and its methanolic (MeOH) extract showed an outstanding activity against lung cancer cell lines. Dichloromethane (DCM) extract of Phyllanthus pulcher aerial parts showed the highest anticancer activity against DU-145 cell lines, while significant activity was exhibited by DCM extract of Phyllanthus pulcher roots on colon cancer cell lines with IC50 value of 8.1 μg/mL. Total phenolic content (TPC) ranged over 1-40 mg gallic acid equivalents (GAE)/g. For all the samples, highest yields of phenolics were obtained for MeOH extracts. Among all the extracts analyzed, the MeOH extracts of Strobilanthus crispus leaves exhibited the highest TPC than other samples (p < 0.05). This study shows that the nature of phenol determines its anticaner activity and not the number of phenols present.
    Matched MeSH terms: Inhibitory Concentration 50
  7. Ismail S, Hanapi NA, Ab Halim MR, Uchaipichat V, Mackenzie PI
    Molecules, 2010 May 14;15(5):3578-92.
    PMID: 20657500 DOI: 10.3390/molecules15053578
    The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU) by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA) as the cofactor, MgCl(2), cell lysate of respective isoform, and 4MU at the approximate apparent K(m) or S(50) value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 microg/mL and 0.01, 0.10, 1.0, 10 and 50 microg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC(50) 1.70 microg/mL for UGT1A3, 2.57 microg/mL for UGT1A8, 2.82 microg/mL for UGT2B7, 5.00 micorg/mL for UGT1A1, 5.66 microg/mL for UGT1A6, 9.88 microg/mL for UGT1A7 and 15.66 microg/mL for UGT1A10). Both extracts showed less than 70% inhibition of UGT2B15, so the IC(50) values were >50 microg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.
    Matched MeSH terms: Inhibitory Concentration 50
  8. Jafarlou M, Baradaran B, Shanehbandi D, Saedi TA, Jafarlou V, Ismail P, et al.
    Cell Mol Biol (Noisy-le-grand), 2016 May 30;62(6):44-9.
    PMID: 27262801
    Acute myeloid leukemia (AML) is one of the most frequent types of leukemia which mostly affects adult people. Resistance to therapeutic drugs is considered as a major clinical concern resulting in a weaker response to chemotherapy, disease relapse and decreased survival rate. Survivin, a member of Inhibitor of Apoptosis Proteins (IAPs), is associated with drug resistance and inhibition of apoptotic mechanisms in numerous hematological malignancies. In the present study, we examined the combined effect of etoposide and siRNA-mediated silencing of survivin on U-937 acute myeloid leukemia cells. The AML cells were transfected with survivin specific siRNA and gene knockdown was confirmed by quantitative real time PCR and western blotting. Subsequently, U-937 cells were assessed for response to etoposide treatment and apoptosis rate was measured with flowcytometery. The cytotoxic effects in siRNA-etoposide group were measured and compared to etoposide single therapy group. Survivin siRNA effectively knocked down the mRNA and protein levels of survivin, which led to lower cell proliferation and enhanced apoptosis. Furthermore, combined treatment of etoposide and survivin siRNA synergistically increased the cell toxic effects of etoposide and its ability to induce apoptosis.
    Matched MeSH terms: Inhibitory Concentration 50
  9. Jalal T, Natto HA, Wahab RA
    PMID: 33653245 DOI: 10.2174/1386207324666210302095557
    In recent biomedical research, the area of cancer and infectious diseases has a leading position in the utilization of medicinal plants as a source of drug discovery. Malaysia has a diversity and a large number of underutilized fruits that are rich in phenolic compounds. Artoarpus altilis consider an underutilized fruit that is rich in phenolic compounds. Methanol extracts of A. altilis have been previously found to contain a high content of antioxidant phytochemicals. The purpose of the study was to evaluate the cytotoxicity and toxicological effect of methanol fruit extracts against MCF-7 cells. To determine the least concentration that might kill or suppress the growth of the cancer cells was in a concentration-dependent manner approach. The variation in the cytotoxic activity among the extracts was indicated by determining the IC50 of each extract against cells at 72 h. The IC50 of the samples was measured using a trypan blue exclusion assay. The methanol extract of the pulp part showed the least inhibition concentration of 15.40±0.91 μg/mL on MCF-7 cells. In the study, the molecular mechanism of methanol extracts-induced apoptosis and cell cycle arrested in human cancer cells were investigated in a time-dependent-manners approach by using flow cytometry. The treated cells were stained with nexin to detect early and late apoptosis and with propidium iodide (PI) for cell cycle arrest associated with the DNA fragmentation, various cell arrests occurred at G1/S, S, and G2/M phases. Lastly, the gene expression analysis by (RT-qPCR) method was carried out by analyzing the expression of the gene of interest for the quantification of mRNA levels. Results after cells treated with IC50 were revealed by upregulating anti-apoptotic genes/downregulated of pro-apoptotic BCL-2 gene expressions were triggered the treated cells into CASPASE-3, intrinsic and extrinsic pathways. These findings suggest that the methanol extracts of three parts of A. altilis fruit have potential anticancer activity against MCF-7 cells mainly the pulp part of the fruit.
    Matched MeSH terms: Inhibitory Concentration 50
  10. Jalil J, Jantan I, Ghani AA, Murad S
    Molecules, 2012 Sep 10;17(9):10893-901.
    PMID: 22964504 DOI: 10.3390/molecules170910893
    The methanol extract of the leaves of Garcinia nervosa var. pubescens King, which showed strong inhibitory effects on platelet-activating factor (PAF) receptor binding, was subjected to bioassay-guided isolation to obtain a new biflavonoid, II-3,I-5, II-5,II-7,I-4',II-4'-hexahydroxy-(I-3,II-8)-flavonylflavanonol together with two known flavonoids, 6-methyl-4'-methoxyflavone and acacetin. The structures of the compounds were elucidated by spectroscopic methods. The compounds were evaluated for their ability to inhibit PAF receptor binding to rabbit platelets using ³H-PAF as a ligand. The biflavonoid and acacetin showed strong inhibition with IC₅₀ values of 28.0 and 20.4 µM, respectively. The results suggest that these compounds could be responsible for the strong PAF antagonistic activity of the plant.
    Matched MeSH terms: Inhibitory Concentration 50
  11. Jalil J, Attiq A, Hui CC, Yao LJ, Zakaria NA
    Inflammopharmacology, 2020 Oct;28(5):1195-1218.
    PMID: 32617790 DOI: 10.1007/s10787-020-00734-2
    The therapeutic efficacy of the contemporary anti-inflammatory drugs are well established; however, prolonged use of such can often lead to serious and life-threatening side effects. Natural product-based anti-inflammatory compounds with superior efficacy and minimum toxicity can serve as possible therapeutic alternatives in this scenario. Genus Uvaria is a part of Annonaceae family, while the majority of its species are widely distributed in tropical rain forest regions of South East Asia. Uvaria species have been used extensively used as traditional medicine for treating all sorts of inflammatory diseases including catarrhal inflammation, rheumatism, acute allergic reactions, hemorrhoids, inflammatory liver disease and inflamed joints. Phytochemical analysis of Uvaria species has revealed flavones, flavonoids, tannins, saponins, polyoxygenated cyclohexene and phenolic compounds as major phyto-constituents. This review is an attempt to highlight the anti-inflammatory activity of Uvaria species by conducting a critical appraisal of the published literature. The ethnopharmacological relevance of Uvaria species in the light of toxicological studies is also discussed herein. An extensive and relevant literature on anti-inflammatory activity of Uvaria species was collected from available books, journals and electronic databases including PubMed, ScienceDirect, Scopus, Proquest and Ovid. Extracts and isolates of Uvaria species exhibited significant anti-inflammatory activity through various mechanisms of action. 6,7-di-O-Methyl-baicalein, flexuvarol B, chrysin, (-)-zeylenol, 6-hydroxy-5,7-dimethoxy-flavone, and pinocembrin were the most potent anti-inflammatory compounds with comparable IC50 with positive controls. Therefore, it is suggested that further research should be carried out to determine the pharmacokinetics, pharmacodynamics and toxicity of these therapeutically significant compounds, to convert the pre-clinical results into clinical data for drug development and design.
    Matched MeSH terms: Inhibitory Concentration 50
  12. Jamila N, Yeong KK, Murugaiyah V, Atlas A, Khan I, Khan N, et al.
    Nat Prod Res, 2015;29(1):86-90.
    PMID: 25219673 DOI: 10.1080/14786419.2014.952228
    Garcinia species are reported to possess antimicrobial, anti-inflammatory, anticancer, anti-HIV and anti-Alzheimer's activities. This study aimed to investigate the in vitro cholinesterase enzyme inhibitory activities of garcihombronane C (1), garcihombronane F (2), garcihombronane I (3), garcihombronane N (4), friedelin (5), clerosterol (6), spinasterol glucoside (7) and 3β-hydroxy lup-12,20(29)-diene (8) isolated from Garcinia hombroniana, and to perform molecular docking simulation to get insight into the binding interactions of the ligands and enzymes. The cholinesterase inhibitory activities were evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. In this study, compound 4 displayed the highest concentration-dependent inhibition of both AChE and BChE. Docking studies exhibited that compound 4 binds through hydrogen bonds to amino acid residues of AChE and BChE. The calculated docking and binding energies also supported the in vitro inhibitory profiles of IC50. In conclusion, garcihombronanes C, F, I and N (1-4) exhibited dual and moderate inhibitory activities against AChE and BChE.
    Matched MeSH terms: Inhibitory Concentration 50
  13. Jamilah, B., Abdulkadir Gedi, M., Suhaila, M., Md.Zaidul, I.S.
    MyJurnal
    The extraction of phenolics from Citrus hystrix leaf was carried out using supercritical fluid extraction and was optimized using response surface methodology (RSM). The effects of CO2 flow rate, extraction pressure and extraction temperature on yield, total phenolic content and diphenyl-picrylhydrazyl-IC50 were evaluated and compared with ethanol extraction. The extraction pressure was the most significant factor affecting the yield, TPC and DPPH-IC50 of the extracts, followed by CO2 flow rate and the extraction temperature. The optimum conditions of pressure, CO2 flow rate and temperature were at 267 bars, 18 g/min and 50°C, respectively. The yield, TPC and DPPH-IC50 obtained were 5.06%, 116.53 mg GAE/g extract and IC50 of 0.063 mg/ml, respectively. These values were not significantly different (p
    Matched MeSH terms: Inhibitory Concentration 50
  14. Jantan I, Rafi IA, Jalil J
    Phytomedicine, 2005 Jan;12(1-2):88-92.
    PMID: 15693713
    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).
    Matched MeSH terms: Inhibitory Concentration 50
  15. Jantan I, Pisar M, Sirat HM, Basar N, Jamil S, Ali RM, et al.
    Phytother Res, 2004 Dec;18(12):1005-7.
    PMID: 15742349
    Ten compounds isolated from Alpinia mutica Roxb., Curcuma xanthorrhiza Roxb. and Kaempferia rotunda Linn. (Family: Zingiberaceae) were investigated for their platelet-activating factor (PAF) antagonistic activities on rabbit platelets using 3H-PAF as a ligand. Among them, four compounds showed significant inhibitory effects. Alpinetin and 5,6-dehydrokawain isolated from A. mutica exhibited IC50 values of 41.6 and 59.3 microM, respectively. The IC50 values of 3-deacetylcrotepoxide and 2-hydroxy-4,4',6'-trimethoxychalcone from K. rotunda were 45.6 and 57.4 microM, respectively. 1-Methoxy-2-methyl-5-(1',5'-dimethylhex-4'-enyl)-benzene, synthesized by methylation of xanthorrhizol which was obtained from C. xanthorrhiza, showed an IC50 value of 40.9 microM. The results indicated that these compounds were relatively strong PAF receptor binding inhibitors.
    Matched MeSH terms: Inhibitory Concentration 50
  16. Jeevanandam J, Chan YS, Danquah MK, Law MC
    Appl Biochem Biotechnol, 2020 Apr;190(4):1385-1410.
    PMID: 31776944 DOI: 10.1007/s12010-019-03166-z
    Insulin resistance is one of the major factors that leads to type 2 diabetes. Although insulin therapies have been shown to overcome insulin resistance, overweight and hypoglycemia are still observed in most cases. The disadvantages of insulin therapies have driven the interest in developing novel curative agents with enhanced insulin resistance reversibility. Magnesium deficiency has also been recognized as a common problem which leads to insulin resistance in both type 1 and 2 diabetes. Oxide nanoparticles demonstrate highly tunable physicochemical properties that can be exploited by engineers to develop unique oxide nanoparticles for tailored applications. Magnesium supplements for diabetic cells have been reported to increase the insulin resistance reversibility. Hence, it is hypothesized that magnesium oxide (MgO) nanoparticles could be molecularly engineered to offer enhanced therapeutic efficacy in reversing insulin resistance. In the present work, morphologically different MgO nanoparticles were synthesized and evaluated for biophysical characteristics, biocompatibility, cytotoxicity, and insulin resistance reversibility. MTT assay revealed that hexagonally shaped MgO nanoparticles are less toxic to 3T3-L1 adipose cells (diabetic) compared with spherically and rod-shaped MgO nanoparticles. MTT assays using VERO cells (normal, non-diabetic) showed that 400 μg/ml of hexagonal MgO nanoparticles were less toxic to both diabetic and non-diabetic cells. DNS glucose assay and western blot showed that hexagonally shaped MgO nanoparticles had reversed 29.5% of insulin resistance whilst fluorescence microscopy studies indicated that the insulin resistance reversal is due to the activation of intracellular enzymes. The probable mechanism for MgO nanoparticles to induce cytotoxic effect and insulin resistance reversal is discussed.
    Matched MeSH terms: Inhibitory Concentration 50
  17. Ji X, Usman A, Razalli NH, Sambanthamurthi R, Gupta SV
    Anticancer Res, 2015 Jan;35(1):97-106.
    PMID: 25550539
    Oil palm phenolics (OPP) or Palm Juice (PJ), a water soluble extract from the palm fruit (Elaies guineensis) has been documented to have anti-carcinogenic activities in various cancer types.
    Matched MeSH terms: Inhibitory Concentration 50
  18. Jiemy WF, Hiew LF, Sha HX, In LLA, Hwang JS
    BMC Biotechnol, 2020 Jun 17;20(1):31.
    PMID: 32552895 DOI: 10.1186/s12896-020-00628-9
    BACKGROUND: Immunotoxin is a hybrid protein consisting of a toxin moiety that is linked to a targeting moiety for the purpose of specific elimination of target cells. Toxins used in traditional immunotoxins are practically difficult to be produced in large amount, have poor tissue penetration and a complex internalization process. We hypothesized that the smaller HALT-1, a cytolysin derived from Hydra magnipapillata, can be used as the toxin moiety in construction of a recombinant immunotoxin.

    RESULTS: In this study, pro-inflammatory macrophage was selected as the target cell due to its major roles in numerous inflammatory and autoimmune disorders. We aimed to construct macrophage-targeted recombinant immunotoxins by combining HALT-1 with anti-CD64-scFv in two orientations, and to assess whether their cytotoxic activity and binding capability could be preserved upon molecular fusion. The recombinant immunotoxins, HALT-1-scFv and scFv-HALT-1, were successfully constructed and expressed in Escherichia coli (E. coli). Our data showed that HALT-1 still exhibited significant cytotoxicity against CD64+ and CD64- cell lines upon fusion with anti-CD64 scFv, although it had half cytotoxic activity as compared to HALT-1 alone. As positioning HALT-1 at N- or C-terminus did not affect its potency, the two constructs demonstrated comparable cytotoxic activities with IC50 lower in CD64+ cell line than in CD64- cell line. In contrast, the location of targeting moieties anti-CD64 scFv at C-terminal end was crucial in maintaining the scFv binding capability.

    CONCLUSIONS: HALT-1 could be fused with anti-CD64-scFv via a fsexible polypeptide linker. Upon the successful production of this recombinant HALT-1 scFv fusion protein, HALT-1 was proven effective for killing two human cell lines. Hence, this preliminary study strongly suggested that HALT-1 holds potential as the toxin moiety in therapeutic cell targeting.

    Matched MeSH terms: Inhibitory Concentration 50
  19. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI
    Molecules, 2020 Jul 24;25(15).
    PMID: 32721993 DOI: 10.3390/molecules25153353
    Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
    Matched MeSH terms: Inhibitory Concentration 50
  20. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    PMID: 24305067 DOI: 10.1186/1472-6882-13-343
    Hepatocellular carcinoma is a common type of tumour worldwide with a high mortality rate and with low response to current cytotoxic and chemotherapeutic drugs. The prediction of activity spectra for the substances (PASS) software, which predicted that more than 300 pharmacological effects, biological and biochemical mechanisms based on the structural formula of the substance was efficiently used in this study to reveal new multitalented actions for Vitex negundo (VN) constituents.
    Matched MeSH terms: Inhibitory Concentration 50
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links