Xylitol production by bioconversion of xylose can be economically interesting if the raw material can be recovered from a cheap lignocellulosic biomass (LCB). Meranti wood sawdust (MWS) is a renewable and low-cost LCB that can be used as a promising and economic source of xylose, a starting raw material for the manufacture of several specialty chemicals, especially xylitol. This study aimed to optimize the hydrolysis process of MWS and to determine the influence of temperature, H2SO4 concentration, and residence time on xylose release and on by-product formation (glucose, arabinose, acetic acid, furfural, hydroxymethylfurfural (HMF), and lignin degradation products (LDPs)). Batch hydrolysis was conducted under various operating conditions, and response surface methodology was adopted to achieve the highest xylose yield. Xylose production was highly affected by temperature, acid concentration, and residence time. The optimum temperature, acid concentration, and time were determined to be 124 °C, 3.26 %, and 80 min, respectively. Under these optimum conditions, xylose yield and selectivity were attained at 90.6 % and 4.05 g/g, respectively.
Hsp90 is an ATP-dependent molecular chaperone that is involved in important cellular pathways such as signal transduction pathways. It is a potential cancer drug target because it plays a critical role for stabilization and activation of oncoproteins. Thus, small molecule compounds that control the Hsp90 function are useful to elucidate potential lead compounds against cancer. We studied effect of a naturally occurring styryl-lactone goniothalamin on the activity of Hsp90. Although many drugs targeting Hsp90 inhibit the ATPase activity of Hsp90, goniothalamin enhanced rather than inhibited the ATPase activity of a cyanobacterial Hsp90 (HtpG) and a yeast Hsp90. It increased both K(m) and k(cat) of the Hsp90s. Domain competition assays and tryptophan fluorescence measurements with various truncated derivatives of HtpG indicated that goniothalamin binds to the N-terminal domain of HtpG. Goniothalamin did not influence on the interaction of HtpG with a non-native protein or the anti-aggregation activity of HtpG significantly. However, it inhibited the activity of HtpG that assists refolding of a non-native protein in cooperation with the Hsp70 chaperone system. This is the first report to show that a small molecule that binds to the N-terminal domain of Hsp90 activates its ATPase activity, while inhibiting the chaperone function of Hsp90.
We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20-50 eV, while the scattered electron was detected in the 10°-90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, "rotationally averaged" elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].
In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.
Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.
This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.
This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer.
Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.
The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.
β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m(2)/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V).
A series of hitherto unreported piperidone embedded α,β-unsaturated ketones were synthesized efficiently in ionic solvent and evaluated for cholinesterase inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Most of the synthesized compounds displayed good enzyme inhibition; therein compounds 7i and 7f displayed significant activity against AChE with IC50 values of 1.47 and 1.74 µM, respectively. Compound 6g showed the highest BChE inhibitory potency with IC50 value of 3.41 µM, being 5 times more potent than galanthamine. Molecular modeling simulation was performed using AChE and BChE receptors extracted from crystal structure of human AChE and human BChE to determine the amino acid residues involved in the binding interaction of synthesized compounds and their relevant receptors.
Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application.
Antioxidative and antihypertensive bioactive peptides were successfully derived from Parkia speciosa seed using alcalase. The effects of temperature (25 and 50 °C), substrate-to-enzyme ratio (S/E ratio, 20 and 50), and incubation time (0.5, 1, 2 and 5h) were evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and angiotensin-converting enzyme (ACE) assays. Bioactive peptide extracted at a hydrolysis condition of: temperature=50 °C, S/E ratio=50 and incubation time=2h, exhibited the highest DPPH radical scavenging activity (2.9 mg GAE/g), reducing power (11.7 mM) and %ACE-inhibitory activity (80.2%). The sample was subsequently subjected to fractionation and the peptide fraction of <10 kDa showed the strongest bioactivities. A total of 29 peptide sequences from peptide fraction of <10 kDa were identified as the most potent contributors to the bioactivities. These novel bioactive peptides were suggested to be beneficial to nutraceutical and food industries.
A capillary electrophoresis (CE)-capacitively coupled contactless conductivity detection (C(4)D) method for the simultaneous separation of eleven underivatized fatty acids (FAs), namely, lauric, myristic, tridecanoic (internal standard), pentadecanoic, palmitic, stearic, oleic, elaidic, linoleic, linolenic and arachidic acids is described. The separation was carried out in normal polarity mode at 20 °C, 30 kV and using hydrodynamic injection (50 mbar for 1 s). The separation was achieved in a bare fused-silica capillary (70 cm × 75 μm i.d.) using a background electrolyte of methyl-β-cyclodextrin (~6 mM) and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (~8 mM) dissolved in a mixture of Na2HPO4/KH2PO4 (5 mM, pH 7.4):ACN:MeOH:n-octanol (3:4:2.5:0.5, v/v/v/v). C(4)D parameters were set at fixed amplitude of 100 V and frequency of 1000 kHz. The developed method was validated. Calibration curves of the ten FAs were well correlated (r(2)>0.99) within the range of 5-250 μg mL(-1) for lauric acid, and 3-250 μg mL(-1) for the other FAs. The method was simple and sensitive with detection limits (S/N=3) of 0.9-1.9 μg mL(-1) and good relative standard deviations of intra- and inter-day for migration times and peak areas (≤9.7%) were achieved. The method was applied to the determination of FAs in margarine samples. The proposed method offers distinct advantages over the GC and HPLC methods, especially in terms of simplicity (without derivatization) and sensitivity.
Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential. Trials using superfine resolution (SFR) agarose for SSR marker screening showed that it is capable of resolving SSR loci and can be reused up to 14 times, thus greatly reducing the cost of each gel run. Furthermore, for certain applications, low concentrations of agarose sufficed and switching to lithium borate buffer, instead of the conventional Tris-borate-ethylenediaminetetraacetic acid buffer, will further save time and cost. The 2.5% gel was prepared following the Agarose SFR(TM) manual by adding 2.5 g agarose powder into 100 mL 1X lithium borate buffer in a 250-mL flask with rapid stirring. Two midigels (105 x 83 mm, 17 wells) or 4 minigels (50 x 83 mm, 8 wells), 4 mm thickness can be prepared from 100 mL gel solution. A total of 1680 PCR products amplified using 140 SSR markers from oil palm DNA samples were tested in this study using SFR recycled gel. As average, the gel can be recycled 8 times with good resolution, but can be recycled up to 14 times before the resolutions get blurred.
A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.
An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
Empty fruit bunches (EFBs), a waste material from the palm oil industry, were subjected to pyrolysis and gasification. A high content of volatiles (>82%) increased the reactivity of EFBs, and more than 90% decomposed at 700°C; however, a high content of moisture (>50%) and oxygen (>45%) resulted in a low calorific value. Thermogravimetric analysis demonstrated that the higher the heating rate and the smaller the particle size, the higher the peak and final reaction temperatures. The least squares estimation for a first-order reaction model was used to study the degradation kinetics. The values of activation energy increased from 61.14 to 73.76 and from 40.06 to 47.99kJ/mol when the EFB particle size increased from 0.3 to 1.0mm for holocellulose and lignin degradation stages, respectively. The fuel characteristics of EFB are comparable to those of other biomasses and EFB can be considered a good candidate for gasification.
Wetlands are an important source of DOM. However, the quantity and quality of wetlands' DOM from various climatic regions have not been studied comprehensively. The relationship between the concentrations of DOM (DOC), humic substances (HS) and non-humic substances (NHS) in wetland associated sloughs, streams and rivers, in cool temperate (Hokkaido, Japan), sub-tropical (Florida, USA), and tropical (Sarawak, Malaysia) regions was investigated. The DOC ranged from 1.0 to 15.6 mg CL(-1) in Hokkaido, 6.0-24.4 mg CL(-1) in Florida, and 18.9-75.3 mg CL(-1) in Sarawak, respectively. The relationship between DOC and HS concentrations for the whole sample set was regressed to a primary function with y-intercept of zero (P<0.005) and a slope value of 0.841. A similar correlation was observed between DOC and NHS concentrations, with a smaller slope value of 0.159. However, the correlation coefficient of the latter was much larger when the data was regressed to a logarithmic curve. These observations suggest the presence of a general tendency that the increased DOC in the river waters was mainly due to the increased supply of HS from wetland soils, whereas the rate of the increase in the NHS supply has an upper limit which may be controlled by primary productivity.
Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR) method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA) method. Based on the method, r(2) value, r(2) (CV) value and r(2) prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC(50) values ranging from 0.39 μM to 7.04 μM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r(2) prediction for external test set) of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set.