PURPOSE: The aim was to determine the metabolic fingerprint that predicts warfarin response based on the international normalized ratio (INR) in patients who are already receiving warfarin (phase I: identification) and to ascertain the metabolic fingerprint that discriminates stable from unstable INR in patients starting treatment with warfarin (phase II: validation).
EXPERIMENTAL APPROACH: A total of 94 blood samples were collected for phase I: 44 patients with stable INR and 50 with unstable INR. Meanwhile, 23 samples were collected for phase II: nine patients with stable INR and 14 with unstable INR. Data analysis was performed using multivariate analysis including principal component analysis and partial least square-discriminate analysis (PLS-DA), followed by univariate and multivariate logistic regression (MVLR) to develop a model to identify unstable INR biomarkers.
KEY RESULTS: For phase I, the PLS-DA model showed the following results: sensitivity 93.18%, specificity 91.49% and accuracy 92.31%. In the MVLR analysis of phase I, ten regions were associated with unstable INR. For phase II, the PLS-DA model showed the following results: sensitivity 66.67%, specificity 61.54% and accuracy 63.64%.
CONCLUSIONS AND IMPLICATIONS: We have shown that the pharmacometabonomics technique was able to differentiate between unstable and stable INR with good accuracy. NMR-based pharmacometabonomics has the potential to identify novel biomarkers in plasma, which can be useful in individualizing treatment and controlling warfarin side effects, thus, minimizing undesirable effects in the future.
METHODS: Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry.
RESULTS: Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores.
INTERPRETATION: Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.
OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.
METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.
RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50 = 190.43 ± 12.26 μg/mL, P
RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus.
CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.
METHODS: Crude extract obtained from the dried leaves using 80% methanolic solution was further partitioned using different polarity solvents. The resultant extracts were investigated for their α-glucosidase inhibitory potential followed by metabolites profiling using the gas chromatography tandem with mass spectrometry (GC-MS).
RESULTS: Multivariate data analysis was developed by correlating the bioactivity, and GC-MS data generated a suitable partial least square (PLS) model resulting in 11 bioactive compounds, namely, palmitic acid, phytol, hexadecanoic acid (methyl ester), 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol, glycerol monostearate, alpha-tocospiro B, and stigmasterol. In-silico study via molecular docking was carried out using the crystal structure Saccharomyces cerevisiae isomaltase (PDB code: 3A4A). Interactions between the inhibitors and the protein were predicted involving residues, namely LYS156, THR310, PRO312, LEU313, GLU411, and ASN415 with hydrogen bond, while PHE314 and ARG315 with hydrophobic bonding.
CONCLUSION: The study provides informative data on the potential α-glucosidase inhibitors identified in C. nutans leaves, indicating the plant's therapeutic effect to manage hyperglycemia.