Displaying publications 161 - 180 of 437 in total

Abstract:
Sort:
  1. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

    Matched MeSH terms: Inhibitory Concentration 50
  2. Basiri A, Abd Razik BM, Ezzat MO, Kia Y, Kumar RS, Almansour AI, et al.
    Bioorg Chem, 2017 12;75:210-216.
    PMID: 28987876 DOI: 10.1016/j.bioorg.2017.09.019
    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs.
    Matched MeSH terms: Inhibitory Concentration 50
  3. Taha M, Ismail NH, Zaki HM, Wadood A, Anouar EH, Imran S, et al.
    Bioorg Chem, 2017 12;75:235-241.
    PMID: 29031169 DOI: 10.1016/j.bioorg.2017.10.004
    3,4-Dimethoxybenzohydrazide derivatives (1-25) have been synthesized and evaluated for their urease inhibitory potential. Among the series, compounds 2, 3, 4 and 5 with IC50 values 12.61 ± 0.07, 18.24 ± 0.14, 19.22 ± 0.21, and 8.40 ± 0.05 µM, respectively, showed excellent urease inhibitory potentials when compared with standard thiourea (IC50 value 21.40 ± 0.21 µM). Compounds 1, 6, 8, 18, 19 and 20 also showed good to moderate inhibition, while the remaining compounds were found to be completely inactive. The structures of compounds 6 and 25 were confirmed through X-ray crystallography while the structures of remaining compounds were confirmed through ESI-MS and 1H NMR. Molecular docking studies were performed understand the binding interactions with enzyme active site. The synthesized compounds were evaluated for cytotoxicity and found to be nontoxic.
    Matched MeSH terms: Inhibitory Concentration 50
  4. Taha M, Shah SAA, Imran S, Afifi M, Chigurupati S, Selvaraj M, et al.
    Bioorg Chem, 2017 12;75:78-85.
    PMID: 28918064 DOI: 10.1016/j.bioorg.2017.09.002
    The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC50=0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.
    Matched MeSH terms: Inhibitory Concentration 50
  5. Kuen CY, Fakurazi S, Othman SS, Masarudin MJ
    Nanomaterials (Basel), 2017 Nov 08;7(11).
    PMID: 29117121 DOI: 10.3390/nano7110379
    Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB), a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP) system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS) and Field Emission-Scanning Electron Microscopy (FESEM) results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT) cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.
    Matched MeSH terms: Inhibitory Concentration 50
  6. Al-Khdhairawi AAQ, Krishnan P, Mai CW, Chung FF, Leong CO, Yong KT, et al.
    J Nat Prod, 2017 10 27;80(10):2734-2740.
    PMID: 28926237 DOI: 10.1021/acs.jnatprod.7b00500
    Tengerensine (1), isolated as a racemate and constituted from a pair of bis-benzopyrroloisoquinoline enantiomers, and tengechlorenine (2), purified as a scalemic mixture and constituted from a pair of chlorinated phenanthroindolizidine enantiomers, were isolated from the leaves of Ficus fistulosa var. tengerensis, along with three other known alkaloids. The structures of 1 and 2 were determined by spectroscopic data interpretation and X-ray diffraction analysis. The enantiomers of 1 were separated by chiral-phase HPLC, and the absolute configurations of (+)-1 and (-)-1 were established via experimental and calculated ECD data. Compound 1 is notable in being a rare unsymmetrical cyclobutane adduct and is the first example of a dimeric benzopyrroloisoquinoline alkaloid, while compound 2 represents the first naturally occurring halogenated phenanthroindolizidine alkaloid. Compound (+)-1 displayed a selective in vitro cytotoxic effect against MDA-MB-468 cells (IC50 7.4 μM), while compound 2 showed pronounced in vitro cytotoxic activity against all three breast cancer cell lines tested (MDA-MB-468, MDA-MB-231, and MCF7; IC50 values of 0.038-0.91 μM).
    Matched MeSH terms: Inhibitory Concentration 50
  7. Shanmugapriya, Chen Y, Kanwar JR, Sasidharan S
    Nutr Cancer, 2017 10 25;69(8):1308-1324.
    PMID: 29068745 DOI: 10.1080/01635581.2017.1367944
    This study was conducted to investigate the anticancer effects and mechanism of Calophyllum inophyllum fruit extract against MCF-7 cells. C. inophyllum fruit extract was found to have markedly cytotoxic effect against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 23.59 µg/mL. Flow cytometry analysis revealed that C. inophyllum fruit extract mediated cell cycle at G0/G1 and G2/M phases, and MCF-7 cells entered the early phase of apoptosis. The expression of anti-apoptotic proteins Bcl-2 was decreased whereas the expression of the pro-apoptotic protein Bax, cytochrome C and p53 were increased after treatment. C. inophyllum fruit extract led to apoptosis in MCF-7 cells via the mitochondrial pathway in a dose dependent manner. This is evidenced by the elevation of intracellular ROS, the loss of mitochondria membrane potential (Δψm), and activation of caspase-3. Meanwhile, dose-dependent genomic DNA fragmentation was observed after C. inophyllum fruits extract treatment by comet assay. This study shows that C. inophyllum fruits extract-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3. C. inophyllum fruit extract could be an excellent source of chemopreventive agent in the treatment of breast cancer and has potential to be explored as green anticancer agent.
    Matched MeSH terms: Inhibitory Concentration 50
  8. Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al.
    Genes (Basel), 2017 Oct 20;8(10).
    PMID: 29053567 DOI: 10.3390/genes8100281
    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
    Matched MeSH terms: Inhibitory Concentration 50
  9. Abd Hamid H, Mutazah R, Yusoff MM, Abd Karim NA, Abdull Razis AF
    Food Chem Toxicol, 2017 Oct;108(Pt B):451-457.
    PMID: 27725206 DOI: 10.1016/j.fct.2016.10.004
    Rhodomyrtus tomentosa (Aiton) Hassk. has a wide spectrum of pharmacological effects and has been used to treat wounds, colic diarrhoea, heartburns, abscesses and gynaecopathy. The potential antiproliferative activities of R. tomentosa extracts from different solvents were evaluated in vitro on HepG2, MCF-7 and HT 29 cell lines while antioxidant activity was monitored by radical scavenging assay (DPPH), copper reducing antioxidant capacity (CUPRAC) and β-carotene bleaching assay. Extracts from R. tomentosa show the viability of the cells in concentration-dependent manner. According to the IC50 obtained, the ethyl acetate extracts showed significant antiproliferative activity on HepG2 (IC50 11.47 ± 0.280 μg/mL), MCF-7 (IC50 2.68 ± 0.529 μg/mL) and HT 29 (IC50 16.18 ± 0.538 μg/mL) after 72 h of treatment. Bioassay guided fractionation of the ethyl acetate extract led to the isolation of lupeol. Methanol extracts show significant antioxidant activities in DPPH (EC50 110.25 ± 0.005 μg/ml), CUPRAC (EC50 53.84 ± 0.004) and β-carotene bleaching (EC50 58.62 ± 0.001) due to the presence of high total flavonoid and total phenolic content which were 110.822 ± 0.017 mg butylated hydroxytoluene (BHT)/g and 190.467 ± 0.009 mg gallic acid (GAE)/g respectively. Taken together, the results extracts show the R. tomentosa as a potential source of antioxidant and antiproliferative efficacy.
    Matched MeSH terms: Inhibitory Concentration 50
  10. Saidin S, Othman N, Noordin R
    Am J Trop Med Hyg, 2017 Oct;97(4):1204-1213.
    PMID: 28820699 DOI: 10.4269/ajtmh.17-0132
    Adverse effects and resistance to metronidazole have motivated the search for new antiamoebic agents against Entamoeba histolytica. Control of amoeba growth may be achieved by inhibiting the function of the glycolytic enzyme and pyruvate phosphate dikinase (PPDK). In this study, we screened 10 compounds using an in vitro PPDK enzyme assay. These compounds were selected from a virtual screening of compounds in the National Cancer Institute database. The antiamoebic activity of the selected compounds was also evaluated by determining minimal inhibitory concentrations (MICs) and IC50 values using the nitro-blue tetrazolium reduction assay. Seven of the 10 compounds showed inhibitory activities against the adenosine triphosphate (ATP)/inorganic phosphate binding site of the ATP-grasp domain. Two compounds, NSC349156 (pancratistatin) and NSC228137 (7-ethoxy-4-[4-methylphenyl] sulfonyl-3-oxido-2, 1, 3-benzoxadiazol-3-ium), exhibited inhibitory effects on the growth of E. histolytica trophozoites with MIC values of 25 and 50 μM, and IC50 values of 14 and 20.7 μM, respectively.
    Matched MeSH terms: Inhibitory Concentration 50
  11. Chiu MT, Tham HJ, Lee JS
    J Food Sci Technol, 2017 Sep;54(10):3327-3337.
    PMID: 28974818 DOI: 10.1007/s13197-017-2785-3
    This study was designed to determine the effect of osmotic dehydration (OD) process temperature (35-55 °C), sucrose concentration (40-60% w/w) and immersion time (90-210 min) on the water loss (WL), solid gain (SG), DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP) and sensory quality of the dehydrated Terung Asam slices. Response Surface Methodology with Central Composite Design was applied to investigate the influence of these variables on the aforementioned responses. The increase in the levels of these processing parameters increased the WL and SG. The antioxidant activities also increased with sugar concentration, but reduced with immersion time and temperature elevation. About 36-80% of IC50 and 47-72% of FRAP were depleted after osmotic process. The loss of antioxidants was predominantly due to leaching during osmotic treatment rather than hot air drying. Despite the losses of these compounds, osmotic pretreatment was able to improve the sensory quality of the product. The optimum OD process condition was predicted as process temperature 38.1 °C, sucrose concentration 55.6% and osmotic duration 126.3 min.
    Matched MeSH terms: Inhibitory Concentration 50
  12. Bharkavi C, Vivek Kumar S, Ashraf Ali M, Osman H, Muthusubramanian S, Perumal S
    Bioorg Med Chem Lett, 2017 Jul 15;27(14):3071-3075.
    PMID: 28552337 DOI: 10.1016/j.bmcl.2017.05.050
    An efficient one-pot microwave assisted stereoselective synthesis of novel dihydro-2'H-spiro[indene-2,1'-pyrrolo[3,4-c]pyrrole]-tetraone derivatives through three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ from ninhydrin and sarcosine with a series of 1-aryl-1H-pyrrole-2,5-diones is described. The synthesised compounds were screened for their antimycobacterial and AChE inhibition activities. Compound 4b (IC50 1.30µM) has been found to display twelve fold antimycobacterial activity compared to cycloserine and it is thirty seven times more active than pyrimethamine. Compound 4h displays maximum AchE inhibitory activity with IC50 value of 0.78±0.01µmol/L.
    Matched MeSH terms: Inhibitory Concentration 50
  13. Haque AKMM, Leong KH, Lo YL, Awang K, Nagoor NH
    Phytomedicine, 2017 Jul 15;31:1-9.
    PMID: 28606510 DOI: 10.1016/j.phymed.2017.05.002
    BACKGROUND: The compound, 1'-S-1'-acetoxychavicol acetate (ACA), isolated from the rhizomes of a Malaysian ethno-medicinal plant, Alpinia conchigera Griff. (Zingiberaceae), was previously shown to have potential in vivo antitumour activities. In the development of a new drug entity, potential interactions of the compound with the cytochrome P450 superfamily metabolizing enzymes need to be ascertain.

    PURPOSE: The concomitant use of therapeutic drugs may cause potential drug-drug interactions by decreasing or increasing plasma levels of the administered drugs, leading to a suboptimal clinical efficacy or a higher risk of toxicity. Thus, evaluating the inhibitory potential of a new chemical entity, and to clarify the mechanism of inhibition and kinetics in the various CYP enzymes is an important step to predict drug-drug interactions.

    STUDY DESIGN: This study was designed to assess the potential inhibitory effects of Alpinia conchigera Griff. rhizomes extract and its active constituent, ACA, on nine c-DNA expressed human cytochrome P450s (CYPs) enzymes using fluorescent CYP inhibition assay.

    METHODS/RESULTS: The half maximal inhibitory concentration (IC50) of Alpinia conchigera Griff. rhizomes extract and ACA was determined for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5. A. conchigera extract only moderately inhibits on CYP3A4 (IC50 = 6.76 ± 1.88µg/ml) whereas ACA moderately inhibits the activities of CYP1A2 (IC50 = 4.50 ± 0.10µM), CYP2D6 (IC50 = 7.50 ± 0.17µM) and CYP3A4 (IC50 = 9.50 ± 0.57µM) while other isoenzymes are weakly inhibited. In addition, mechanism-based inhibition studies reveal that CYP1A2 and CYP3A4 exhibited non-mechanism based inhibition whereas CYP2D6 showed mechanism-based inhibition. Lineweaver-Burk plots depict that ACA competitively inhibited both CYP1A2 and CYP3A4, with a Ki values of 2.36 ± 0.03 µM and 5.55 ± 0.06µM, respectively, and mixed inhibition towards CYP2D6 with a Ki value of 4.50 ± 0.08µM. Further, molecular docking studies show that ACA is bound to a few key amino acid residues in the active sites of CYP1A2 and CYP3A4, while one amino residue of CYP2D6 through predominantly Pi-Pi interactions.

    CONCLUSION: Overall, ACA may demonstrate drug-drug interactions when co-administered with other therapeutic drugs that are metabolized by CYP1A2, CYP2D6 or CYP3A4 enzymes. Further in vivo studies, however, are needed to evaluate the clinical significance of these interactions.

    Matched MeSH terms: Inhibitory Concentration 50
  14. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 Jul;91:366-377.
    PMID: 28463800 DOI: 10.1016/j.biopha.2017.04.112
    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis.
    Matched MeSH terms: Inhibitory Concentration 50
  15. Tan CW, Sam IC, Chong WL, Lee VS, Chan YF
    Antiviral Res, 2017 07;143:186-194.
    PMID: 28457855 DOI: 10.1016/j.antiviral.2017.04.017
    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.
    Matched MeSH terms: Inhibitory Concentration 50
  16. Abubakar IB, Lim KH, Kam TS, Loh HS
    Phytomedicine, 2017 Jul 01;30:74-84.
    PMID: 28545672 DOI: 10.1016/j.phymed.2017.03.004
    BACKGROUND: γ-Tocotrienol, a vitamin E isomer possesses pronounced in vitro anticancer activities. However, the in vivo potency has been limited by hardly achievable therapeutic levels owing to inefficient high-dose oral delivery which leads to subsequent metabolic degradation. Jerantinine A, an Aspidosperma alkaloid, originally isolated from Tabernaemontana corymbosa, has proved to possess interesting anticancer activities. However, jerantinine A also induces toxicity to non-cancerous cells.

    PURPOSE: We adopted a combinatorial approach with the joint application of γ-tocotrienol and jerantinine A at lower concentrations in order to minimize toxicity towards non-cancerous cells while improving the potency on brain cancer cells.

    METHODS: The antiproliferative potency of individual γ-tocotrienol and jerantinine A as well as combined in low-concentration was firstly evaluated on U87MG cancer and MRC5 normal cells. Morphological changes, DNA damage patterns, cell cycle arrests and the effects of individual and combined low-concentration compounds on microtubules were then investigated. Finally, the potential roles of caspase enzymes and apoptosis-related proteins in mediating the apoptotic mechanisms were investigated using apoptosis antibody array, ELISA and Western blotting analysis.

    RESULTS: Combinatorial study between γ-tocotrienol at a concentration range (0-24µg/ml) and fixed IC20 concentration of jerantinine A (0.16µg/ml) induced a potent antiproliferative effect on U87MG cells and led to a reduction on the new half maximal inhibitory concentration of γ-tocotrienol (i.e.tIC50=1.29µg/ml) as compared to that of individual γ-tocotrienol (i.e. IC50=3.17µg/ml). A reduction on undesirable toxicity to MRC5 normal cells was also observed. G0/G1 cell cycle arrest was evident on U87MG cells receiving IC50 of individual γ-tocotrienol and combined low-concentration compounds (1.29µg/ml γ-tocotrienol + 0.16µg/ml jerantinine A), whereas, a profound G2/M arrest was evident on cells treated with IC50 of individual jerantinine A. Additionally, individual jerantinine A and combined compounds (except individual γ-tocotrienol) caused a disruption of microtubule networks triggering Fas- and p53-induced apoptosis mediated via the death receptor and mitochondrial pathways.

    CONCLUSIONS: These findings demonstrated that the combined use of lower concentrations of γ-tocotrienol and jerantinine A induced potent cytotoxic effects on U87MG cancer cells resulting in a reduction on the required individual concentrations and thereby minimizing toxicity of jerantinine A towards non-cancerous MRC5 cells as well as probably overcoming the high-dose limiting application of γ-tocotrienol. The multi-targeted mechanisms of action of the combination approach have shown a therapeutic potential against brain cancer in vitro and therefore, further in vivo investigations using a suitable animal model should be the way forward.

    Matched MeSH terms: Inhibitory Concentration 50
  17. Ayob FW, Simarani K, Zainal Abidin N, Mohamad J
    Microb Biotechnol, 2017 Jul;10(4):926-932.
    PMID: 28612376 DOI: 10.1111/1751-7915.12603
    This paper reports on the vinca alkaloid produced by a novel Nigrospora sphaerica isolated from Catharanthus roseus. Through liquid chromatography-mass spectrometry (LCMS), only the crude mycelia extract of this fungus was positive for determination of vinblastine. This vinca alkaloid was then purified by using high-performance liquid chromatography (HPLC) and tested for cytotoxicity activity using MTT assays. The breast cell line cancer (MDA-MB 231) was treated with a purified vinblastine which was intracellulary produced by N. sphaerica. The purified vinblastine from extracted leaf of C. roseus was used as a standard comparison. A positive result with a value of half maximal inhibitory concentration (IC50 ) of > 32 μg ml-1 was observed compared with standard (IC50 ) of 350 μg ml-1 only. It showed that a vinblastine produced by N. sphaerica has a high cytotoxicity activity even though the concentration of vinblastine produced by this endophytic fungus was only 0.868 μg ml-1 .
    Matched MeSH terms: Inhibitory Concentration 50
  18. Kwong HC, Mah SH, Chia TS, Quah CK, Lim GK, Kumar CSC
    Molecules, 2017 Jun 17;22(6).
    PMID: 28629119 DOI: 10.3390/molecules22061005
    Adamantyl-based compounds are clinically important for the treatments of type 2 diabetes and for their antiviral abilities, while many more are under development for other pharmaceutical uses. This study focused on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of adamantyl-based ester derivatives with various substituents on the phenyl ring using Ellman's colorimetric method. Compound 2e with a 2,4-dichloro electron-withdrawing substituent on the phenyl ring exhibited the strongest inhibition effect against AChE, with an IC50 value of 77.15 µM. Overall, the adamantyl-based ester with the mono-substituent at position 3 of the phenyl ring exhibited good AChE inhibition effects with an ascending order for the substituents: Cl < NO₂ < CH₃ < OCH₃. Furthermore, compounds with electron-withdrawing groups (Cl and NO₂) substituted at position 3 on their phenyl rings demonstrated stronger AChE inhibition effects, in comparison to their respective positional isomers. On the other hand, compound 2j with a 3-methoxyphenyl ring showed the highest inhibition effect against BChE, with an IC50 value of 223.30 µM. Molecular docking analyses were conducted for potential AChE and BChE inhibitors, and the results demonstrated that the peripheral anionic sites of target proteins were predominant binding sites for these compounds through hydrogen bonds and halogen interactions instead of hydrophobic interactions in the catalytic active site.
    Matched MeSH terms: Inhibitory Concentration 50
  19. Husaini R, Ahmad M, Zakaria Z
    Exp Ther Med, 2017 Jun;13(6):3209-3216.
    PMID: 28587395 DOI: 10.3892/etm.2017.4443
    Chronic myeloid leukaemia (CML) is a form of leukaemia derived from the myeloid cell lineage. Imatinib mesylate, the breakpoint cluster region-abelson murine leukeamia kinase inhibitor, is a specific reagent used in the clinical treatment of CML. The DNA topoisomerase II inhibitor, etoposide, is also employed as a therapeutic, though it is used to a lesser extent. The present study aims to evaluate the effects of CML-targeted therapy, utilising imatinib mesylate and etoposide in the in vitro treatment of parental sensitive and adriamycin-resistant CML in the K562 and K562/ADM cell lines, respectively. Preliminary work involved the screening of multidrug resistant (MDR) gene expression, including MDR1, MRP1 and B-cell lymphoma 2 (BCL-2) at the mRNA levels. The sensitive and resistant CML cell lines expressed the MRP1 gene, though the sensitive K562 cells expressed low, almost undetectable levels of MDR1 and BCL-2 genes relative to the K562/ADM cells. Following treatment with imatinib mesylate or etoposide, the IC50 for imatinib mesylate did not differ between the sensitive and resistant cell lines (0.492±0.024 and 0.378±0.029, respectively), indicating that imatinib mesylate is effective in the treatment of CML regardless of cell chemosensitivity. However, the IC50 for etoposide in sensitive K562 cells was markedly lower than that of K562/ADM cells (50.6±16.5 and 194±8.46 µM, respectively), suggesting that the higher expression levels of MDR1 and/or BCL-2 mRNA in resistant cells may be partially responsible for this effect. This is supported by terminal deoxynucleotidyl transferase dUTP nick-end labeling data, whereby a higher percentage of apoptotic cells were found in the sensitive and resistant K562 cells treated with imatinib mesylate (29.3±0.2 and 31.9±16.7%, respectively), whereas etoposide caused significant apoptosis of sensitive K562 cells (18.3±8.35%) relative to K562/ADM cells (5.17±3.3%). In addition, the MDR genes in K562/ADM cells were knocked down by short interfering RNAs. The percentage knockdowns were 15.4% for MRP1, 17.8% for MDR and 30.7% for BCL-2, which resulted in a non-significant difference in the half maximal inhibitory concentration value of K562/ADM cells relative to K562 cells upon treatment with etoposide.
    Matched MeSH terms: Inhibitory Concentration 50
  20. Abdullah SA, Jamil S, Basar N, Abdul Lathiff SM, Mohd Arriffin N
    Nat Prod Res, 2017 May;31(10):1113-1120.
    PMID: 27564208 DOI: 10.1080/14786419.2016.1222387
    A new dihydrochalcone, 2',4'-dihydroxy-3,4-(2″,2″-dimethylchromeno)-3'-prenyldihydrochalcone (1) together with 4-hydroxyonchocarpin (2), isobavachalcone (3), 4',5-dihydroxy-6,7-(2,2-dimethylpyrano)-2'-methoxy-8-γ,γ-dimethylallyflavone (4), artocarpin (5) and cycloheterophyllin (6) were successfully isolated from the leaves and heartwoods of Artocarpus lowii King (Moraceae). The structures of these compounds were fully characterised using spectroscopic methods and by direct comparison with published data. These compounds were tested for their antioxidant and tyrosinase inhibitory activities. Compound (1) displayed moderate antioxidant activity towards DPPH and tyrosinase inhibitory activities with SC50 value of 223.8 μM and IC50 value of 722.5 μM, respectively. Among the isolated compounds, cycloheterophyllin (6) showed the most potential antioxidant activity with SC50 value of 320.0 and 102.8 μM for ABTS and DPPH radicals scavenging activities, respectively, and also exhibited highest FRAP equivalent value of 4.7 ± 0.09 mM. Compound (6) showed tyrosinase inhibitory activity with the IC50 value of 104.6 μM.
    Matched MeSH terms: Inhibitory Concentration 50
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links